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Near the antiferromagnetic quantum critical point (QCP) of electron-doped cuprate superconductors,
angle-resolved photoemission experiments detect hot spots where the Fermi surface disappears. Here, we
demonstrate, using the two-particle self-consistent theory, that in the antinodal region the Fermi liquid
remains stable for a broad range of angles on the Fermi surface and for all dopings near the QCP. We show
how the quasiparticle weight Z and effective massm� change and then abruptly become meaningless as the
hot spots are approached. We propose a dimensionless number, easily accessible in ARPES experiments,
that can be used to gauge the strength of correlations.
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Introduction.—Fermi-liquid theory is the basis on which
rests the description of electron behavior in metals.
Although Landau Fermi-liquid theory was formulated
for translationally invariant systems, the presence of a
lattice leads to relatively small modifications of the original
idea. Fermi-liquid quantities, such as the effective mass
and the quasiparticle weight, acquire angular dependence
along the Fermi surface, a relatively trivial modification.
However, the concept of Fermi liquids has been challenged
in strongly correlatedmaterials, such as the high-temperature
superconductors, where the notions of non-Fermi liquids
[1,2] and marginal Fermi liquids [3] have emerged. The
presence of magnetic zero-temperature quantum critical
points (QCP) is often invoked as an explanation of non-
Fermi-liquid behavior [2].
Detailed analysis of the Fermi surface quasiparticles

through the extraction of the self-energy from ARPES
measurements have been performed on multiple materials,
such as Sr2RuO4 [4], organic metals [5], the hole-doped
cuprates Bi2Sr2CaCu2O8 and La2−xSrxCuO4 [6,7], and the
electron-doped cuprate Pr1.3−xLa0.7CexCuO4 (PLCCO) [8].
In all these cases, Fermi-liquid quasiparticles have been
shown to persist in some segments of the Fermi surface,
especially away from putative QCPs in overdoped samples.
Here, we show, for the specific case of electron-doped

cuprates, where ample experimental data are available
[9–11], that the proximity to an antiferromagnetic QCP
leaves the Fermi liquid unscathed for large portions of the
Fermi surface and for all dopings in the vicinity of the
QCP. While many theoretical studies have focused on
“hot spots” where non-Fermi-liquid behavior is observed
[12,13], we focus on the resilient Fermi-liquid segments
that have interesting properties and that can dominate
transport [14–16]. In particular, we show that the proper-
ties of the resilient portions of the Fermi liquid lead to a

new way to quantify the strength of correlations that
goes beyond earlier proposals based, for example, on sum
rules [17].
In the electron-doped cuprates, an antiferromagnetic

phase extends to high dopings, for example x ∼ 0.13 in
Nd2−xCexCuO4 (NCCO) [10]. Antiferromagnetic fluctua-
tions play an important role since a loss of spectral weight at
the hot spots, connected by the antiferromagnetic (AFM)
wave vector, has been observed through ARPES measure-
ments [9,18–20]. Theoretical and experimental proposals
have attributed these observations to antiferromagnetic
fluctuations [10,21–23]. Moreover, in the electron-doped
cuprate PLCCO, it was shown that the suppression of the
AFM pseudogap through “protect annealing” could be due
to the suppression of the AFM fluctuations [24].
Model and method.—We study the two-dimensional

Hubbard model on a square lattice,

H ¼
X
k;σ

ϵkc
†
kσckσ þU

X
i

ni↑ni↓; ð1Þ

where cð†Þkσ annihilates (creates) an electron of spin σ and
crystal momentum k. Allowing first, second, and third
nearest-neighbor hoppings, with respective hopping
parameters t ¼ 1, t0 ¼ −0.175, and t00 ¼ 0.05 that
model the electron-doped cuprate NCCO [21], the
dispersion relation is ϵk ¼ −2t½cosðkxÞ þ cosðkyÞ� − 4t0
cosðkxÞ cosðkyÞ − 2t00½cosð2kxÞ þ cosð2kyÞ�. The strength
of interactions is U and ni↑,ni↓ are number operators for,
respectively, spin-up and spin-down electrons on site i.
Planck’s constant ℏ is unity.
We solve the model with the two-particle self-consistent

approach (TPSC). This method is nonperturbative and
respects conservation laws, the Mermin-Wagner theorem,
the Pauli exclusion principle, and consistency between
single- and two-particle quantities [25,26]. This method is
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valid for U ranging from zero to about 0.75 times the
bandwidth. While it cannot reproduce the Mott transition, it
enables the study of long-wavelength antiferromagnetic
fluctuations and their interactions with electrons. It was the
first method to accurately predict the condition under which
an AFM pseudogap opens at the hot spots where the AFM
Brillouin zone crosses the Fermi surface in the 2D Hubbard
model without long-range order. Regions where the Fermi
liquid disappears, so-called hot spots, occur when the Vilk
criterion is satisfied, namely when the AFM correlation
length becomes larger than the thermal de Broglie wave-
length [10,22,25]. A similar phenomenon is seen with the
TPSC approach for the attractive Hubbard model, with the
prediction of the opening of a pairing pseudogap when
the pairing correlation length becomes larger than the de
Broglie wavelength [25,27]. In that case, the whole Fermi
surface becomes “hot.” The TPSC approach was previously
used to study the electron-doped cuprate NCCO with the
band parameters listed above [21], reproducing accurately
the evolution of the Fermi surface as a function of doping,
as observed in ARPES experiments. Unless stated other-
wise, we use U ¼ 5.75t that was used to reproduce the
NCCO ARPES spectra at x ¼ 0.15.
The resilient Fermi liquid.—To study the effect of AFM

fluctuations on Fermi-liquid quasiparticles, we study three
different dopings: x ¼ 0.15 in the underdoped regime
(below the AFM QCP), x ¼ 0.20 near the AFM QCP [28],
and x ¼ 0.25 in the overdoped regime (above the AFM
QCP). As shown in Fig. 1, in the low but nonzero
temperature regime, the AFM pseudogap at the hot spots
is only present at x ¼ 0.15, while the Fermi surface, at
least when contemplated as a color plot, is well defined at
x ¼ 0.20 and x ¼ 0.25.

We first investigate the behavior of the quasiparticles as a
function of the Fermi-surface angle θ, which is defined in
Fig. 2. In a Fermi liquid, the expected form of the self-energy
at low frequency is

Σ00ðω; TÞ ¼ a0ðTÞ − a2ω2; ω < ωc; ð2Þ

where T is temperature, ω is frequency, and ωc is a cutoff
frequency. The parameters a2, a0, and ωc can be extracted
fromARPESmeasurements [7,8]. In general, the self-energy
is momentum dependent, even though we do not write it
explicitly.
We work in Matsubara frequencies where expansion of

the Fermi-liquid self-energy at low frequency gives

Σðωn; TÞ ¼ ia0ðTÞ þ b0ðTÞ þ ia1ωn þ ia2ω2
n þOðω3

nÞ;
ð3Þ

where ωn ¼ ð2nþ 1ÞπT are fermionic Matsubara frequen-
cies and a0, b0, a1, and a2 are real. One can obtain the
imaginary part, Eq. (2), as well as the real part of the self-
energy on the real axis,

Σ0ðω; TÞ ¼ b0ðTÞ þ a1ω; ð4Þ
from the Matsubara expression Eq. (3) using the analytic
continuation ωn → −iðωþ i0þÞ.
From the real part of the self-energy, Eq. (4), we can

extract the quasiparticle weight Z

Z ¼
�
1 −

∂Σ0ðωÞ
∂ω

�
−1
����
ω¼0

;

¼ 1

1 − a1
: ð5Þ

The fitting procedure is described in Supplemental Material
[29] Eqs. (S1)–(S3).
Figure 2 show the quasiparticle weight Z and the

coefficient a2 of the Fermi-liquid ω2 dependence as a
function of the Fermi-surface angle θ for x ¼ 0.15,
x ¼ 0.20, and x ¼ 0.25. At the largest doping studied, far
from the AFM QCP, both Z and a2 show little dependence
on θ. However, we observe a qualitatively different behavior
at x ¼ 0.20. Even though the Fermi surface is still well
defined at this doping and in the temperature range we study,
the effect of antiferromagnetic fluctuations can be seen in the
angle dependence of Z and a2. Both parameters have a
relatively small dependence in θ for angles close to the
antinode (0°). However, as θ increases toward the hot spots
and the node, we observe a sharp increase in a2 that is not
present in the large doping, x ¼ 0.25, case. Finally, at
x ¼ 0.15, both Z and a2 are ill defined for angles near
the hot spot. The Fermi-liquid form for the self-energy does
not hold near the hot spots and the node when the AFM
pseudogap is opened [25]. Indeed, in this region, the a1

FIG. 1. Momentum distribution curves computed at T ¼ 0.04t
for x ¼ 0.15 (top panel, left), x ¼ 0.20 (top panel, right) and
x ¼ 0.25 (bottom panel).
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coefficient in Σ0 cannot be calculated from Eqs. (3) or (S2) in
Supplemental Material [29] since it changes sign near the hot
spots, denoting the destruction of the quasiparticles [32].
However, even with the presence of the AFM pseudogap at
x ¼ 0.15, both Z and a2 remain well defined near the
antinode. The imaginary part of the self-energy at the
antinode retains a Fermi-liquid form for this doping, which
is situated below the AFM QCP.
This study of Z and a2 as a function of the Fermi-surface

angle points toward an anisotropic destruction of the Fermi-
liquid quasiparticles on the Fermi surface, as shown by the
survival of well-defined quasiparticles at the antinode
below the AFM QCP. Moreover, this destruction seems

to be gradual as a function of doping. Before the appear-
ance of the AFM pseudogap, the AFM fluctuations at the
QCP already influence the quasiparticles, as illustrated by
the increase of a2 near the hot spots at x ¼ 0.20.
An additional way to determine whether quasiparticles are

well defined or not is to compute the effective mass m�,
which can bewritten as a function of the quasiparticle weight
Z and of the momentum dependence of the self-energy
perpendicular to the Fermi surface

m
m� ¼ Z

�
1þ ∂Σ0ðk;ω ¼ 0Þ

∂ξk
�
; ð6Þ

∂Σ0ðk;ω ¼ 0Þ
∂ξk ¼ êk · ∇kΣ0ðk;ω ¼ 0Þ

êk · ∇kξk
: ð7Þ

We calculate the gradients with small momentum
differences Δk: ∇kΣ0ðkÞ ≃ ½Σ0ðk� ΔkÞ − Σ0ðkÞ�=Δk. We
assess the ill- or well-defined character of the effective mass
by comparing the derivatives calculated with positive and
negative Δk. The results from Eq. (7) for x ¼ 0.15,
x ¼ 0.20, and x ¼ 0.25 are shown in Table I. We observe
that the momentum-dependent correction to the effective
mass is well defined at the antinode for all three dopings,
since the left and right derivatives are equal and that these
corrections are quite small, of the order of 5%. This is also
true at the node at x ¼ 0.25. At the node at x ¼ 0.20,
however, the correction is larger by an order of magnitude.
This indicates a strong momentum dependence for this
doping at the node, even without an AFM pseudogap. At the
node at x ¼ 0.15, the correction is large and the left and right
derivatives disagree. These findings are consistent with our
previous discussion of Z and a2, and reinforce our con-
clusion that Fermi-liquid quasiparticles remain well defined
at the antinode at x ¼ 0.15.
Temperature dependence of the scattering rate.—Further

signatures of the anisotropy between the node and the
antinode at the QCP, x ¼ 0.20, can be found through
the temperature scaling of the self-energy. Following
Appendix B of Ref. [22], we assume ω=T scaling for the
imaginary part of the self-energy in real frequencies
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FIG. 2. Fermi-liquid parameters as a function of the angle on
the Fermi surface θ for x ¼ 0.15 (blue), x ¼ 0.20 (green), and
x ¼ 0.25 (red). Top panel shows the quasiparticle weight Z.
Bottom panel shows the ω2 coefficient a2 of the self-energy in
units of 1=t. The dotted and dashed lines show the hot-spot angle
at x ¼ 0.15 and at x ¼ 0.20, respectively. The Fermi-surface
angle θ is defined as shown in the inset in the top panel, with
θ ¼ 0° at the antinode and θ ¼ 45° at the node. The calculations
were performed in the temperature range T ¼ 0.02t to T ¼ 0.04t
for x ¼ 0.20 and x ¼ 0.25. For x ¼ 0.15, we did the calculations
from T ¼ 0.04t to T ¼ 0.05t because the TPSC approach is not
valid at low temperatures in the renormalized classical regime
when the AFM pseudogap becomes too large [25].

TABLE I. Corrections to the effective mass from the momen-
tum dependence of the self-energy in percentages calculated
using Eq. (7). Calculations were done at T ¼ 0.02 for x ¼ 0.20
and x ¼ 0.25, and at T ¼ 0.04 for x ¼ 0.15. The values of Δk are
0.12 for the antinodal direction and 0.17 for the nodal direction.

x ¼ 0.15 x ¼ 0.20 x ¼ 0.25

AN, −Δk 2.6 5.2 5.7
AN, þΔk 2.8 5.3 5.7
N, −Δk 28 15 7.8
N, þΔk 77 14 7.8
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Σ00ðωÞ ¼ aðπTÞνϕ
�
ω

πT

�
; ð8Þ

where a is a constant. This allows us to find the exponent ν at
ω ¼ 0 with the procedure described in Supplemental
Material [29], Eqs. (S6)–(S11). The exponent ν ¼ 2 corre-
sponds to Fermi-liquid behavior, while ν < 2 corresponds to
non-Fermi-liquid behavior.
We calculate the exponent ν at the node and at the

antinode for x ¼ 0.20 and x ¼ 0.25. At the antinode, we
recover ν ≃ 2 for both dopings. While ν ≃ 2 is also true at
the node for x ¼ 0.25, it is not the case at x ¼ 0.20, where
ν ≃ 1.4. Similarly to our calculation of a2 as a function of
the Fermi-surface angle, this scaling analysis shows that the
Fermi liquid is resilient only near the antinode at the AFM
QCP (x ¼ 0.20).
Fermi liquid and strength of interactions.—The proper-

ties of the antinodal Fermi liquid can be used to quantify the
strength of interactions. It has been proposed that the
Fermi-liquid cutoff frequency ωc, namely the frequency at
which ω2 behavior disappears, can indicate the strength of
the interactions in a correlated material [8]. We focus on the
antinodal direction for x ¼ 0.15, x ¼ 0.20, and x ¼ 0.25,
and on the nodal direction for x ¼ 0.25, where the Fermi
liquid is stable. We vary U from 1t to 5t. Evidently, the
determination of the cutoff frequency ωc has some arbi-
trariness, but as long as one adheres to a definition, the
results are consistent. Here, we calculate the deviation
between the imaginary part of the linearly interpolated
Matsubara self-energy we obtain from our calculation and
the fit using Eq. (3). We take ωc as the frequency at which
this deviation reaches a threshold of 10%, 15%, or 20% for
a fixed temperature T ¼ 0.02.
As shown in Fig. S4 of Supplemental Material [29], ωc

decreases with U and increases with the quasiparticle
weight Z, so that ωc can indeed measure the strength of
interactions. Moreover, for a fixed value of U, ωc increases
with doping, which means that ωc is a measure of
electronic correlations in a broader sense. Given the angular
dependence of Z illustrated in Fig. 2, it is clear that this
measure of interaction is not uniquely defined for a given
compound.
Horio et al. [8] also suggested a spectroscopic analog of

the Kadowaki-Woods ratio that would relate a2 and Z, two
quantities we obtained in our calculations for multiple
values of U. This is discussed in Fig. S5 in Supplemental
Material [29]. We propose instead that the dimensionless
number a2 × ωc is a more robust estimate that scales as
ðZ−1 − 1Þ. It is shown in Fig. 3 (left panel) with ωc
calculated using a threshold of 15%. This scaling is a
general result that follows from the Kramers-Kronig
relation. More precisely, we find

Z−1
k − 1 ¼ 4ξk

π
ωc;ka2;k; ð9Þ

where ξk is a constant that varies between 2 and 4 in our
calculations. It can be both momentum dependent and
material dependent, as seen from the different slopes in
the left panel of Fig. 3. It also depends on the criterion
that defines the cutoff frequency ωc. This highlights
the challenge in finding Z from spectroscopic data.
Nevertheless, for general trends, it is quite useful as
shown on the right panel of Fig. 3. There we show on
a log-log plot the scaling a2 × ωc vs ðZ−1 − 1Þ for the
different dopings and angles as a function of the threshold
for the cutoff frequency ωc. On this scale, only the choice
of threshold for the cutoff frequency, shown in different
colors, has a visible effect on the result.
Discussion.—One could argue that the resilience of the

antinodal Fermi liquid is not surprising given that the
electron Fermi-surface pocket of the T ¼ 0 antiferromagnet
basically coincides for a large part with the antinodal
section in the normal state. This is not so trivial, however,
since a hole pocket also develops in the nodal direction in
the AFM that eventually occurs at T ¼ 0, while that part of
the Fermi surface disappears completely in the pseudogap
regime, at least for the temperatures we could consider.
An angle dependence of the a2 coefficient analogous to

what we observe here has been previously measured in the
hole-doped cuprate LSCO in the overdoped regime, outside
of the pseudogap phase [7]. In the case of LSCO, the a2
coefficient was found to be stable around the node and to
increase as the angle decreases toward the antinode, before
vanishing at an angle of ϕ0 ≃ 15°. This behavior is
analogous to the one described here, but the roles of the
antinode and the node are exchanged. This is expected from

FIG. 3. The product of a2, the coefficient of ω2 in Σ00, and of ωc,
the Fermi-liquid cutoff frequency, is related to the quasiparticle
weight Z through a Kramers-Kronig relation. Here, all the dots
are computed for different values of U (shown in Supplemental
Material, Fig. S4 [29]). Left panel shows data at the antinode, for
dopings x ¼ 0.25 (red), x ¼ 0.20 (green), and x ¼ 0.15 (blue),
and at the node for x ¼ 0.25 (pink), with ωc calculated with a
relative deviation threshold from ω2

n of 15%. The right panel
shows a log-log plot of the data for the dopings listed above, with
ωc calculated with three different thresholds, 10% (orange), 15%
(green), and 20% (blue). Note that for a given threshold, all
dopings of the left panel here fall on the same straight line, with
only small variations.
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the fact that, in the hole-doped cuprates, the pseudogap
opens in the antinodal region of the Fermi surface.
In contrast, recent ARPES experiments have shown that

the a2 coefficient in the electron-doped cuprate PLCCO is
constant as a function of the Fermi-surface angle in the
overdoped regime [8]. These measurements are reminiscent
of our results at x ¼ 0.25, far from the AFMQCP. The case
of LSCO also illustrates that different portions of the Fermi
surface can be affected very differently by interactions,
analogous to what we have seen in our calculations (Fig. 2).
Our plot Fig. 3, based on the stable Fermi-liquid portions

of the various compounds, quantifies the relative strength of
interactions. The two quantities a2, the coefficient of the ω2

dependence, and ωc the cutoff frequency for Fermi-liquid
behavior, can be obtained experimentally from ARPES data.
Given a future agreement between researchers on a reference
case and on the way the cutoff frequency ωc is determined, it
becomes possible to compare the correlation strength in
different materials using the proportionality between a2 × ωc
and Z−1 − 1. At this stage, we cannot compare quantitatively
our results to experimental measurements because we
obtained ωc from the Matsubara self-energy. Nevertheless,
using the data presented in Refs. [7,8], we obtain a2 × ωc ¼
0.90� 0.07 for PLCCO while for LSCO, depending on the
Fermi-surface angle, we obtain a2 × ωc ranging from 1.0�
0.4 to 1.7� 0.2. This supports previous theoretical sugges-
tions that hole-doped cuprates are more strongly correlated
than electron-doped cuprates [33–35].
Conclusion.—The stability of the Fermi liquid on por-

tions of the Fermi surface should be a general property of
materials where electrons scatter off critical fluctuations
with nonzero wave vector [15]. In such a case, the hot-spot
phenomenon occurs and “cold regions” are bound to be
stable Fermi liquids whose product a2 × ωc, accessible in
ARPES experiments, can be used to provide a dimension-
less scale that quantifies the strength of interactions.
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