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Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain

(Received 6 August 2021; accepted 8 February 2022; published 28 February 2022)

We determine the phase diagram of the Abelian-Higgs model in one spatial dimension and time (1þ 1D)
on a lattice. We identify a line of first order phase transitions separating the Higgs region from the confined
one. This line terminates in a quantum critical point above which the two regions are connected by a smooth
crossover. We analyze the critical point and find compelling evidence for its description as the product of
two noninteracting systems: a massless free fermion and a massless free boson. However, we find also
some surprising results that cannot be explained by our simple picture, suggesting this newly discovered
critical point is an unusual one.
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Introduction.—Gauge theories in 1þ 1 dimensions (1D
in space and time) are ideal playgrounds to characterize the
effects of strong coupling between matter and gauge fields.
Many of the nonperturbative aspects of 3þ 1 dimensional
gauge theories relevant to our understanding of particle
physics, such as quark confinement and chiral symmetry
breaking, have a 1þ 1D analog. Furthermore, 1þ 1D field
theories can often be treated analytically [1,2] providing
important insights to the physics of 1þ 1D systems
relevant also to condensed matter physics.
In this Letter, we study the lattice version of a relativistic

bosonic field that interacts with a photonic field [3], the
bosonic version of the Schwinger model [4–7]. In contrast
to (polarized) fermions, bosons can have contact inter-
actions that are described by the well-known Abelian-
Higgs model (AHM) in 1þ 1D (AHM2) [8–12].
In AHM2, a weakmatter-field coupling limit [13] suggests

that the phase diagram is shared by two phases characteristic
of the Higgsmechanism [8–11]: a superfluid phase 1with the
quasicondensation of bosons (Higgs phase) and a Mott-
insulating phase 2 with strong interactions. However, non-
perturbative calculations show that the phenomenology in

phase 1 is the same as in phase 2, and bosons are always
tightly confined [13] (for a recent discussion, see [14,15]).
One can certify the presence of a phase transition in

dþ 1 dimension for any d > 2 [16,17], but due to the
(boring) expectation of a single phase in the continuum,
the phase diagram of AHM2 has never been computed
on the lattice in 1þ 1D. This work aims at filling this gap.
Our work is strongly motivated by the current prospects

of simulating lattice gauge theories using cold atomic
setups [18–23]. Since bosons are easier to cool down than
fermions, experiments along the lines proposed in [24–30]
should soon explore the phase diagram of AHM2.
Physicists have been working hard to measure the Higgs

mode in experiments with cold atoms for a long time, as
reviewed in [31]. In 2þ 1D, an explicit particle-hole
symmetry protects the decay of the Higgs mode into
Goldstone modes, allowing a proper measurement of its
mass. These conditions are only met at the tip of the lobe of
the Mott insulator to superfluid transition in Bose-Hubbard
systems [32–34], which is, unfortunately, in 1þ 1D of the
Berezinskii-Kosterlitz-Thouless type (see, e.g., [35–38])
and is not particle-hole symmetric. This observation seems
to strengthen the picture emerging from the presence of a
single phase in AHM2 and seems to suggest that a proper
Higgs mode does not exist in 1þ 1D.
The results we present indicate a different picture, still

characterized by a single phase, but with a reach landscape
of transitions.
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By performing matrix product state [39,40] simulations
of the Hamiltonian version of AHM2, we confirm the
presence of a single phase for all the values of the mass of
the bosons μ2=q2 and their interaction strength λ=q2 (in
units of the bosonic charge q) in agreement with the field
theoretical analysis. However, unexpectedly, for small λ=q2

we find a line of first order quantum phase transitions
(FOQPT) between the “Higgs” and the “confined” regions.
This line ends, for a finite value of λ=q2, in a critical second
order quantum phase transition (SOQPT), above which the
two regions are continuously connected through a smooth
crossover. Close to the FOQPT line, the two regions are
well separated, enabling identification of a “Higgs” mode
and its analysis in the continuum limit (for a sufficiently
small λ=q2). One can indeed take a different continuum
limit to the standard one by approaching, from the Higgs
region, the newly discovered SOQPT.
We precisely identify the position and the nature of the

new critical point. By assuming Lorentz invariance at the
critical point and then using the machinery of conformal
field theories (CFTs), we can understand the critical point
as the direct sum of two noninteracting fields: a free
fermionic field describing the Higgs mode and a free
bosonic field, a collective mode of the Goldstone modes
and the gauge field. Still, the complete characterization of
this critical point remains an outstanding challenge as some
results do not fit the above picture.
The model.—Following [3], we discretize AHM2 on a

finite 1D lattice with L sites (with spacing a) (see [41] for
details), arriving at the Hamiltonian (with open boundary
conditions)

Ĥ ¼
X

j

�
L̂2
j þ 2xΠ̂†

jΠ̂j þ
�
4x −

2μ2

q2

�
ϕ̂†
j ϕ̂j

þ λ

q2
ðϕ̂†

jÞ2ϕ̂2
j − 2xðϕ̂†

jþ1Ûjϕ̂j þ H:c:Þ
�
; ð1Þ

with x ¼ 1=a2q2. The matter fields fϕ̂j; ϕ̂
†
j ; Π̂j; Π̂

†
jg oper-

ators act in Hilbert space at sites j, while the gauge-field
fL̂j; Ûj; Û

†
jg objects act in Hilbert space defined on the

bond linking sites j and jþ 1. The operators fulfill the
standard commutation relations ½ϕ̂j; Π̂k� ¼ ½ϕ̂†

j ; Π̂
†
k� ¼ iδjk,

½L̂j; Ûj� ¼ −Ûj, and ½L̂j; Û
†
j � ¼ Û†

j .
The usual continuum limit is x → ∞. Here, we fix x ¼ 2

and characterize the phase diagram on the lattice.
We can define creation and annihilation operators for

particles “a” and antiparticles “b” as âj and b̂j fulfilling
½âj; â†k� ¼ ½b̂j; b̂†k� ¼ δjk [55]. We use the density matrix
renormalization group algorithm [39,40,56–59] to find the
ground state of the Eq. (1) Hamiltonian. Specifically, we
employ a strictly single-site variant of the density matrix
renormalization group with subspace expansion [60].

For numerics we limit the occupations of bosonic modes
to at most na0 ¼ nb0 ¼ 10 [41].
In absence of external charges, the local Uð1Þ symmetry

implies the Gauss law Ĝj ¼ 0; ∀ j, where the generators

are [3] Ĝj ¼ L̂j − L̂j−1 − Q̂j, and Q̂j ¼ â†j âj − b̂†j b̂j enc-
odes the density of dynamical charges. Using the Gauss
law, we can integrate out the gauge fields in a chain with
open-boundary conditions in favor of a long-range poten-
tial for the matter fields [4].
Confined and Higgs: two shades of the same phase.—

The long-range interactions among bosons destroy the
phases of the standard 1þ 1D Bose-Hubbard model (see
the phase diagram in Fig. 1). For λ=q2 ≥ 0, the system is in
the confined region as far as μ2=q2 ≤ 0. In this region, the
model has a finite mass gap, and the elementary excitations
are mesons, bound pairs of particle and antiparticle. The
gauge bosons are in the lowest eigenstate of L̂j, so that the
variance σ2ðL̂jÞ ¼ hL̂2

ji − hL̂ii2 ≈ 0.
For μ2=q2 ≫ 0, the system enters the “gapped” Higgs

region where the variance σ2ðL̂jÞ becomes large. The
effective gauge-field mediated tunneling amplitudeOtunn ¼
ð1=2LÞPj hϕ̂†

jþ1Ûjϕ̂j þ H:c:i. increases, so that it can
distinguish the Higgs region from the confined one.
We can also characterize the two regions by considering

the behavior of the entanglement entropy of a block made
of l constituents starting from the boundary, defined as

Sl ¼ −Tr½ρl ln ρl�; ð2Þ

where ρl ¼ Trlþ1;lþ2;…;Ljψi hψ j is the reduced density
matrix. In the Higgs region, the entanglement entropy is
systematically larger than in the confined region. However,

FIG. 1. Phase diagram of the AHM2 (1) in the ðμ2=q2; λ=q2Þ
plane for a system of size L ¼ 60. At small couplings, the system
occupies two qualitatively different regions, a confined region
and a Higgs region, separated by a line of FOQPTas witnessed by
the average tunneling amplitude Otunn (left panel) (effectively
zero in the confined region and finite in the Higgs region) and the
entanglement entropy SL=2 measured at the center of the chain
(right panel) (small in the confined region and large in the Higgs
region). The line of FOQPT ends at a SOQPT, above which the
two regions are smoothly connected representing different
aspects of a single phase.
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since both phases are gapped, the entropy follows area-law
scaling with respect to the bipartition size (see [41]).
For sufficiently small λ=q2, the two regions are separated

by a FOQPT line characterized by discontinuous jumps,
both in the tunneling amplitudeOtunn and in SL=2 measured
across the central bond [41]. This line terminates at a
critical SOQPT at a finite value of λc=q2 and μ2c=q2,
identified by the red cross in Fig. 1. We discuss the precise
location and characterization of this critical point below.
Above the SOQPT, the two regions are smoothly con-
nected, as revealed by smooth changes in all the physical
quantities while moving from one region to the another.
Nature of the critical point.—We can precisely locate

and characterize the critical point assuming its Lorentz
invariance, which implies an applicability of a CFT at low
energies. In a CFT, the finite-size scaling of the entangle-
ment entropy of a block of first l consecutive sites in a chain
with open boundary conditions and length L is

Sðl; LÞ ¼ c
6
W þ b0; ð3Þ

where c is the central charge of the corresponding CFT, b0
is a nonuniversal constant, and the chord length W is a
function of both L and l: Wðl; LÞ ¼ ln ½ð2L=πÞ sinðπl=LÞ�
[61–63].
We pinpoint the SOQPT by adapting the idea of the

phenomenological renormalization group [64] to the scal-
ing of the entropy in Eq. (3) as explained in [65,66]. At the
critical point, the c value should be independent of the
system’s size. For each L, we obtain cfit by fitting Eq. (3) to
our numerical data for Sðl; LÞ. The extracted values in the
ðμ2=q2; λ=q2Þ plane depend on L and become independent
of the system size only at the critical point. Our data
suggest that the L dependent central charges collapse to a
single value at [μ2=q2 ¼ 0.447ð1Þ, λ=q2 ¼ 0.0565ð1Þ] (see
Fig. 2). The central charge at the critical point

(μ2c=q2 ¼ 0.447, λc=q2 ¼ 0.0565) is found to be c ¼
1.49ð1Þ [67].
The value of the central charge mentioned above

suggests that we are not dealing with a minimal model.
However, we want to argue here that we are in the presence
of the direct sum of two different minimal models, each
contributing to a piece of the total central charge: a cf ¼
1=2 for a free Majorana fermion and a cb ¼ 1 for free
boson. This scenario is strongly motivated by the standard
Higgs mechanism. The complex Higgs field separates into
its amplitude and its phase. The amplitude mode is
effectively described by a real λϕ4 theory that undergoes
the standard Ising phase transition (the c ¼ 1=2 part). The
phase, on the other hand, provides the longitudinal degree
of freedom to the photon field. The latter becomes massless
at the transition and provides the c ¼ 1 free bosonic part.
The value of c ¼ 1.5 furthermore suggests, based on the c
theorem, that the two parts should be noninteracting [70].
In order to confirm this scenario, we compute the

entanglement spectrum that is also known to encode the
central charge of the theory [71]. The entanglement
spectrum, denoted by εs, is the spectrum of the entangle-
ment Hamiltonian Hl ¼ − logðρlÞ. By assuming a factor-
ized ground state, we should observe that the smallest
eigenvalue of Hl, ε0 diverges logarithmically. In particular,
we should see that [71]

ε0 ¼ ðεIsing0 þ εboson0 Þ ∝ ðcf þ cbÞ
12

W þOð1=WÞ: ð4Þ

By fitting our numerical data to Eq. (4), we observe a
perfect collapse on the functional form predicted by CFT,
but the numerical result for of ceff ¼ 1.20ð1Þ is not
compatible with 1.5 [see Fig. 3(a)]. This disagreement
between the scaling of the entanglement entropy and that
for the entanglement ground state already suggests that the
critical point is unusual and exotic in nature.
We thus turn to analyze the operator content of the model

by studying the correlation functions of local operators. We
should be able to identify a set of primary operators by
studying the large distance two point correlations function
that should decay algebraically as ϕð0ÞϕðrÞ ∼ 1=rΔϕ . The
presence of gauge symmetry, however, strongly reduces the
set of operators we can consider. Most of the candidates
that should couple to primary operators are either trivial
(due to the low dimensionality of the system) or vanishing
since they are not gauge invariant. The only nonvanishing
operators are indeed Wilson lines terminating on a boson-
antiboson pair and electric field correlations. We also have
access to local operators such as ϕ̂†ϕ̂ and Π̂†Π̂ that couple
both to the real part and the phase of the field. By assuming
we are dealing with a CFT, we can use the conformal map
that maps the profile of local operators to two points
correlation functions on the full plane (see, e.g., [72]).

(a) (b)

FIG. 2. Entropy scaling of the AHM2. (a) The fitted central
charge cfit according to Eq. (3) for fixed μ2=q2 ¼ 0.447 and
different system sizes. Curves for different system sizes cross
each other at λ=q2 ≈ 0.0565 and cfit ≈ 3=2. (b) The scaling of the
entanglement entropy at the critical point for different system
sizes yields the central charge of the critical theory as
c ¼ 1.49ð1Þ.
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At first we analyze the behavior of hL̂2
l i as function of

the chord coordinate W. The numerical results show that
hL̂2

l i diverges linearly as a function ofW, unveiling that L̂2

behaves as a free-bosonic field. Furthermore, the slope of
such linear scaling is found to be 1.20ð4Þ=12, matching that
of the entanglement ground state energy. Turning to
analyzing the profile of hΠ̂†

l Π̂li as a function of W, we
find that

hΠ̂†
l Π̂li ≃ aþ b½expðWÞ�−Δ; ð5Þ

where a and b encode the overlap of the above expectation
value with the identity operator and one of the primaries.
The numerical data [Fig. 3(b)] suggest that Δ ≃ 0.5, the
conjugate operator to the one that would match to the
derivative of the electric field.
Unfortunately, we do not find any operator that couples

to the primary of the Ising part of the CFT. Summarizing,
our data seem to confirm that we have one part of the
system that behaves as a free boson and suggest that ∂xL̂

2

should have a large overlap with the primary operator (the
derivative of the free-bosonic field), while Π̂†Π̂ should have
a strong overlap with the conjugate primary operator.
Now moving away from the critical point, we can use the

standard scaling hypothesis to extract the exponent ν from
the collapse of the fitted central charge as

cfitðLÞ ¼ f½ðμ2=λ − μ2c=λcÞL1=ν�; ð6Þ

where fð:Þ is a continuous function and ν is the corre-
sponding critical exponent. Performing the data collapse
according to Eq. (6) in the neighborhood of the critical
point μ2c=λc (see Fig. 4), we find the critical exponent to be
ν ¼ 1=2� 0.02, which matches the value observed in the
transition from polarized to critical phase in the XX model

in a magnetic field [73–75]. The same transition can be
understood in terms of free bosons that pass from their Fock
vacuum to the superfluid regime as the chemical potential
exceeds the width of the first band. In our case, the strange
thing is that there is no superfluid regime but just a single
critical point where the gauge boson condenses, while
away from the critical point our system passes from
vacuum to a Mott insulator phase. Now using the standard
scaling hypothesis, once we have figured out that ν ¼ 1=2
we can deduce that hΠ̂†Π̂i ≃ ðμ2=λ − μ2c=λcÞ, meaning that
β ¼ 1.
It is worth pointing out that ν ¼ 1=2 seems inconsistent

with a CFT, where we would expect that d − 1=ν ¼ Δ,
with Δ the thermal critical exponent and d being 2 for the
1þ 1D quantum system, while we find d − 1=ν ¼ 0.
However, all our results so far have been obtained by
assuming a full conformal invariance in mapping the
correlation function of our finite system to the ones of
an infinite plane by means of a conformal transformations.
The appearance of ν ¼ 1=2, together with the failure to

identify a local operator that couples to the primary field of
the Ising part of the CFT, contrasts with the factorization on
the critical point. However, by repeating a similar analysis
in a Z3 gauge theory coupled to bosonic matter we find a
c ≃ 0.8þ 0.5 [76]. As a result, we still believe that the
factorization hypothesis is correct, but it requires further
analysis to be appropriately confirmed. In particular, it
would be interesting to analyze the system under periodic
boundary conditions which, however, is impractical at
current computational capabilities using matrix product
states ansatz but may become a possibility using next-
generation tensor network algorithms.
Discussion and conclusions.—We have analyzed the

phase diagram of AHM2 on a discrete lattice in 1þ 1D.
We have found two distinct regions, the confined and Higgs
regions, that are separated by line of FOQPT that termi-
nates at a SOQPT. Beyond the SOQPT, the two regions are

(a)

(b)

FIG. 3. (a) The scaling of the entanglement ground state ε0
matches perfectly the functional form suggested by the CFT
analysis, reported in the text. However, the numerical value for
the central charge deviates by around 20% from the value we
extract from the scaling of the entanglement entropy as the best fit
suggests ceff ¼ 1.20ð1Þ. The red dotted line depicts the fit
assuming c ¼ 1.5. (b) The scaling of hΠ̂†

l Π̂li according to the
CFT prediction [Eq. (5)]. It couples both to the identity operator
and one primary with scaling dimension Δ that comes out to be
Δ ¼ 0.51ð2Þ from the fit, with a being 0.5474(2).

(a)

(b)

FIG. 4. The collapse of cfit according to the scaling hypothesis
[Eq. (6)] in the neighborhood of the critical point μ2c=λc ¼
0.447=0.0565 for fixed μ2=q2 ¼ 0.447 (left) and for fixed λ=q2 ¼
0.0565 (right). Here, we vary (a) λ=q2 in the range [0.056, 0.058]
and (b) μ2=q2 in the range [0.435, 0.45] for the data collapses. In
both cases, the critical exponent is found to be ν ¼ 0.5� 0.02
from data collapses.
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connected by a smooth crossover. The presence of a
SOQPT allows one to construct an unorthodox continuum
limit of the theory that should be described by free fermions
and free bosons that do not interact.
This would result in a CFTwith central charge c ¼ 3=2,

compatible with our numerical result and would have a
compelling interpretation in terms of the standard Higgs
mechanism—the real part of the complex field undergoes
an Ising transition (the c ¼ 1=2 part), while the phase of it
provides the transverse degree of freedom to the photon that
becomes dynamical and massless (the c ¼ 1 part).
However, further numerical analyses unveil surprising

pieces of the puzzle that do not fit our interpretation. We did
not find a local operator that couples to the c ¼ 1=2 part of
the CFT. The scaling of the entanglement ground state
should follow a similar law to the one of the entanglement
entropy. The numerical value of the central charge that we
extract from it is c ¼ 1.20ð1Þ. We also obtain ν ¼ 1=2
analyzing the collapse of the data for the entanglement
entropy close to the critical point, in contrast to the
expected ν ¼ 1.
Are we actually observing a Lorentz invariant critical

point where the Higgs and photon mode factorize? We
believe this is the case as also supported by the presence of
a linear dispersion relation witnessed by the nonzero
“sound velocity” extracted from a finite-size scaling analy-
sis of the ground state energy [41]. Still our study leaves
some questions unanswered. We strongly believe that this
Letter will open the debate, and that together with the
broader scientific community we will soon have a final
picture of the mechanism behind this newly observed
critical point.
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