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The plasma exit flow speed at the sheath entrance is constrained by the Bohm criterion. The so-called
Bohm speed regulates the plasma particle and power exhaust fluxes to the wall, and it is commonly
deployed as a boundary condition to exclude the sheath region in quasineutral plasma modeling. Here the
Bohm criterion analysis is performed in the intermediate plasma regime away from the previously known
limiting cases of adiabatic laws and the asymptotic limit of infinitesimal Debye length in a finite-size
system, using the transport equations of an anisotropic plasma. The resulting Bohm speed has explicit
dependence on local plasma heat flux, temperature isotropization, and thermal force. Comparison with
kinetic simulations demonstrates its accuracy over the plasma-sheath transition region in which
quasineutrality is weakly perturbed and the Bohm criterion applies.
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Sheath theory has a central place in plasma physics as its
original formulation coincided with the recognition of
plasma physics as a subfield in physics [1,2] and it applies
to any plasma bounded by a material boundary [3–7]. One
of the most celebrated findings in sheath theory is the so-
called Bohm criterion [8–14] that predicts a threshold, the
so-called Bohm speed, which would provide a lower bound
for the plasma exit flow speed at the sheath entrance. Bohm
criterion (also known as sheath criterion in the literature) is
an inequality at the sheath entrance, which can be written
as [9] �∂ne

∂ϕ − Z
∂ni
∂ϕ
�����

ϕ¼ϕse
≥ 0: ð1Þ

Here ne;i denote the electron and ion density, respectively,
ϕ is the plasma potential, and the superscript se labels the
sheath entrance where the plasma transitions from quasi-
neutral in the presheath to non-neutral inside the sheath. A
straightforward [8,9], but not necessarily unique [10,11],
physics interpretation of Bohm criterion is that Eq. (1) is
required for the plasma potential to have non-oscillatory
solutions into the sheath. This can be understood by
linearizing the Poisson equation for ϕ in the neighborhood
of the sheath entrance where ne ≈ Zni remains a good
approximation. The solution is of an exponential form with
the exponent imaginary if Eq. (1) is violated, indicating an
oscillatory ϕ into the sheath, which would contradict the
expectation of monotonically varying ϕ that slows down
the electrons for ambipolarity [9].
Traditionally, evaluation of Bohm speed from the Bohm

criterion invokes drastic simplification of plasma transport.
These are normally expressed in terms of varying γ in the
adiabatic law pn−γ ¼ const. For example, γ ¼ 1 for an

isothermal plasma, γ ¼ 5=3 for an ideal plasma having
three degrees of freedom, and γ ¼ 3 for an ideal plasma
constrained to 1 degree of freedom. The Bohm speed in
these limiting cases then equals the sound speed [11]

uBohm ¼ csðγe; γiÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγeTse

e þ γiTse
i Þ=mi

q
: ð2Þ

It is interesting to note that although Bohm [8] originally
invoked the isothermal electron approximation to realize
the γe ¼ 1 case of Eq. (2), subsequent work [15] had
relaxed the requirement to a Boltzmann distribution for the
electron density, ne ¼ n0 exp ðeϕ=T�

eÞ, with ϕ the plasma
potential and T�

e an effective or screening temperature, the
latter of which is interpreted as what Langmuir probes are
supposed to measure.
It was recognized early on Ref. [9] that transport in the

neighborhood of the sheath can greatly complicate the
physics constraint set by the Bohm criterion. A large body
of work [10,11,16–18] has since been devoted to the
development of the so-called kinetic Bohm criterion, which
is obtained by integrating the kinetic equation for ni;e in
Eq. (1). The standard expression bears the form

1

mi

Z
d3v

fiðvÞ
v2z

≤ −
1

me

Z
d3v

1

vz

∂feðvÞ
∂vz ; ð3Þ

with miðmeÞ the ion (electron) mass, fiðfeÞ the ion
(electron) distribution function, and velocity vz which is
normal to the wall in an unmagnetized plasma or parallel to
the magnetic field in a magnetized plasma. A recent debate
[12,19,20] highlighted a profound disconnect between
(i) the conventional theory of the Bohm criterion and
(ii) the practical needs in plasmas that we normally
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encounter. Specifically, the Bohm criterion like in Eq. (3)
was derived in the asymptotic limit of λD=L → 0 [19] with
λD the Debye length and L the plasma size, while plasmas
of practical interest are frequently away from this asymp-
totic limit [20]. The underlying challenge echoes back to an
earlier discussion [21–26] on where the sheath entrance or
edge resides, an intimately connected issue since that is
where the Bohm criterion is supposed to be applied.
The complication is that between the quasineutral

plasma and the non-neutral Debye sheath in a plasma
away from the asymptotic limit of λD=L → 0, there is
usually a transition layer in which the quasineutrality is
weakly violated, and the plasma flow and potential (and its
gradient and hence electric field) can vary gradually
[25–28]. Matched asymptotic analysis of a simplified
plasma model with isothermal electrons and cold ions,
reveals that the plasma ion flow actually crosses the
classically defined Bohm speed [8] uBohm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Te=mi

p
somewhere inside this transition layer [26,27]. This is
consistent with the straightforward interpretation of the
Bohm criterion as given in Eq. (1) by Harrison and
Thompson [9] that (i) it offers no meaningful constraint
in the quasineutral region because ne ≈ Zni and Poisson’s
equation is not used for evaluating ϕ; (ii) it does not apply
in the Debye sheath in the sense of Langmuir and Tonks
[1,2] since ne grossly differs from Zni, and (iii) it does
impose a constraint, as we shall show in this Letter, on the
ion flow speed over the spatially extended transition
region, as opposed to a sharp transition boundary, over
which quasineutrality is mildly perturbed so charge density
gradient is the dominant term upon linearization of
Poisson’s equation. This last point implies a Bohm speed
that should vary inside this transition region.
In this Letter, we derive an expression for the Bohm

speed away from the previously known asymptotic limits,
that elucidates the distinct roles of various transport
physics, including heat flux, collisional isotropization,
and thermal force for both electron and ion transport. Its
explicit dependence on plasma transport and local electric
field suggests a spatially varying Bohm speed over a
transition region in which quasineutrality is weakly per-
turbed. This is confirmed by first-principle kinetic simu-
lations over a range of plasma collisionality. To our
knowledge, this is the first time that a predictive formula
for Bohm speed has been shown to be quantitatively
accurate in the intermediate plasma regime that is away
from the limiting cases of adiabatic laws and the asymptotic
limit of λD=L → 0.
The nature of plasma transport in the sheath and

presheath region is governed by the sheath Knudsen
number Kn, which is the ratio between plasma mean-
free-path λmfp and the Debye length λD. In cases of most
interest, Kn > 1 or Kn ≫ 1. A consequence is that within
the Knudsen layer, which is defined as one mean-free-path
(λmfp) within the wall, streaming loss and the associated

decompressional cooling would induce robust temperature
anisotropy [29], Tk < T⊥. The parallel degree of freedom is
along the magnetic field, or in an unmagnetized plasma the
plasma flow direction, which is normal to the wall surface.
Because of the anisotropic nature of the plasma, the mean-
free-path is defined as λmfp ≡ vth;e=νei with vth;e ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tek=me

p
the electron thermal velocity and νei the elec-

tron-ion collision frequency in an anisotropic plasma given
by Eq. (7). Here we will focus on a magnetized plasma,
with a uniform magnetic field normal to the wall (Tk ¼ Tx)
and y signifying a perpendicular direction (T⊥ ¼ Ty). The
plasma transport equations that directly enter the Bohm
speed evaluation include the species continuity equation,
momentum equation, and energy equation, all in the
parallel or x direction, which in the neighborhood of the
sheath entrance, take the form,

∂neuex
∂x ¼ 0;

∂niuix
∂x ¼ 0; ð4aÞ

∂neTex

∂x ¼ ene
∂ϕ
∂x − αne

dTex

dx
; ð4bÞ

nimiuix
∂uix
∂x þ ∂niTix

∂x ¼ −Zeni
∂ϕ
∂x þ αne

dTex

dx
; ð4cÞ

neuex
∂Tex

∂x þ 2neTex
∂uex
∂x þ ∂qen

∂x ¼ Qee þQei; ð4dÞ

niuix
∂Tix

∂x þ 2niTix
∂uix
∂x þ ∂qin

∂x ¼ Qii: ð4eÞ

Here we have ignored the electron inertia and a net
plasma current into the wall, α is the thermal force
coefficient, qe;in are the heat flux of x-degree of freedom
in the x direction,

qn ≡
Z

mðvx − uxÞ3fd3v; ð5Þ

and (Qee;Qei; Qii) are temperature isotropization terms
in an anisotropic plasma, which in high collisionality
limit [30] have the form,

Qee;ei ¼ 8neνee;eiTey
Tex

Tey−Tex

"
−3þ

 
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tex

Tey−Tex

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tey−Tex

Tex

s !
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tey−Tex

Tex

s #
; ð6Þ

with the collision rate
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νee ¼
νei
Z
ffiffiffi
2

p ¼
ffiffiffi
π

p
2

ne
e4

ð4πε0Þ2
lnΛffiffiffiffiffiffiffiffiffiffiffiffiffi

meTex
p

Tey
: ð7Þ

The evaluation of the Bohm speed can now be performed
following Ref. [31]. Combining the electron continuity
equation, momentum equation, and energy equation, we
can substitute out the ∂Tex=∂x and ∂uex=∂x terms and find
that in the neighborhood of the sheath entrance where ϕ is a
monotonically varying function of x,

∂ne
∂ϕ ¼ ene

ð3þ2αÞTex
þ 1þα

ð3þ2αÞuexTex

�∂qen
∂ϕ þQeeþQei

E

�
;

ð8Þ
where E ¼ −∂ϕ=∂x is the electric field. In contrast, the ion
inertia must be retained in a similar analysis of the ion
continuity, momentum, and energy equations, and the
result is

∂ni
∂ϕ ¼ 1

3uixTix−miu3ix

�∂qin
∂ϕ þQii

E

�
−
Zeni−αne∂Tex=∂ϕ

3Tix−miu2ix
:

ð9Þ

Substituting Eqs. (8) and (9) into Eq. (1), and rearranging
terms, we find that the Bohm criterion provides a lower
bound for the plasma exit flow speed,

useix ≥ uBohm ð10Þ
with

uBohm ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZβTse

ex þ 3Tse
ix

mi

s
; ð11Þ

and

β≡ 3 − 3þ2α
ZeΓse

i
ð∂qin∂ϕ þ Qii

E Þ þ α
eΓse

e
ð∂qen∂ϕ þ QeeþQei

E Þ
1þ 1þα

eΓse
e
ð∂qen∂ϕ þ QeeþQei

E Þ : ð12Þ

Here, Γe;i ¼ ne;iuex;ix, and all quantities on the right hand
side of Eq. (12) are evaluated locally at the sheath entrance,
which is interpreted here as the plasma-to-sheath transition
region where quasineutrality is weakly violated.
The Bohm speed defined in Eqs. (11) and (12) takes into

account the known collisional transport physics. It recovers
the collisionless sheath-presheath limit previously found in
Ref. [31], which is obtained by setting α; Qee; Qei, and Qii
to zero,

β ¼
�
3 − 3

ZeΓse
i

∂qin
∂ϕ
�
=

�
1þ 1

eΓse
e

∂qen
∂ϕ
�
: ð13Þ

A particularly interesting limit is L ≫ λmfp ≫ λD so the
upstream plasma is a Maxwellian. The presheath-sheath

electrons follow a truncated bi-Maxwellian due to the
trapping effect of the ambipolar electrostatic potential,
which gives rise to an electron heat flux that satisfies
∂qen=∂ϕ ¼ 2eΓse

e [32]. Ignoring the much smaller ion heat
flux, one then finds uBohm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTex þ 3TixÞ=mi

p
because

of the dominant contribution from the electron heat flux
term [31]. This strikes a remarkable but superficial coinci-
dence with the Bohm speed expression in Eq. (2) for
csðγe ¼ 1; γi ¼ 3Þ.
The full expression in Eq. (12) allows us to quantify the

transport physics effect on Bohm speed over a wide range
of plasma collisionality. Perhaps the subtlest factor is the
collisional temperature isotropization. Naively, one would
expect Qee to be small when plasma collisionality is either
strong in which case Ty − Tx vanishes, or weak in which
case νee becomes negligibly small. This can be quantita-
tively assessed by expanding Qee in the small parameter of
X ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTey − TexÞ=Tex

p
. To leading order in X, the colli-

sional closure of Chodura and Pohl [30] predicts

Qee ¼
32

15
neνeeTeyX2: ð14Þ

The collisional temperature isotropization enters the Bohm
speed with normalization by the electron flux and electric
field at the sheath entrance,

QeeþQei

eΓeE
≈ ð1þZ

ffiffiffi
2

p
Þ32
15

neνeeTeyX2

eneuexE

¼ð1þZ
ffiffiffi
2

p
Þ32
15

vth;e
useex

λD
λmfp

Tey

eEλD
X2

≈ ð1þZ
ffiffiffi
2

p
Þ32
15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tse
ex

βTse
exþ3Tse

ix

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
Kn

Tey

λDeE
X2:

ð15Þ

In the collisionless sheath limit Kn → ∞ but all the other
terms are bounded so

lim
Kn→∞

Qee þQei

eΓeE
¼ 0; ð16Þ

which is the limiting result to be expected. In the inter-
mediate regime of finite collisionality, different offsetting
physics can produce an order-unity ðQee þQeiÞ=eΓeE that
has an indispensable role in setting the Bohm speed.
In the high collisionality regime, which is denoted by
Kn <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
, the small but still finite temperature

anisotropy is the offsetting factor that produces a
ðQee þQeiÞ=eΓeE ∼Oð1Þ. With a decreasing collisional-
ity so Kn >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
but not too much greater, there are

two offsetting factors coming into play. The first is the
familiar temperature anisotropy, which can be enhanced by
an order of magnitude. The second is a much reduced
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electric field at the sheath entrance, which can boost the
factor Tey=λDeE. Overall, one finds that for a range in

whichKn >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
, the two effects can offset a largeKn,

so ðQee þQeiÞ=eΓeE remains order unity and hence has an
important role in setting the Bohm speed.
Next we deploy first-principle kinetic simulations to

verify the Bohm speed of Eqs. (11), (12) and quantify the
relative importance of various transport physics under
consideration. The VPIC [33] simulations are for a slab
plasma bounded by absorbing walls at x ¼ 0 and x ¼ L.
The loss at the wall is balanced by a plasma source in the
middle x ∈ ½3=8L; 5=8L�, as a way to mimic the upstream
source for the scrape-off layer plasma in a tokamak. Other
specifics include L ¼ 256λD, N ¼ 10000 markers per cell,
Z ¼ 1, mi=me ¼ 1836. The source temperatures Te0 ¼ Ti0
and the background or initial plasma density n0 will be
varied so the sheath Knudsen number Kn ∈ ½20; 5000�. The
uniform magnetic field is strong so the plasma beta is much
less than unity, ∼1%. At the sheath entrance Kse

n would be
smaller, but proportional to Kn. There are three essential
points we will focus on here [34].
The first point is on the sheath entrance, which for a

plasma away from the asymptotic limit of λD=L → 0,
covers a transition region in which deviation from quasi-
neutrality is small but finite. The transition into the sheath
can be most obviously assessed by fractional charge density
jne − nij=ðne þ niÞ, but a more sensitive measure for Bohm
criterion is j∂ne=∂x − ∂ni=∂xj=ðj∂ne=∂xj þ j∂ni=∂xjÞ. In
Fig. 1, one can see that with the PIC noise of N ¼ 10000
markers per cell, we can reliably position the edge of the
sheath transition region to x > 5λD using the charge density
gradient, while the charge density itself gives a sensitivity
to x ¼ 2.5λD. The simulation data of the fractional charge
density gradient, which has higher sensitivity, is consistent
with a sheath transition region over which the violation of
quasineutrality is small, and proceeds gradually towards the
non-neutral Debye sheath.

The second point is that over the spatially extended
sheath transition region, the Bohm criterion should be
applicable with a high degree of accuracy that is measured
by the fractional change in charge density gradient. In
Fig. 2, we contrast the ion flow speed from VPIC
simulations, with the Bohm speed from Eqs. (11) and
(12), as a function of position from the wall. Here, in
evaluating the Bohm speed, we compute all individual
terms in Eq. (12) using the VPIC simulation data. Since the
terms in Eq. (12) involve higher-order velocity moments
and their derivatives, we deploy time-averaging (but not
spatio-averaging) over a long period in which the plasma
has reached steady state. This overcomes the constraint of
the normal PIC noise level of 1=

ffiffiffiffi
N

p
with N the particle

markers per cell. The inherent PIC noise has been suffi-
ciently suppressed that we can see a clear sheath transition
region over which the ion flow speed closely follows the
Bohm speed of Eqs. (11) and (12) in Fig. 2. Further into the
Debye sheath, the ion flow speed diverges from the locally
evaluated Bohm speed to become significantly greater, as
expected. Further away from the Debye sheath and wall,
the theoretical expectation is that Eqs. (11) and (12) would
set a local Bohm speed as long as it is still within the
transition region where quasineutrality is weakly perturbed.
It must be emphasized that in the quasineutral region, the
Bohm criterion as of Eq. (1) is not a viable concept, so
Eq. (1) no longer produces a physically meaningful speed
to constrain the ion flow.
The third point is on the relative importance of various

transport physics in setting the Bohm speed. The transport
under examination is collisional by nature, and includes
thermal force, heat flux, and collisional temperature iso-
tropization, for both electrons and ions. We are particularly
interested in how these dependencies vary (a) with colli-
sionality Kn and (b) over space in the transition layer of a

FIG. 1. The normalized net charge density ρ̄, and the fractional
charge density gradient ∂ρ=∂x for Kn ¼ 200.

FIG. 2. Ion exit flow speed from simulation data and
Bohm speed calculated from Eqs. (11)and (12) normalized
by csðγe ¼ 1; γi ¼ 3Þ in Eq. (2) over distance from wall for
Kn ¼ 20, 200, and 5000. The breakdown of uBohm from Eqs. (11)
and (12) for Bohm speed is an accurate indication of transitioning
into non-neutral Debye sheath.

PHYSICAL REVIEW LETTERS 128, 085002 (2022)

085002-4



given Kn. For (a), we contrast the ion flow speed with the
Bohm speed at a nominal sheath entrance point for different
nominalKn cases. The terms in Eq. (12) are computed from
simulation data and separately tabulated in Table I to
quantify their relative importance [36]. Also shown are
the local sheath Knudsen number Kse

n , ion exit flow speed
uix directly from simulations, and uBohm computed from
Eqs. (11) and (12) using the tabulated data for each case.
Both uix and uBohm are normalized by csðγe ¼ 1; γi ¼ 3Þ
from Eq. (2), using Tse

ex and Tse
ix from the simulations. The

electron thermal flux enters through a divergence in the
energy equation, so it is a dominant term in sheath analysis
[31]. This is clearly indicated by the data, with additional
subtleties in the high Kn limit that the whistler instability
driven by trapped electrons [37] can modify the parallel
electron thermal conduction flux in a magnetized plasma,
and magnetic field strength modulation on sheath scale can
also modify the parallel thermal flux [38]. As previously
discussed after Eq. (15), the collisional electron temper-
ature isotropization has an equally important role that is
further aided by the decreasing local electric field (in
magnitude) as Kn increases. An accurate Ese was previ-
ously found by Kaganovich [23] to be important for
matching the sheath solution to the quasineutral plasma
in a two-scale analysis, here we find that it enters explicitly
in the Bohm speed as well. Table I also reveals that despite
the mass ratio in a hydrogen plasma, ion heat flux and ion
temperature isotropization can have a small but appreciable
contribution to the Bohm speed. Finally, the thermal force
coefficient αse is directly measured from simulation data,
and one can verify that Bohm speed has a very weak
dependence on αse for α less than or equal to the Braginskii
value. For (b), we have the remarkable finding that the heat
flux gradient and collisional temperature isotropization
terms vary substantially in the sheath transition layer,
but together they produce a Bohm speed from Eqs. (11)
and (12) that agrees accurately with simulated ion flow over
space in Fig. 2. The detailed data for such a comparison is
given in the Supplemental Material [34] for the Kn ¼
200 case.
In conclusion, we have derived an expression for

the Bohm speed that is accurate over a broad range of
plasma collisionality. The Bohm speed is derived from the
transport equations of an anisotropic plasma, which is
expected for the sheath transition problem. This expression
is verified by comparison with first-principle kinetic
simulations, within the bounds set by the PIC noise. Of

particular interest is that the Bohm speed thus formulated
applies to the sheath transition region in which the
quasineutrality is weakly perturbed. This, to our knowl-
edge, is the first time that a predictive formula for Bohm
speed has been shown to be quantitatively accurate in the
intermediate plasma regime, which is away from the known
limiting cases and the asymptotic limit of λD=L → 0. Our
analysis can be readily extended for more complicated
plasmas, and the resulting Bohm speed is consistent with
the underlying plasma transport model. This last point
accentuates the importance of an accurate plasma transport
model that properly accounts for the kinetic nature of
plasma transport within the Knudsen layer next to the wall,
not only for bulk plasma transport, but also for the Bohm
sheath constraint on wall-bound ion flow and energy flux.
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