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Time-resolved studies of quantum systems are the key to understanding quantum dynamics at its core.
The real-time measurement of individual quantum numbers as they switch between certain discrete values,
well known as a “random telegraph signal,” is expected to yield maximal physical insight. However, the
signal suffers from both systematic errors, such as a limited time resolution and noise from the
measurement apparatus, as well as statistical errors due to a limited amount of data. Here we demonstrate
that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of
magnitude. The error resilience is supported by a general theory for the detection errors as well as
experimental data of single-electron tunneling through a self-assembled quantum dot. Thus, factorial
cumulants push the limits in the analysis of random telegraph data, which represent a wide class of
experiments in physics, chemistry, engineering, and life sciences.

DOI: 10.1103/PhysRevLett.128.087701

Resolving dynamics of open quantum systems [1] on the
most fundamental level of individual quantum events is a
common goal in many fields of science. Real-time measure-
ments have been performed for a large variety of quantum
systems, including ions [2], neutral atoms [3,4], single
molecules [5–10], and skyrmions [11]. Fluctuating occu-
pation numbers of optical and plasmonic cavities [12,13],
metallic islands [14], quantum dots [15–19], trapped quan-
tum gases [20], and nanocalorimeters [21,22] have been
measured with single-photon, -electron, -atom, and -ion
precision.
These experiments record in time switches between

distinct quantum states, as illustrated by the black line in
Fig. 1. The form of the depicted time evolution is known as
a random telegraph signal. It can provide information about
hidden quantum states, such as degenerate spin states [19]
or dark states [13]. Underlying interactions such as mag-
netic [3,4] or attractive electron-electron interactions [23]
as well as internal quantum transitions such as spin
relaxation [24] or conformational changes in single mol-
ecules [5–10] and even non-equilibrium phase transitions
[25,26] can be revealed. Unfortunately, the measured signal
(green line) suffers from problems that appear in any
detection scheme: fast transitions are overlooked (indicated
by A and C) due to a limited time resolution, false
transitions (indicated by B and D) are recorded due to a
noisy detector signal, and statistical errors occur due to the
finite time span over which data are collected.
There are many experimental attempts to overcome these

problems, e.g., by employing high-bandwidth detection
[24], noise-suppression techniques [27–30], or quantum
stochastic resonance [31]. As a complementary strategy to

push the limits set by typical detection errors, we suggest
employing a specific statistical tool set, i.e., “factorial
cumulants,” for the analysis of random telegraph data.
Factorial cumulants are well known from a mathematical
perspective [32] and designed to characterize discrete
probability distributions [33], in contrast to ordinary cumu-
lants, which are designed for continuous probability dis-
tributions. Therefore, it is muchmore natural to use factorial
cumulants for the analysis of random telegraph data, where
transitions between discrete states are investigated.
Moreover, factorial cumulants are expected to be sensitive
indicators for correlation [23,34–37]. Nonetheless, their full
potential has so far only been little explored for practical
evaluation of (noisy) statistical data. This is very unfortunate
since, as we show in this Letter, factorial cumulants are
resilient to errors that otherwise obscure the quantum
dynamics of interest and may result in a wrong modeling
of the quantum system.

FIG. 1. Generic form of a random telegraph signal (green) that
deviates from the true quantum dynamics (black) because of
events that are missed (A and C) or falsely indicated (B andD) by
the detector. Simulated data are depicted.
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To illustrate this concept, we study temporal charge
fluctuations of a self-assembled semiconductor quantum
dot with single-electron precision. The setup is depicted in
Fig. 2(a). The quantum dot is tunnel coupled to an external
charge reservoir, so that single electrons can tunnel into and
out of the quantum dot with rates Γin and Γout, respectively.
Because of a strong Coulomb repulsion, the quantum dot is
either empty or occupied by one electron only. The
occupation of the quantum dot is monitored using a
resonance-fluorescence readout scheme [24,38–40]. If
the quantum dot is empty, an infrared laser drives an
excitonic transition and the emitted fluorescence photons
are collected by a single-photon detector. If the quantum
dot is occupied, no photons are emitted. After binning the
measured stream of single photons with an adjustable
binning time, the bright state (empty quantum dot) and
the dark state (occupied quantum dot) can be resolved as a
function of time; see the resonance-fluorescence signal in
Fig. 2(a) depicted in green. The setup yields a high-quality
telegraph signal with almost negligible errors as a reference
measurement. Nevertheless, we can artificially increase the
detection errors by either modifying the time resolution or
removing a large fraction of the collected photons and thus
“blinding” the detector.
The measured telegraph signal contains much more

information than just the mean number hNi of tunneling

events. In particular, the fluctuations around this mean
value have a strong predictive power about the properties of
the quantum system [41]. In the framework of full counting
statistics, the information of these fluctuations is summa-
rized in the probability distribution Pmeas

N ðtÞ that N tunnel-
ing events have been counted in a time interval of length t
[green histogram in Fig. 2(b)], where we use the convention
to count only tunneling-out events.
The measured probability distribution Pmeas

N can be
systematically analyzed by its ordinary cumulants κm of
order m [42]. The first cumulant κ1 ¼ hNi describes the
mean and the second cumulant κ2 ¼ hN2i − hN2i the
variance of the distribution. With increasing order m,
successively more details about Pmeas

N are revealed. The
cumulants can be derived from the generating function

SmeasðzÞ ¼ ln

�X
N

zNPmeas
N

�
; ð1Þ

via κm ¼ ∂m
χ SmeasðeχÞjχ¼0 [42], where we introduce the

counting variable z. In Fig. 3(a), the ordinary cumulants κm
(dots) are depicted as a function of time t. As the order m
increases, the time dependence κmðtÞ acquires more and
more structure. However, this is merely part of a general
property of ordinary cumulants, referred to as universal
oscillations [17], and hence contains no system-specific
information. Therefore, it has been suggested to use
factorial cumulants CF;mðtÞ instead [35], which are defined
by CF;m ¼ ∂m

z SmeasðzÞjz¼1. They are related to ordinary
cumulants by CF;m ¼ P

m
j¼1 sm;jκj, with the Stirling num-

bers of the first kind sm;j giving the coefficients of the
factorial power [32]. In fact, in Fig. 3(b), the factorial
cumulants CF;m (dots) do not show such universal oscil-
lations and, thus, are much better suited to extract physical
information.
In this Letter, we demonstrate an even more remarkable

advantage of factorial cumulants, namely, their robustness
against errors, which is also clearly visible in Figs. 3(a) and
3(b). We compare the measured cumulants (dots) with the
theoretical limit (solid lines) of an ideal measurement with
infinite bandwidth and signal-to-noise ratio, as well as an
unlimited amount of data. While the ordinary cumulants
κmðtÞ in Fig. 3(a) are heavily influenced by the measure-
ment imperfections, the factorial cumulants CF;mðtÞ in
Fig. 3(b), on the other hand, are error resilient. The relative
error depicted in Fig. 3(c) increases drastically for the
ordinary cumulants κmðtÞ with each order m and surpasses
100% beginning with the fourth ordinary cumulant at finite
times. In contrast, the error of the factorial cumulants
CF;mðtÞ at finite times remains at around 1% for all
orders m > 1.
To explain the ruggedness of factorial cumulants against

measurement imperfections, we need to faithfully model
the measured probability distribution Pmeas

N . In any

(a)

(b)

(a)

FIG. 2. (a) Experimental setup for the optical readout of the
electron occupation of a self-assembled quantum dot. The
measured resonance-fluorescence signal is depicted in green.
(b) Measured probability distribution Pmeas

N (green) compared
with the distribution PN (black) that originates from the true
quantum dynamics for a time interval t ¼ 45 ms.
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detection scheme, the probability distribution is inevitably
subjected to errors and, thus, can be decomposed as

Pmeas
N ¼

XN
N0¼0

PN−N0δPsys
N0 þ δPsta

N : ð2Þ

The desired information about the electron-tunneling
events is contained in PN [black histogram in Fig. 2(b)].
In contrast, δPsys

N accounts for the systematic error due to
missed and false events, and δPsta

N represents the statistical

error caused by the finite measurement time. Accordingly,
we can write the generating function from Eq. (1) as

Smeas ¼ Sþ δSsys þ δSsta: ð3Þ

The function S ¼ lnðP zNPNÞ is related via PN ¼ tr½ρNðtÞ�
to the quantum system’s density matrix ρN with the
constraint that N tunneling-out events have occurred in
the time interval ½0; t�. The time evolution of ρN is governed
by the N-resolved master equation [43,44]

_ρN ¼ ðW − J outÞρN þ J outρN−1; ð4Þ

where W is the generator of the full time evolution, while
J out ¼ P0WP1 describes the tunneling-out events from
the occupied (projector P1) to the empty (projector P0)
quantum dot. The solution of the master equation is readily
obtained after a z transform and reads ρz ¼

P
N zNρN ¼

eWztρst with the generator Wz ¼ ðW − J outÞ þ zJ out. The
stationary state of the quantum system ρst has been reached
before the counting starts. Finally, tracing out the quantum
degrees of freedom leads to the generating function [1,44]

S ¼ ln trðeWztρstÞ: ð5Þ

A unified theoretical description of the errors δSsys and
δSsta has been missing in the literature so far. However,
neglecting them may result in a huge discrepancy between
experiment and (error-free) theoretical model, as illustrated
in Fig. 3(a). To close this gap, we developed a general
model that accounts for measurement imperfections and
can be applied to an arbitrary quantum system and an
arbitrary set of detected and undetected quantum transi-
tions, see Sec. I of the Supplemental Material [45]. Using
the quantum dot system as an example, we present here the
steps to incorporate the errors into the theoretical model
which is illustrated in Fig. 4.
First, we take into account that the quantum dot state is

measured with a limited time resolution Δt. Therefore, the
counter N is not introduced on the level of the master
equation (4), but on the level of the coarse-grained time
evolution

ρNðtþ ΔtÞ ¼ ðΠ − P0ΠP1ÞρNðtÞ þ P0ΠP1ρN−1ðtÞ; ð6Þ

which ensures that at each time step Δt the counter N
increases at most by one. Here, Π ¼ eWΔt propagates the
quantum state in steps ofΔt. Transitions from the empty (0)
to the occupied dot (1) and vice versa happen at each time
step Δt with probability pin and pout, respectively. With
probability 1 − pin and 1 − pout, the state does not change.
Second, to account for a faulty detector, whose output

may deviate from the actual quantum state, we explicitly
introduce the detector degree of freedom. Therefore, we
resolve the density matrix according to ϱN ¼ ðρð0ÞN ; ρð1ÞN Þ,

(c)

(b)

(a)

FIG. 3. (a) Ordinary cumulants κm=t, (b) factorial cumulants
CF;m=t, and (c) their relative errors δm and δF;m as a function
of time t. Experimental data (dots) are compared with a
simulation disregarding measurement imperfections (solid
lines). Relative errors in (c) are obtained by averaging over
20 successive data points to reduce statistical errors. The time
resolution is Δt ¼ 50 μs, the false-count rate of the bright
state is Γfalse

0 ¼ 0.059 kHz, and the duration of the measure-
ment is T ¼ 369 s. The electron-tunneling rates are Γin ¼
0.346 kHz and Γout ¼ 0.334 kHz.
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where the superscript (b) with b ∈ f0; 1g denotes the state
indicated by the detector. Thus, the density matrix element
hajρðbÞjai ¼ pða ∩ bÞ gives the joint probability that the
detector output is b and the quantum dot state is jai with
a ∈ f0; 1g. In Fig. 4, true associations a ¼ b are shown in
green and false associations a ≠ b are shown in red. The
N-resolved time evolution becomes

ϱNðtþ ΔtÞ ¼ ðΠ − Pð0ÞΠPð1ÞÞϱNðtÞ þ Pð0ÞΠPð1ÞϱN−1ðtÞ;
ð7Þ

where the projectors PðbÞ for the detector states ensure
that the counter N is only sensitive to changes of the
detector output. The propagator is given by Π ¼ F · ðD ⊗
eWΔtÞ with ðDÞbb0 ¼ 1. Here, the diagonal matrix F ¼
diag½pð0j0Þ; pð0j1Þ; pð1j0Þ; pð1j1Þ� accounts for false
detector outputs, where pðbjaÞ are the conditional prob-
abilities that we measure b, given that the true value is a.
They fulfill

P
b pðbjaÞ ¼ 1. Thus, at each time step Δt, the

detector indicates with a probability pð0j1Þ an empty and
with pð1j0Þ an occupied quantum dot, although the actual
state is the opposite, see Fig. 4. False transitions of the form
0 → 1 and 1 → 0 (similar to B and D in Fig. 1) are the
consequence. The type of the noise and Δt determine the
specific values of the conditional probabilities pðbjaÞ.

To solve Eq. (7), we perform a z transform and find

ϱzðtþ ΔtÞ ¼ ΠzϱzðtÞ ¼ F · ðDz ⊗ eWΔtÞϱzðtÞ; ð8Þ

with ðDzÞbb0 ¼ 1þ ðz − 1Þδb0δ1b0 . Starting from the sta-
tionary state ϱst, we apply Eq. (8) successively to arrive at
ϱzðtÞ ¼ Πt=Δt

z ϱst. Finally, we trace out the quantum degrees
of freedom and obtain the full generating function

Smeas ¼ ln trðΠt=Δt
z ϱstÞ þ δSsta: ð9Þ

The term δSsta accounting for the statistical error can be
derived via the central limit theorem, see Sec. I C of the
Supplemental Material [45].
By employing our model, we are finally able to explain

the experimental results. We illustrate the impact of the
different error sources separately in Fig. 5(a) for the fourth
ordinary cumulant κ4. To obtain experimental data (black
dots) with both a bad time resolution and many noise-
induced false counts, we randomly deleted 95% of all

(a)

(b)

FIG. 5. (a) Fourth ordinary cumulant κ4=t and (b) fourth
factorial cumulant −CF;4=t as a function of time t. Experimental
data (black dots) are compared with theoretical calculations,
including no error (black line), only a limited time resolution (red
dashed line), only noise (orange dashed line), and both together
(blue solid line). In gray, we indicate the statistical error due to a
finite measurement time. The time resolution is Δt ¼ 300 μs, the
false-count rate of the bright state is Γfalse

0 ¼ 0.038 kHz, and
the duration of the measurement is T ¼ 369 s. The electron-
tunneling rates are Γin ¼ 0.346 kHz and Γout ¼ 0.334 kHz.

FIG. 4. Four-dimensional model to simulate both a limited time
resolution and noise. The possible states are indicated via a ∩ b
denoting that the measurement outcome is b and the true value is
a. True associations b ¼ a are colored in green and false
associations b ≠ a are colored in red. At each time step Δt,
the states are updated due to true tunneling events with transition
probabilities pin and pout and false noise-induced events with
probabilities pðbjaÞ. Noise-related transitions are indicated as
gray arrows. Transitions increasing the detector counter N are
multiplied by z.
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detected photons. The theoretical results (lines) are derived
from Eq. (9). If we do not consider any error in our model
(black solid line), the theory clearly deviates from the
experiment (black dots). If we include only the noise-
induced error (orange dashed line), then we overshoot, and
if we include only the error due to the limited time
resolution (red dashed line), then we undershoot. Only
by considering both errors simultaneously (blue solid line),
we find a nice agreement between theory and experiment.
The continuous error bars that we obtained from δSsta

[shaded area in Fig. 5(a)] capture the statistical fluctuations
around the blue curve due to the limited amount of data. In
contrast, for the fourth factorial cumulant CF;4 illustrated in
Fig. 5(b), both the false and missed events have almost no
effect, even though we used a poor time resolution Δt ¼
300 μs and randomly deleted 95% of all detected photons.
In addition, a limited amount of data leads to only relatively
weak statistical fluctuations, see Sec. III B of the
Supplemental Material [45].
To elucidatewhy factorial cumulantsCF;m possess a built-

in ruggedness against measurement imperfections, we study
the limit of small errors by performing a consistent pertur-
bation expansion in the time resolution Δt and the false-
count rates Γfalse

0 ≔ pð1j0Þ=Δt and Γfalse
1 ≔ pð0j1Þ=Δt.

Starting with the expression given in Eq. (8), which is valid
for arbitrarily strong measurement imperfections, we find

_ρz ¼ ðWz þWmiss
z þWfalse

z Þρz; ð10Þ

where, in addition, we performed a partial trace over the

detector degrees of freedom, ρz ¼
P

b ρ
ðbÞ
z . Thus, the errors

of missing Wmiss
z and false events Wfalse

z enter as effective
corrections to the actual quantum dynamics encoded inWz.
In particular, we find Wmiss

z ¼ −ðz − 1ÞΔtðJ inJ outþ
J outJ inÞ=2, which describes successive tunneling-in
(J in ¼ P1WP0) and tunneling-out (J out ¼ P0WP1)
events too close to each other to be resolved by the detector
(similar to A and C in Fig. 1). This leads to missing counts.
The false events due to noise are described by the diagonal
matrix Wfalse

z ¼ ðz − 1ÞdiagðΓfalse
0 ;Γfalse

1 Þ. With rate Γfalse
a ,

the telegraph signal suffers from spurious switches to
neighboring values b ≠ a and back again to a (similar to
B and D in Fig. 1). Accordingly, we find for the generating
function

Smeas ¼ ln trðeWztþWmiss
z tþWfalse

z tρstÞ þ δSsta; ð11Þ

where the errors of missing (Wmiss
z ) and false (Wfalse

z ) events
still enter in a complicated way. However, the expression
simplifies considerably in the limit of short time intervals t.
Then, the systematic error reads

δSsys ¼ ðz − 1ÞðΓfalse − ΓmissÞt; ð12Þ

with the mean rates Γfalse=miss ¼ �∂ztrðWfalse=miss
z ρstÞjz¼0.

As a result, the corrections due to false and missing events
turn out to be Poisson-like with positive and negative
prefactors, respectively. This is true even for arbitrary times
t if both Wfalse

z ∝ 1 and Wmiss
z ∝ 1, i.e., if the false and

missed events happen independently of the quantum state. In
our experimental setup, however, the bright-state intensity
fluctuates much more than the dark-state signal [see
Fig. 2(a)], and, therefore, the false-count rates are heavily
state dependent, Γfalse

0 ≫ Γfalse
1 . Nonetheless, we find that

Eq. (12) also holds for all times t if the electron-tunneling
rates fulfill Γin ≈ Γout, see Sec. III B of the Supplemental
Material [45].
With δSsys given in Eq. (12), the systematic error of both

the ordinary δκsysm ¼ ∂m
χ δSsysðeχÞjχ¼0 and factorial cumu-

lants δCsys
F;m ¼ ∂m

z δSsysðzÞjz¼1 can be determined. While the
error of ordinary cumulants persists for all orders m, it is
identically zero for factorial cumulants, δCsys

F;m ¼ 0 for all
ordersm > 1. Since it is highly unlikely that the mean rates
of false and missing counts are known exactly, the
systematic error of ordinary cumulants δκsysm cannot be
corrected. Therefore, in this Letter, we suggest that factorial
cumulants CF;m should always be used instead of ordinary
cumulants κm when analyzing telegraph signals. Not only
do they provide a superior way to characterize the measured
probability distribution [35], but strikingly, they automati-
cally cancel out systematic errors δSsys, so that detailed
knowledge of the specific value of the error is not required
anymore. Thereby, factorial cumulants push the limits set
by typical detection errors.
In summary, we demonstrated how quantum dynamics

detected in real time can be evaluated by statistical means
that are insensitive to typical, unavoidable experimental
errors. The evaluation scheme is based on factorial cumu-
lants, which are not influenced by any spurious signals
caused by uncorrelated Poisson processes. Nevertheless,
factorial cumulants contain the same information about the
studied quantum system as ordinary cumulants [23,34–37].
Our Letter opens up a new perspective to gain precision
in the analysis of existing and future experimental
data [2–20]. For charge fluctuations in a self-assembled
quantum dot, we demonstrated error reduction by orders of
magnitude. We emphasize that our approach is purely
passive, i.e., it leaves the studied quantum dynamics
unchanged and thus allows for a high-precision analysis,
so that, e.g., hidden quantum states, internal quantum
transitions, and particle interactions can be revealed.
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