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Photons, acting as “flying qubits” in propagation geometries such as waveguides, appear unavoidably in
the form of wave packets (pulses). The actual shape of the photonic wave packet as well as possible
temporal and spectral correlations between the photons play a critical role in successful scalable
computation. Currently, unentangled indistinguishable photons are considered a suitable resource for
scalable photonic circuits. Here we show that using so-called coherent photon conversion, it is possible to
construct flying-qubit gates which are not only insensitive to wave shapes of the photons and temporal and
spectral correlations between them but which also fully preserve these wave shapes and correlations upon
the processing. This allows the use of photons with correlations and purity in a very broad range for a
scalable computation. Moreover, such gates can process entangled photonic wave packets even more
effectively than unentangled ones.
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Despite photons being seemingly ideal candidates for
carrying quantum information, robust scalable gates and
circuits for the photonic qubits remain yet illusive. The
difficulty is that photons do not interact with each other
directly, and thus either indirect interaction via a nonlinear
medium [1–12] or “emulation” of interaction using mea-
surements [13–16] are needed. The wave shapes either in
time [17–21] or in frequency [22–24] (or both together [25])
may themselves represent qubits. Alternatively, information
can be stored in degrees of freedom orthogonal to wave
shapes, such as which path [15], polarization [15], field
quadratures [26,27], or angularmomentum [28]. In all cases,
regardless of the used approach, the shape of the photonic
wave packet is of primary importance for the gate action.
One ideally would desire a gate, working with (almost)

arbitrary photonic wave shapes and fully preserve them
during the computation—even if the wave shapes are not
unentangled or not pure. We will call such gates “wave
shape tolerant.” Formally speaking, wave shape tolerant-
ness is a quite strong property; for instance, if we delay one
of the two photons in a two-photon gate so that they do not
overlap in time anymore, the wave-shape-tolerant gate
should still work. Are such gates possible at all?
In linear optical circuits (LOCs) [13–16], which consist

of linear interferometric networks and measurements of
ancillary qubits, it is known [29,30] that for scalable
operation the photons in different channels have to be
independent and indistinguishable, so that no which-path
information can be extracted, since its presence breaks
the interference in linear optical elements, and introduces

incoherence during measurements [29–31]. Although the
action of LOCs was recently extended to a more general
class of states [31], they certainly are not wave shape
tolerant in the sense mentioned above.
The situation seems even worse if we consider a recent

proposal based on so-called coherent photon conversion
(CPC), where the photon-photon interaction is based on a
four-wave mixing (FWM) process in the presence of a
strong coherent laser field [1]. This coherent field amplifies
the action of the χð3Þ nonlinearity between the remaining
three waves, which are in a Fock state. A two-photon wave
packet sent to the input of a CPC device should experience
up- and down-conversion cycles, attaining a nonlinear
phase shift of π after each cycle, thus leading to a
controlled-Z (CZ) gate functionality. Unfortunately, soon
after the discovery of this approach it was noted [4] that, if
the finite size of the wave packets is taken into account, it
does not work, even if the participating photons are
temporally unentangled and indistinguishable, since only
the parts of the biphoton wave packet located at the same
position in space (or time) can effectively interact. This
problem can be, however, solved if the photons have
nonzero group velocities relative to each other [2,5]. In
this case, parts of the photons that were initially separated,
eventually cross and can interact at that moment. This
approach was very recently partially realized experimen-
tally [8] in a system with electromagnetic-induced trans-
parency, however, at the cost of partial loss of “working”
photons. In addition, three-photon interaction was observed
in cold Rydberg atoms [32].
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Nevertheless, with or without a relative movement of the
photonic wave packets, it seems at first sight that the CPC-
based approach has no chances to produce wave-shape-
tolerant gates, since, by up-conversion of a biphoton wave
packet (described by a two-dimensional distribution) into a
single photon (described by a one-dimensional waveform),
some information about the initial two-photon wave shape
is unavoidably lost, and the back-conversion cannot restore
it anymore. Therefore, the final wave shape seemingly can
coincide with the initial one only by chance.
Despite these objections, here we show that CPC-based

gates can indeed possess the property of being wave shape
tolerant, if the wave packet is slowly varying on the
timescale of the effective photon-photon interaction, or,
equivalently, if the suitable fourth-order coherence time is
large enough. This implies also scalability of the gates to
many entangled photons, as well as their ability to work
with mixed states. Moreover, we show that processing of
time- and frequency-entangled photons can be more
efficient than that of the unentangled ones.
The model.—The CPC approach with group-velocity-

unmatched pulses proposed in [2] is shown in Fig. 1. The
photons in Fock states at frequencies ωs, ωi, and ωa, which
we call signal (s), idler (i), and ancilla (a), respectively,
interact via the FWM process described by the suscep-
tibility χð3Þ ¼ χð3Þðωa;ωp;ωs;ωiÞ in the presence of a
strong coherent field (p) at frequency ωp with the peak
electric field Ep. This induces an effective three wave
mixing interaction between the a, s, and i wave packets.
Each of the wave packets is described by the frequency-
dependent operators aaðωaÞ, asðωsÞ, and aiðωiÞ.
Since only parts of the wave packets that are close to

each other (in space or time) can interact, one has to resolve
the finite size of the interaction region [2]. In the previous
considerations [2,5], the Hamiltonian containing spatial
nonlocality was used for this purpose, attracting, however,

critics as physically nontransparent [5]. Here we operate,
instead, in terms of noninstantaneous response, that is, with
nonlocality in time rather than in space, which is more
physically justified (see [33,34] and also below), leading
nevertheless to a formulation rather equivalent to [2,5] in
our particular case. The noninstantaneous interaction can
be represented with a Hamiltonian

H ¼ ℏγ0
Z

h̃ðωa;ωs;ωiÞa†sðωsÞa†i ðωiÞaaðωaÞ

× dωsdωidωa þ H:c: ð1Þ

Here ℏ is the Plank constant, γ0 ∼ χð3ÞEp is the interaction
strength [see more details below, after Eqs. (4) and (5)], and
h̃ describes the noninstantaneous response of the nonlinear
medium in the frequency domain. Although our further
analysis shows that the particular form of h̃ is not
important, for numerical simulations we use the function

h̃ðωa;ωs;ωiÞ ¼
δðωp − ωa þ ωs þ ωiÞffiffiffiffiffiffi

2π
p e−σ

2ðω2
sþω2

i Þ=2; ð2Þ

where δ is the Dirac δ function. This response function has
a transparent physical meaning: δ function ensures the
energy conservation; the frequency-dependent form factor
effectively “switches off” the interaction at frequencies
much larger than ωR ≈ 2π=σ. This represents schematically
a typical frequency-dependent χð3Þ for dielectrics [33–35],
which vanishes at frequencies far above the band gap. The
presence of the cutoff frequency ωR in Eq. (2) means that
the photons effectively interact with each other only if they
are separated in time by an interval smaller than σ. This
implies also spatial nonlocality: the photons interact if they
are at a distance smaller than cσ. For “typical” materials
like fused silica σ has been recently measured to be at the
level of hundreds of attoseconds [36,37].
Here we assume 1D propagation geometry, e.g., in wave-

guides, and consider a FWM-phase-matched evolution along
the propagation axis, which we denote as z. The equation of
motion in time t can be written in the form of the Schrödinger
equation iℏ∂tjΨi ¼ ðH0 þHÞjΨi, where H0 is the non-
interacting Hamiltonian. We restrict our consideration to
n ≤ 1 photons in s, i, or a channels (and strictly zero number
of photons in a at the input) and formulate the corresponding
wave vector jΨi in terms of temporal modes [19],

jΨi ¼
Z Z

Ψsiðts; ti; zÞjtsisjtiiidtsdti

þ
X
l

�Z
Ψlðtl; zÞjtlildtl

�
þ j000i; ð3Þ

where l¼fs;i;ag, jtjij¼
R
eitjωja†jðωjÞj0iωj

dωj, j¼fs;ig,
and jtaia ¼

R
eitaðωa−ωpÞa†aðωaÞj0ωa

iadωa, where a† and
j0ωj

i
j
denote creation operators and vacuum states for the

corresponding modes and frequencies, whereas j000i

FIG. 1. CPC-based CZ gate with group-velocity-unmatched
pulses. Single photon wave packets denoted as ancilla (a, blue),
signal (s, orange), and idler (i, red) propagate in the field of a
strong coherent pump (p, green), interacting via the FWM
process. The moving centers of the wave packets are indicated
by solid lines. Color change denotes schematically conversion of
photons. Vertical lines and numbers correspond to the positions
of the snapshots shown in Fig. 2 (lines labeled 1–5 refer to S1, S2,
S4; lines labeled 10, 20, 3, 40, 50 refer to S3).
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denotes the vacuum in s, i, and a channels. A wave-
shape-tolerant CZ operation on the photons in s and i
channels α00j00iþα01j01iþα10j10iþα10j11i→α00j00iþ
α01j01iþα10j10i−α11j11i for arbitrary coefficients αij is
expressed as Ψsiðts; tiÞ → −Ψsiðts; tiÞ, ΨjðtjÞ → ΨjðtjÞ,
j000i → j000i; that is, all photonic wave shapes should
remain invariant, whereas the sign flip takes place by the two-
photon wave packet only. If the input photons are (nearly)
indistinguishable, this might be also considered as the non-
linear sign (NS) gate.
Assuming absence of the higher-order linear disper-

sion terms, that is, H0 ¼
P

j ℏ
R
ωa†jðωÞajðωÞdωþ H:c:,

allows one to write down the evolution equations for the
wave shapes along the z direction in the frame of reference
propagating with the group velocity of the ancilla va (note
that t and z formulations are mathematically equivalent in
our case [38] as described in the Supplemental Material
[39], which includes Refs. [40–59]),

∂Ψsiðts; ti; zÞ
∂z ¼ −β1s

∂Ψsiðts; ti; zÞ
∂ts − β1i

∂Ψsiðts; ti; zÞ
∂ti

− iγ
Z

hðta; ts; tiÞΨaðta; zÞdta;
∂j000i
∂z ¼ 0; ð4Þ

∂Ψaðta; zÞ
∂z ¼ −iγ

Z Z
hðta; ts; tiÞΨsiðts; ti; zÞdtsdti;

∂Ψmðtj; zÞ
∂z ¼ −β1m

∂Ψmðtm; zÞ
∂tm : ð5Þ

Here m ¼ fs; ig, β1j ¼ 1=vj − 1=va (j ¼ fs; i; ag), vj
are the corresponding group velocities, hðta; ts; tiÞ is the
Fourier transform of h̃ðωa;ωs;ωiÞ with the phase coeffi-
cients moved to wave shapes in Eq. (3):

hðta; ts; tiÞ ¼
1

2πσ2
e−ðts−taÞ2=2σ2e−ðti−taÞ2=2σ2 : ð6Þ

γ ≈ γ0=va can be obtained from the limit of instantaneous
nonlinearity [40] (see details in the Supplemental Material
[39]) as γ ¼ ℏω2

pn2Φp=cS, where S is the effective area of
the beam (assumed to be the same for all waves), c is the

speed of light in vacuum, Φp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SIp=n2pℏωp

q
is the square

root of the number of pump photons per unit time, Ip is the
intensity of the pump p, n2 is the nonlinear refractive index
corresponding to χð3Þ of the relevant FWM process, and np is
the refractive index for the pump wavelength.
We assume furthermore β1s ¼ −β1i ≡ β1; that is, the signal

and idler pulses propagatewith equal velocities of the opposite
sign in the frame of reference of the ancilla (see Fig. 1). The
parts of Eqs. (4) and (5) corresponding to different input
photon numbers in s and i channels are uncoupled and thus
can be considered separately. The states with zero or one input
photons contain no interaction and allow an analytical
solution: the vacuum state remains unchanged, whereas the
single-photon wave packets Ψjðtj; zÞ, j ¼ fs; ig are trans-
lated with no change of shape or phase from the beginning to
the end of the waveguide. In contrast, the two-photon
amplitude requires more involved consideration.
Two-photon wave shapes: Numerical simulations.—If

we denote the initial pulse duration by τ, the effective overlap
(and thus interaction) of the signal and idler wave shapes
takes place over the distance ≈z0, where z0 ¼ τ=β1. For the
sake of generality, we normalized time t to τ and z to z0,
leading to the following renormalizations in Eqs. (4)
and (5): β1j → 1 for j ¼ fs; ig, γ → γβ1=

ffiffiffi
τ

p
, h → h=τ2,

Ψa → Ψa=
ffiffiffi
τ

p
, Ψsi → Ψsi=τ. Numerical simulations were

made in the range z ¼ ½−L=2; L=2� for L ¼ 4.4z0 (see
Fig. 1). We initialized our wave shapes at z ¼ −L=2with the
vacuum for the ancilla (Ψa ¼ 0) and two photons in signal
and idler modes with various initial distributions
Ψsiðts; ti;−L=2Þ ¼ ΨðinÞðts; tiÞ for four different simula-
tions denoted as S1–S4 in Fig. 2. For the simulations
S1–S4 we used the wave shape

ΨðinÞðts; tiÞ ¼ Ψ0Rθ

�
sech

�
ts − ts0

τs

�
sech

�
ti − ti0
τi

�
eiϕ

�
;

where Ψ0 is a normalization factor leading to
kΨsiðts; ti;−L=2Þk ¼ 1 [here kfk is the norm of a function
f: kfk ¼ R R

fðx; yÞdxdy], Rθ is the transformation rotat-
ingΨðts; tiÞ in ðts; tiÞ plane by the angle θ, and ϕ ¼ ϕðts; tiÞ
describes an additional time-dependent phase. For S1 we

FIG. 2. Snapshots of the signal idler wave packet represented by ReðΨsiðts; ti; zÞÞ for different initial wave shapes marked as S1–S4
(see text) shown in the moving coordinates η ¼ ðts − zβ1sÞ, ν ¼ ðti − zβ1iÞ. The positions of the snapshots in z are indicated in Fig. 1 by
the vertical lines and corresponding numbers. Sign flip of ReðΨsiÞ indicates the successful CZ gate operation. The wave shapes in S1–S3
are conserved, which is not the case for S4 where distortions appear.
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used (in normalized units mentioned above) τs ¼ τi ¼ 1,
ϕ ¼ 0, θ ¼ 0, which gives a separable wave shape;
ts0 ¼ −1.2τs, and ts0 ¼ 1.2τs. For S2, in comparison to
S1, we introduced a (moderate) chirp into the idler ϕ ¼ Ct2i ,
C ¼ 1.82=τ2; the wave shape becomes more complicated
but yet fully separable. For S3 we assumed ϕ ¼ 0 but
different signal and idler durations: τs ¼ 1, τi ¼ 1=3, and
θ ¼ −π=4, constructing thereby a state with signal and idler
being entangled. Finally, in S4, in comparison to S1, we
introduced extremely fast phase oscillations by taking ϕ ¼
iCst2s þ iCit2i with Cs ¼ Ci=2 ¼ 10=τ2.
In all simulations, we used σ=τ ¼ 0.05. As a “reference

case” we may take a fused silica waveguide with np ¼ 1.45,
n2 ¼ 3 × 10−16 cm2=W and S ¼ 1 μm2. We also assume σ
of 500 as, which is of the order of values measured recently
[36,37]. The normalized parameters mentioned above cor-
respond then to Ip ¼ 20 TW=cm2 and FWHM duration of
10 fs (τ ¼ 5.4 fs). The interaction distance is then on the
kilometer range: taking z0 ¼ 6.26 km (β1 ¼ 0.86 fs=km)
leads to the fidelity F ¼ 99.7% for S1 (see definition of F
below). On the other hand, faster than the optimal propa-
gation speed reduces back-conversion and thus fidelity; for
instance, increasing β1 2 times leads to F ¼ 90%. We note,
furthermore, that the gate length is inversely proportional to
n2=S; using novel photonic materials [44–49], such as
silicon, nanocrystalline diamond, and others may reduce
the gate length to a centimeter range. For further discussion
of these issues, see the Supplemental Material [39].
The results of simulations are shown in Fig. 2 as

snapshots of ReΨsiðts; ti; zÞ at the positions marked by
1–5 (for S1–S3) and 10, 20, 3, 40, 50 (for S3) in Fig. 1 by
vertical lines. A successful gate operation assumes the
phase change of π, which means the sign flip of
ReΨsiðts; ti; zÞ. As one can see in Fig. 2, the gate operation
takes place in a form of a “front” of the size ∼σ which
moves through the wave shape. In the case S3 the
interaction is completed at around 3 times shorter distance
due to the 3 times smaller duration of the wave packet in the
direction of the front movement.
Interestingly, at the point “3” we have a Bell-type state

jþisjþii − j−isj−ii, where j�ij denotes the signal (j ¼ s)
or idler (j ¼ i) photon, located in upper-left (þ) or lower-
right (−) corner of the ðν; ηÞ plain.
Another important case is the presence of temporal

offsets [Ψsiðts; tiÞ → Ψsiðti þ τi; ts þ τsÞ for some small
τs, τi]. They also can be processed in the fully wave-shape-
tolerant way (not shown in Fig. 2, see Supplemental
Material [39] for more details on this).
The quality of the gate operation and its ability to

keep the wave shape can be quantified by the fidelityF pre-

sented in Fig. 3 and defined as F ðzÞ¼ 1
2
j1−R R

ΨðnormÞ
si ðts;

ti;zÞΨðinÞ�ðts;tiÞdtsdtij, where ΨðnormÞ
si ðts;ti;zÞ¼Ψsiðts;ti;

zÞ=kΨsiðts;ti;zÞk. F ¼ 1 corresponds to a perfect gate
operation, including full conservation of the pulse shape.

One can see indeed from Figs. 2 and 3, that for the cases
S1–S3 not only is the phase successfully flipped, but the
wave shape also remains intact after the gate. On the other
hand, the phase deformation introduced in S4 makes the
wave shape change quickly on the scale of σ, leading to a
visibly corrupted final wave shape reflected in the low
fidelity in Fig. 3.
Summarizing, smooth enough wave packets are proc-

essed in a wave-shape-tolerant way. On the other side,
processing of wave shapes with features, “sharp” on the
scale of σ, is not anymore perfect.
Two-photon wave shapes: Analytics.—We proceed

further with a more general analytical insight into the
dynamics of two-photon wave shapes. We derive the
equation describing evolution of the wave packet Ψsi
for an arbitrary response function h localized mostly in
the region of the size ≈σ × σ of the point ts ¼ ti and being
symmetric in respect to its maxima (h used above is a
particular example of such function), whereas Ψsi is slow
on the scale of σ, meaning

j∂tjΨsiðts; ti; zÞj ≪ jΨsiðts; ti; zÞj=σ ð7Þ

for j ¼ fs; ig for all ts and ti. Under these conditions, the
equation governing the evolution of a small part δΨ of the
size σ × σ of the whole wave packetΨsi is described by (see
Supplemental Material [39] for more details)

∂ξξδΨðξ; η; νÞ þ
γ2

σ
Kðξ − ξ0ÞδΨðξ; η; νÞ ¼ 0; ð8Þ

where ξ ¼ β1ðz − ti=β1i þ ts=β1sÞ, η ¼ ðts − zβ1sÞ, ν ¼
ðti − zβ1iÞ, and Kðξ − ξ0Þ is a coupling factor that is of
the order of 1 close to ξ ¼ ξ0 and quickly approaches zero
as jξ − ξ0j becomes larger than σ (that is, if we leave the σ
vicinity of ξ0). For instance, for h given by Eq. (6) we
have Kðξ − ξ0Þ ∝ exp ½−ðξ − ξ0Þ2=4σ2�.
Equation (8) is an equation for a harmonic oscillator with

variable frequency. In the interaction region of the size σ
near ξ ¼ ξ0, the harmonic oscillator (and thus the con-
version) is effectively switched on whereas outside of the
region it is off. This region defines the conversion front
visible in Fig. 2. For the perfect gate operation, exactly half
of an oscillation period is necessary. Since Eq. (8) is linear

FIG. 3. Evolution of the gate fidelity F ðzÞ for the simulations
S1–S4 in Fig. 2.
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and the evolution starts from the same initial phase (Ψsi is at
maximum) in all points ðη; νÞ, the same part of the
oscillation is performed everywhere, making the shape
of Ψsi preserved.
Importantly, this result is general in the sense that it

applies for any Ψsi satisfying the slowness condition (7),
also for an arbitrary noninstantaneous response h satisfying
the conditions mentioned above. S4 in Fig. 2 shows that, if
the condition (7) is not satisfied, the gate may indeed
modify the wave packet shape, since the noninstantaneous
interaction mixes different pieces of the wave shape.
Operation for mixed states.—Here we show that the CZ

gate works properly for mixed states (described by a
density matrix ρsi) if a more general slowness condition
is satisfied. We sketch the consideration, and technical
details can be found in the Supplemental Material [39]. ρsi
can always be represented as a pure state jΨi in some
“larger” space [60]. In our case, jΨi can be represented as a
sum of orthogonal contributions with amplitudes given by a

set of “partial wave shapes” Ψfwg
si ðts; tiÞ, describing the

signal-idler state in each of the configurations fwg of the

rest of that larger space. Every Ψfwg
si evolves fully inde-

pendently from the others and obeys the same Schrödinger
equation [Eqs. (4) and (5)]. Therefore, ρsi will be processed

correctly if all of Ψfwg
si satisfy the slowness condition (7).

Using the fourth-order coherence function Γð2;2Þ [61]

Γð2;2Þðτs; τiÞ ¼ tr½ρsia†sðts − τsÞa†i ðti − τiÞasðtsÞaiðtiÞ�;

Equation (7) can be reformulated in an equivalent form as

Γð2;2Þðτs; τiÞ ≈ Γð2;2Þð0; 0Þ ð9Þ

for jτsj≲ σ and jτij≲ σ. Equation (9) is applicable for
density matrices. It obviously cannot be satisfied if
T ð4Þ ≲ σ, where T ð4Þ is the coherence time defined as
the width of Γð2;2Þðτs; τiÞ, so the opposite condition

T ð4Þ ≫ σ ð10Þ

is therefore necessary for the validity of Eq. (9). Except for
some pathological wave shapes, Γð2;2Þ decreases monoto-
nously near the origin ðτs; τiÞ ¼ ð0; 0Þ. Thus, in most cases,
Eq. (10) delivers also the sufficient condition and can be
therefore considered as a suitable slowness criterion.
Discussion and conclusions.—We showed that CPC-

based gates can be wave shape tolerant, that is, successfully
process arbitrary wave shapes keeping them intact, if the
wave shapes vary slowly on the timescale of σ, the
noninstantaneous response time of the nonlinearity. This
condition can be reformulated in the form of a constraint
[(9) or (10)] on the fourth-order coherence, which is also
applicable to mixed states. It is a very strong property: most
wave shapes are changing slowly on the scale of the optical

wavelength λ and thus on the scale of σ, since most
typically σ ≤ λ or even σ ≪ λ in optics. The smallest σ
appear for off-resonant nonlinearities, such as in fused
silica at optical frequencies, in which case it lies in the
attosecond range [36,37]. Our simulations indicate that in
this situation the successful gate operation is realizable if
the strong coherent pump in the TW=cm2 range and the
pulse durations in the femtosecond range are used.
Wave shape tolerantness relaxes significantly the

requirements to the photon sources needed for scalable
computing. The photons do not need to be indistinguish-
able, unentangled, or even pure anymore. Moreover, as we
have seen, some entangled distributions promise a signifi-
cant advantage in the resulting gate size over uncorrelated
photons.
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