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Motivated by the physics of spin-orbital liquids, we study a model of interacting Dirac fermions on a
bilayer honeycomb lattice at half filling, featuring an explicit global SOð3Þ × Uð1Þ symmetry. Using large-
scale auxiliary-field quantum Monte Carlo (QMC) simulations, we locate two zero-temperature phase
transitions as function of increasing interaction strength. First, we observe a continuous transition from the
weakly interacting semimetal to a different semimetallic phase in which the SO(3) symmetry is
spontaneously broken and where two out of three Dirac cones acquire a mass gap. The associated
quantum critical point can be understood in terms of a Gross-Neveu-SO(3) theory. Second, we
subsequently observe a transition toward an insulating phase in which the SO(3) symmetry is restored
and the U(1) symmetry is spontaneously broken. While strongly first order at the mean-field level, the
QMC data are consistent with a direct and continuous transition. It is thus a candidate for a new type of
deconfined quantum critical point that features gapless fermionic degrees of freedom.
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Metallic quantum criticality corresponds to the sponta-
neous breaking of a symmetry in a metallic environment
triggered by varying a nonthermal control parameter such
as doping, magnetic field, or pressure [1–3]. Order-param-
eter fluctuations often induce non-Fermi-liquid behavior in
a temperature-versus-control-parameter window of the
phase diagram [4–6]. Metallic quantum criticality is pivotal
in understanding anomalous transport and strange-metal
behavior in strongly correlated materials, such as heavy-
fermion compounds [7] and Cu- and Fe-based high-
temperature superconductors [8,9]. In spite of extensive
efforts [1–3,10–17], a controlled analytical treatment of
this problem in the presence of a Fermi surface remains a
major challenge. The main difficulty is to tame the strong
quantum fluctuations that arise from the abundance of
gapless particle-hole modes near the Fermi surface. From
the numerical point of view [18], the fact that these
transitions are characterized by dynamical critical expo-
nents z > 1 impedes the ability to reach sufficiently low
temperatures on large lattices [19].
Dirac systems, in contrast, have emergent Lorentz

symmetry: Space and time are interchangeable and
z ¼ 1. Furthermore, instead of an extended Fermi surface,
they feature isolated Fermi points. In the past years, there
has been a considerable amount of work investigating
dynamical mass generation in these systems. The under-
standing of such transitions relies on the Gross-Neveu-
Yukawa theory, in which an order-parameter field of given
symmetry is coupled to a fermion-mass term in the same
symmetry sector [20]. Various instances of these transitions

have been studied from the perspective of high-energy
[21–25] and solid-state [26–36] physics. In all of the above
examples, the quantum critical points separate Dirac semi-
metallic states from insulating states with a full gap in
the fermionic spectrum. Dirac systems can, however, in
principle, also support relativistic quantum critical points
between two distinct semimetallic phases. This possibility
was recently scrutinized in the context of a frustrated
spin-orbital model, in which case the fermion degrees of
freedom arise from a spin fractionalization mechanism
[37]. If such a transition is realizable, it would represent
a Dirac “avatar” of metallic quantum criticality that may
be more easily accessible to both numerical and field-
theoretical analyses.
In this Letter, we investigate a two-dimensional lattice

model of interacting fermions designed to feature such a
semimetal-to-semimetal quantum critical point. Inspired by
Ref. [37], we study the Hamiltonian

H ¼ −t
X

hi;ji
c†iσλcjσλ − J

X

iα

ðc†iσλKα
σσ0τ

z
λλ0ciσ0λ0 Þ2; ð1Þ

where hi; ji denote pairs of nearest-neighbor sites of a
honeycomb lattice, λ ¼ 1, 2 is an additional layer index,
and summation over repeated indices is implied. Further,
σ ¼ 1, 2, and 3 is a SO(3) flavor index, ðKαÞσσ0 ¼ −iϵασσ0
are the generators of SO(3), and τx;y;z are Pauli matrices.
The model is particle-hole symmetric such that zero
chemical potential corresponds to half filling.
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The interaction term in Eq. (1) is chosen such that the
SO(3) symmetry may be spontaneously broken, resulting in
a three-component order parameter m ¼ ðm1; m2; m3Þ⊤.
For a single layer, this leads to the low-energy effective
Hamiltonian

H ¼ Ψ†
σ½iγ0γjpjδσσ0 þmαðKαÞσσ0γ0�Ψσ0 ; ð2Þ

where iγ0γjpj is the usual Dirac Hamiltonian in two spatial
dimensions, j ¼ 1, 2. The operator Kσσ0γ0 anticommutes
with the Dirac Hamiltonian and, as such, may be thought of
as a mass term, but since ðm · KÞv ¼ im × v for an arbitrary
three-component vector v, only two out of three Dirac
cones will acquire a gap. In particular, the wave function
Ψσðτ; xÞ≡mσψðτ; xÞwill correspond to the massless Dirac
fermions. The dynamical generation of such term hence
corresponds to metallic quantum criticality in a Dirac
system, in contrast to the situation in related models that
feature metal-insulator transitions [33,38]. Equation (2)
encodes a new class of Gross-Neveu (GN) transitions
dubbed GN-SO(3) that have recently been studied using
approximate analytical techniques [39].
The microscopic model (1) is amenable to large-scale

negative-sign-free auxiliary-field quantum Monte Carlo
(AFQMC) simulations [40–42], and Fig. 1 summarizes
our key results at zero temperature and half band filling. In
the weakly interacting limit, the model features a stable
semimetallic phase, characterized by N ¼ 12 irreducible
Dirac cones located at the corners K and K0 of the first
Brillouin zone. At intermediate couplings, a semimetallic
SO(3)-symmetry-broken phase with flavor order indeed
emerges, in which two thirds of the Dirac cones are gapped
out, while one third remains gapless. Remarkably, upon

further increasing the interaction strength, we encounter
another phase, which now is insulating and displays
spontaneously broken U(1) symmetry, corresponding to
emergent interlayer coherence. The first transition is
continuous at the mean-field level, and the effects of
quantum fluctuations can be understood in terms of the
GN-SO(3) field theory studied in [39]. The second tran-
sition is strongly first order at the mean-field level, as is
usual for direct transitions between states that break
different symmetries. Our numerical results, however,
indicate that quantum fluctuations render this order-
to-order transition continuous (but we cannot exclude it
to be weakly first order). It hence likely represents an
example of a new type of deconfined quantum critical point
[43] featuring gapless fermionic degrees of freedom [44].
Mean-field analysis.—Our mean-field approximation

relies on the identity

−J
X

iα

ðc†iKατzciÞ2 ¼ −J
X

iαλ

ðc†iλKαciλÞ2

þ 2J
X

iασσ0
jϵασσ0 jðΔ†

iσΔiσ0 þ n†iσniσ0 Þ;

ð3Þ

with Δ†
iσ ¼ c†iσ1c

†
iσ2 and n

†
iσ ¼ c†iσ1ciσ2. The above allows us

to define a SO(3) order parameter for staggered flavor
order,mα=2 ¼ ð−1Þihc†iλKαciλi, and a U(1) order parameter
for interlayer coherence, V=2 ¼ ð−1Þihn†iσi. In the spirit of
the continuum limit of Eq. (2), the order parameters map
onto Ψ†

σλγ0K
α
σσ0Ψσ0λ and Ψ†

σλγ0τ
x
λλ0Ψσλ0 , respectively, and

open partial and full gaps in the fermion spectrum. Since in
the quantum Monte Carlo (QMC) calculations we have not
observed superconductivity, we omit the corresponding
term in the mean-field approximation. For details of the
calculations, see the Supplemental Material [45].
Figure 2(a) shows the mean-field order parameters as

a function of J=t. The symmetric Dirac phase has a

(a)

(b)

FIG. 1. (a) Ground-state phase diagram of the model (1) as
function of interaction strength J, obtained from AFQMC simu-
lations. The semimetal-to-semimetal transition at Jc1 is continuous
and can be understood in terms of a GN-SO(3) field theory. The
semimetal-to-insulator transition at Jc2, while strongly first order at
the mean-field level, appears continuous. (b) Variation of SO(3)
and U(1) structure factors SSOð3Þðk ¼ ΓÞ and SUð1Þðk ¼ ΓÞ as
function of J for different lattice sizes. Extensive structure factors
reflect spontaneous symmetry breaking.

FIG. 2. Mean-field results for the model (1), obtained on a L ¼
60 lattice. (a) SO(3) and U(1) order parameters mα and V as a
function of J. (b)–(d) Single-particle density of states for
representative fixed values of J in the three phases.
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low-energy density of states NðωÞ ¼ αNjωj that changes to
NðωÞ ¼ αðN=3Þjωj in the SO(3)-broken phase, consistent
with two out of three Dirac cones acquiring a mass gap,
Figs. 2(b) and 2(c). At larger values of J=t, we observe a
strong first-order transition to a U(1)-broken state whose
fermion spectrum is gapped, Fig. 2(d).
QMC simulations.—We have used the ALF [47] imple-

mentation of AFQMC simulation and employed the finite-
temperature grand canonical and projective approaches. We
used a symmetric Suzuki-Trotter decomposition to control
the systematic error in observables [48,49] and adopted an
imaginary time step Δτt ¼ 0.05 for the finite-temperature
algorithm and Δτt ¼ 0.1 for the projective formulation.
The absence of a negative-sign problem for positive

values of J stems from a particular time-reversal symmetry
that relies on the bilayer structure of the model. After
a Hubbard-Stratonovich (HS) decomposition of the
perfect-square interaction term, the resulting one-body
Hamiltonian, for a given space-time configuration of
HS fields, has a time-reversal symmetry, defined as
T−1zc†iσλT ¼ z̄iτyλλ0c

†
iσλ0 . This stems from the fact that the

SO(3) generators are purely imaginary. Hence, the eigen-
values of the fermion matrix occur in complex conjugate
pairs such that positivity of the determinant follows [50]. To
minimize size effects, we follow Ref. [51] and thread the
lattice with a magnetic flux quantum of opposite sign in the
two layers [45]. It is interesting to note that introducing a
chemical potential will not break this time-reversal sym-
metry, and simulations at finite doping are amenable to
negative-sign-free QMC.
QMC results.—We carry out QMC simulations of the

model (1) on L ¼ 6, 9, 12, 15, and 18 lattices with 6L2

orbitals per honeycomb layer, set t ¼ 1, and scan as
function of J. Our results are summarized schematically
in Fig. 1(a). Each phase is characterized by spontaneous
symmetry breaking and diverging structure factor atQ ¼ Γ,
Fig. 1(b). To detect SO(3) symmetry breaking we consider
SSOð3Þðk; τÞ ¼

P
rij;λ e

−ik·rijhc†i;λðτÞKci;λðτÞ · c†j;λð0ÞKcj;λð0Þi
and, for the U(1) phase, SUð1Þðk; τÞ ¼ 1

2

P
rijσ e−ik·rij

hn†i;σðτÞnj;σ þ nj;σðτÞn†i;σi. Here, rij corresponds to the dis-
tance between the unit cells of i and j.
Each phase has a distinct signature in the single-particle

spectral function Aðk;ωÞ. We extract this quantity from the
ground-state imaginary-time-displaced fermion Green’s
functions Gðk; τÞ ¼ ð1=πÞ R dωe−τω Aðk;ωÞ by using the
ALF [47] implementation of the stochastic analytic con-
tinuation method [52]. In Fig. 3(b), in the symmetric phase,
the fermion spectrum reveals semimetallic behavior. In
Fig. 3(c), in the SO(3)-broken phase, part of the low-energy
spectral weight is removed, but a finite weight at the Dirac
point is still apparent. To demonstrate this explicitly, we
make use of the fact that, for a gapless mode, the
quasiparticle residue reads ZðkÞ ¼ 2TrGðk; β=2Þ [53].
We use a β ¼ L scaling and extrapolate Z to the

thermodynamic limit, see Fig. 3(a). In the semimetallic
phase, the quasiparticle residue extrapolates to the free
Dirac-metal value Zðk ¼ KÞ ¼ 6. In the SO(3)-symmetry-
breaking phase, using a polynomial fit, we obtain the
estimated quasiparticle residue Zðk ¼ KÞ ¼ 1.9ð1Þ. The
ratio of the quasiparticle weights is close to three, as
expected from the gapping out of 2=3 of the Dirac cones.
Finally in the U(1)-broken phase, the spectrum shows a full
gap, Fig. 3(d).
The two phase transition points are located by monitor-

ing the renormalization-group invariant correlation ratio
[54] Rc ¼ 1− f½Sðk¼ Qþ dk; τ ¼ 0Þ�=½Sðk¼ Q; τ ¼ 0Þ�g,
where Sðk; τ ¼ 0Þ is the structure factor of either the SO(3)
or the U(1) order, Q is the ordering wave vector, and dk is
the smallest momentum on the considered lattice.
To investigate the first phase transition, we will assume

z ¼ 1 and adopt a β ¼ L scaling within the finite-temper-
ature AFQMC algorithm. As apparent in Fig. 4(a), this
phase transition involves only SO(3) symmetry breaking

since a clear crossing is observed in RSOð3Þ
c . On the other

hand, RUð1Þ
c vanishes for increasing system size, thus

excluding long-range U(1) order in the considered param-
eter range. In the quantum critical region, we expect the

correlation ratio RSOð3Þ
c to obey the finite-size scaling (FSS)

ansatz [55] RSOð3Þ
c ðJ; LÞ ¼ fR0 ðjL1=νÞ þ L−ωfR1 ðjL1=νÞ,

(a) (b)

(c) (d)

FIG. 3. (a) Quasiparticle weight Zðk ¼ KÞ as a function of
inverse system size, 1=L, in the symmetric (J ¼ 0.40) and SO(3)-
broken (J ¼ 0.50) phases, respectively. The polynomial fitting of
the second curve yields Z ¼ 1.9ð1Þ for L → ∞. (b)–(d) Fermion
spectral function Aðk;ωÞ along the path in momentum space
shown in the inset of (a), shown for (b) the symmetric phase at
J ¼ 0.30, (c) the SO(3)-broken phase at J ¼ 0.70, and (d) the U
(1)-broken phase at J ¼ 1.10. Finite weight at the Dirac point is
visible in (b) and (c), corresponding to semimetallic behavior,
albeit with a reduced low-energy weight in the case of the SO(3)-
broken semimetal (c). The low-energy weight at the M point
especially visible in (b) is an artifact of the magnetic flux and
does not survive the thermodynamic limit (see Supplemental
Material [45]).
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where j ¼ J − Jc1. fR0 and f
R
1 are scaling functions and ω is

the leading-correction-to-scaling exponent. To extract the
values of the critical exponent ν and the critical point Jc, we
fit the scaling function fR0 ðjL1=νÞ to a polynomial [45]. In

our simulations, the crossing point in the RSOð3Þ
c data

becomes size independent within our accuracy. Hence, for
L ≥ 12, corrections to scaling can be omitted. Our results are
consistent with 1=ν ¼ 0.906ð35Þ and Jc1 ¼ 0.461ð1Þ. The
data collapse of RSOð3Þ

c ðJ; LÞ is depicted in Fig. 4(b). The
bosonic ηϕ and fermionic ηψ anomalous dimensions are
related to the FSS ansatz of the SO(3) order parameterm2 ¼
SSOð3ÞðQ; τ ¼ 0Þ=L2 and ZðJ;LÞ¼GðJ;LÞ=Gð0;LÞ, where
GðJ; LÞ ¼ 1

6

P
σ;λhc†0σλðβ=2Þc0σλð0Þi at interaction strength

J. At the critical point, and neglecting corrections to

scaling, these two quantities scale as m2
SOð3Þðj; LÞ ¼

L−ð1þηϕÞfmðjL1=νÞ ¼ L−ð1þηϕÞf̃mðRSOð3Þ
c ðJ; LÞÞ and

ZðJ; LÞ ¼ L−ηψ fzðjL1=νÞ ¼ L−ηψ f̃zðRSOð3Þ
c ðJ; LÞÞ [33].

Here we use the correlation ratio RSOð3Þ
c ðJ; LÞ as a dimen-

sionless quantity to replace the variable jL1=ν so as to reduce
the number of fit variables. Following the regression result of
the scaling function, we obtain the estimates ηϕ ¼ 0.470ð13Þ
and ηψ ¼ 0.292ð10Þ. Figures 4(c) and 4(d) show the data
collapse using the estimated exponents. Consistent results
are obtained when collapsing the data with respect to jL1=ν

with ν [45].
At the mean-field level, the transition between the SO

(3)-broken and U(1)-broken states is strongly first order.

However, the QMC results for RSOð3Þ
c and RUð1Þ

c do not
suggest a strong first-order transition, Figs. 5(a) and 5(b).
To assess if there is a coexistence regime, we carry out a
crossing-point analysis to determine the coupling at which

the SO(3) [U(1)] order is suppressed (appears). We deter-

mine the finite-size critical couplings JSOð3Þ=Uð1Þc2 ðLÞ by
RcðJc2ðLÞ; LÞ ¼ RcðJc2ðLÞ; Lþ 3Þ. As the system size

L → ∞, the finite-size critical couplings JSOð3Þ=Uð1Þc2 ðLÞ
scale as JSOð3Þ=Uð1Þc2 þ aL−e, where e ¼ 1=νþ ω and a is
a nonuniversal constant. The results, plotted in Fig. 5(c),

suggest that, within our accuracy, JSOð3Þc2 ¼ JUð1Þc2 . In
Fig. 5(d), we plot the first derivative of the free energy
with respect to J. Within our accuracy, we do not observe a
discontinuity expected for a first-order transition.
Consistent estimates of the correlation-length exponent
from the U(1) and SO(3) structure factors are reported
in the Supplemental Material [45].
Discussion and summary.—We have introduced a model

Hamiltonian, amenable to large-scale negative-sign-free
QMC simulations, that supports metallic quantum critical-
ity in Dirac systems. The SO(3) order generates mass in
two out of three Dirac cones. Using a FSS analysis, we
estimate the critical exponents of the SO(3)-ordering
transition

1=ν¼ 0.906ð35Þ; ηϕ ¼ 0.470ð13Þ; ηψ ¼ 0.292ð10Þ ð4Þ

for the correlation-length exponent and the boson and
fermion anomalous dimensions. We expect our model to
fall into the GN-SO(3) universality class, withN ¼ 12 two-
component Dirac fermions. Calculations in [39], based on ϵ
expansion, large-N, and functional renormalization-group
approaches, yield exponents that differ from our estimates:
1=ν ¼ 0.93ð4Þ, ηϕ ¼ 0.83ð4Þ, and ηψ ¼ 0.041ð12Þ. While
we cannot exclude that the discrepancy stems from

FIG. 4. QMC characterization of GN-SO(3) transition at Jc1.
(a) Correlation ratios of the U(1) and SO(3) order parameters.
(b)–(d) Scaling collapse near Jc1 ¼ 0.461 of (b) correlation ratio
RSOð3Þ
c , (c) order parameter m2, and (d) fermion quasiparticle

weight Z, as a function of jL1=ν, with j ¼ J − Jc1 and ν the
correlation-length exponent.

FIG. 5. QMC characterization of SO(3)-U(1) transition at Jc2.
(a),(b) Correlation ratios as function of J across transition.
(c) Finite-size critical couplings JSOð3Þ=Uð1Þc2 ðLÞ as a function of
1=L. While JUð1Þc2 ðLÞ increases with system size, JSOð3Þc2 ðLÞ
stabilizes within our accuracy as L ≥ 9. By extrapolating
JUð1Þc2 ðLÞ using the power-law ansatz Jc2 þ a=Le, we obtain
the estimate Jc2 ¼ 1.0013ð18Þ. (d) First derivative of free energy
dF=dJ near Jc2, showing no discontinuity within our accuracy.
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finite-size effects in the QMC or convergence issues in the
analytical approaches, they are large enough to speculate if
topological defects in the field configurations—not
included in [39]—play a role, see below. Note that within
the QMC approach one can, in principle, systematically
carry out calculations at N ¼ 12n and thereby test the
validity of the large-N approach.
At larger couplings, the model shows an order-to-order

transition between the SO(3) semimetal and a U(1) insu-
lator. While at the mean-field level this transition is strongly
first order, the QMC data on lattice sizes with up to 18 × 18
unit cells can be interpreted in terms of a continuous and
direct transition, thereby providing an instance of a new
type of deconfined quantum critical point [43] featuring
gapless fermionic degrees of freedom [44]. Clearly, we
cannot exclude the possibility of a weakly first-order
transition, in which, as suggested in the realm of decon-
fined criticality, the correlation length grows beyond the
accessible system size due to the proximity of a critical
fixed point in the complex-coupling plane [56–62].
The discrepancy between the QMC critical exponents

and those of Ref. [39], as well as the seemingly continuous
transition between the SO(3)-broken semimetal and U(1)-
broken insulator, leads us to ask the question if the topology
of the SO(3) order parameter can play a role. For a given
SO(3) mass term, ½mðxÞ · K�γ0, the wave function of the
gapless Dirac cone reads ΨσλðxÞ ¼ mσðxÞψλðxÞ. Consider
an interface where on both sides the vectors m are
orthogonal to each other. Because of the orthogonality
of the vectorsm, the wave function vanishes at the interface
and a particle will not be able to cross it. The topological
excitation of the SO(3) order parameter in two spatial
dimensions is a skyrmion. In its core the SO(3) order
parameter is given bymc and at infinity by −mc. The core is
surrounded by a vortex in a plane perpendicular to mc that
acts as an infinite potential barrier. As a consequence, we
can foresee that a skyrmion of the SO(3) order parameter
will trap charge in its core. Mean calculations supporting
this point of view are presented in the Supplemental
Material [45]. Understanding if this “topological localiza-
tion” is essential for the description of the observed phase
transitions remains an open issue.
The phase diagram of our model contains two ordered

phases with low-lying Goldstone modes. As mentioned
above, it is possible to dope our system without encountering
a negative-sign problem. Hence, numerical simulations
aimed at understanding the nature of the doping-induced
transitions to correlated metals (or superconductors [63])
should be feasible; these will be the subject of future work.
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