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While the heat transfer and the flow dynamics in a cylindrical Rayleigh-Bénard (RB) cell are rather
independent of the aspect ratio Γ (diameter/height) for large Γ, a small-Γ cell considerably stabilizes the flow
and thus affects the heat transfer. Here, we first theoretically and numerically show that the critical Rayleigh
number for the onset of convection at given Γ follows Rac;Γ ∼ Rac;∞ð1þ CΓ−2Þ2, with C ≲ 1.49 for
Oberbeck-Boussinesq (OB) conditions.We then show that, in a broad aspect ratio range ð1=32Þ ≤ Γ ≤ 32, the
rescaling Ra → Ral ≡ Ra½Γ2=ðCþ Γ2Þ�3=2 collapses various OB numerical and almost-OB experimental
heat transport data NuðRa;ΓÞ. Our findings predict the Γ dependence of the onset of the ultimate regime
Rau;Γ ∼ ½Γ2=ðCþ Γ2Þ�−3=2 in the OB case. This prediction is consistent with almost-OB experimental results
(which only exist forΓ ¼ 1,1=2, and1=3) for the transition inOBRBconvection and explainswhy, in small-Γ
cells, much larger Ra (namely, by a factor Γ−3) must be achieved to observe the ultimate regime.
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Physics is abstraction, often assuming systems of infinite
size. In the real world, this is not possible and finite-size
effects come into play and thus must be understood. Here
we will do so for the Rayleigh-Bénard convection (RBC),
which has always been the most paradigmatic system to
study buoyancy driven heat transfer in turbulent flow [1–3],
which is of great importance in geophysical flows and in
industry. The dimensionless control parameters are the
Rayleigh number, the Prandtl number, and the aspect ratio
Γ of the cell, defined, respectively, as

Ra≡ αgΔH3=ðκνÞ; Pr≡ν=κ; Γ≡D=H; ð1Þ

where H and D are the height and diameter of the
cylindrical cell, α is the isobaric thermal expansion

coefficient, ν is the kinematic viscosity, κ is the thermal
diffusivity, g is the gravitational acceleration, andΔ≡ Tb −
Tt is the temperature difference between the hot bottom
plate and the cold top plate. The boundary conditions (BCs)
are no-slip at all walls and the sidewalls are adiabatic.
Within the Oberbeck-Boussinesq (OB) approximation, the
flow dynamics for the velocity u, the temperature T, and the
kinematic pressure p is given by the continuity equation
∇ · u ¼ 0 and the Navier-Stokes and convection-diffusion
equations

∂tuþ u ·∇uþ∇p ¼ ν∇2uþ αgTez; ð2Þ

∂tT þ u ·∇T ¼ κ∇2T: ð3Þ

The key response parameter is the Nusselt number (the
dimensionless heat transfer)

Nu≡ huzTiz − κ∂zhTiz
κΔ=H

¼ H
κΔ

huzTi þ 1; ð4Þ
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where h·iz denotes the average in time and over a horizontal
cross section at height z from the bottom and h·i is the time
and volume average.
One key question—clearly, since Kraichnan’s 1962

prediction of an ultimate regime [13–15] (i.e., the asymp-
totic law of heat transport at fixed Pr and extremely
large Ra)—is, what is the Nu(Ra) dependence for very

large Ra? However, achieving very large Ra and thus this
predicted ultimate regime is challenging, both experimen-
tally, as large-scale setups are required, and computationally,
as the number of grid points that can be handled is limited,
too. Driven by the aim to nonetheless achieve very large Ra,
one is tempted to perform experiments or simulations at as
small Γ as possible. For a profound judgement on this, a

FIG. 1. Critical Rac;Γ for the onset of convection: Linear growth rates (colored vertically elongated boxes) from the linearized DNS
approach (GOLDFISH) compared to the neutral stability curves (blue lines) from the eigenvalue LSA for (a) 2D box with isothermal
sidewalls, (b) 2D box with adiabatic sidewalls, and (c) cylinder with adiabatic sidewall. Black lines show Rac;Γ ¼ 1708ð1þ C=Γ2Þ2
with a best-fit C for the linearized DNS data (dashed lines) and with theoretical C for isothermal sidewall (solid line). Pluses in (c) show
Rac;Γ from the nonlinearized DNS data (AFiD) [4]. Temperature contours near the onset of convection are shown for some Γ, as obtained
from the linearized DNS. See details in [5–8] and the Supplemental Material [9].

FIG. 2. (a) Compensated Nu vs Ra, as obtained in OB experiments and DNSs of RBC in a cylinder for Pr≈4.4 (water) and different Γ.
Most data are for Γ ¼ 1 and 1=2, which form the shape of this dependence. The data for extremely small Γ show no discernible
dependence. (b) Compensated Nu vs Ra based on the proper length scale l, for the same data as in (a). In the main plot, the theoretical
value of C ¼ 1.49 is taken, while in the inset C ¼ 0.77, which corresponds to the best fit of the critical Rac;∞ for the onset of convection.
Now the data for extremely small Γ follow the general trend.

PHYSICAL REVIEW LETTERS 128, 084501 (2022)

084501-2



good understanding of the Γ dependence of the flow and the
heat transfer for small Γ is mandatory. The Göttingen group
[34,39–41,50,53] has built large-scale cylindrical cells with
1 ≥ Γ ≥ 1=3 and heights up to H ¼ 2.24 m, filled with
pressurized SF6 (with low viscosity and nearly constant Pr)
and has experimentally studied the onset Rau;Γ of the
ultimate regime in almost-OB RBC. Note that building
even larger setups is not prohibitive, but simply extremely
costly. The Göttingen group found that the onset occurs at
Ra around 1014 (consistent with the theoretical estimate of
Grossmann and Lohse [15]) and revealed a Γ dependence as
Rau;Γ ∝ Γ−3.04 [54]; i.e., smaller Γ require considerably
larger Ra to observe the onset. Also Roche et al. [55,56], for
1.14 ≥ Γ ≥ 0.23, found a strongΓ dependence of Rau;Γ with
the same trend. Based on an analysis of different experi-
mental data [39–43,50,55,57–59], they also proposed that
for small Γ the onset Ra for the ultimate regime goes
approximately as Rau;Γ ∼ Γ−3.
In fact, due to the stabilizing effect of the sidewalls in

small-Γ cells, it is not surprising at all that flow transitions
are shifted toward much larger Ra. This already holds at the
onset of convection: While without lateral confinement

(i.e., Γ → ∞) this onset occurs at a critical Rac;∞ ≈ 1708

[60], for small Γ the critical Rac;Γ is much larger [61–71]. In
the limit Γ → 0, Catton and Edwards [63] numerically
solved the linearized perturbation equations with approxi-
mate wall conditions and proposed the scaling Rac;Γ ∼ Γ−4

for the onset Rac;Γ in this limit.
In this Letter, we will derive the scaling relation Rac;Γ ∼

Γ−4 for Γ → 0 and, in fact, generalize it to any Γ, be it large
or small. We will then show that our numerically performed
linear stability analysis (LSA) is consistent with the
suggested generalized functional dependence of Rac;Γ on
Γ. Our result can be cast in the form that the relevant length
scale in RBC is

l ∼D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ2 þ C
p

¼ H=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C=Γ2

q

; ð5Þ

with a constant C that depends on the shape of the cell. We
then apply this insight to the fully turbulent case and are
able to collapse various heat transfer data NuðRa;ΓÞ from
OB experiments and direct numerical simulations (DNSs)
for various 1=32 ≤ Γ ≤ 32 onto one universal curve.

FIG. 3. (a) Compensated Nu vs Ra for OB RBC in a cylinder for Pr near 0.8 and in a 3D cell with periodic BCs for Pr ¼ 1 and different
Γ. Vertical lines indicate the onset of the transition at high Ra, observed in Göttingen experiments (the onset moves to higher Ra with
decreasing Γ). (b) Compensated Nu vs Ra based on the proper length scale l, for the same data as in (a). Now the transition happens at
the same location for all Γ [the vertical lines from (a) merge into one line]. The here presented experimental data from Chavanne et al.
[42,43] hold δρ=ρ < 0.2 for the density variation and δκ=κ < 0.2 for the thermal diffusivity variation, as well as αΔ < 0.2 and
0.68 ≤ Pr ≤ 1, i.e., similar almost-OB conditions as in [34,39–41,50] (however, in [34,39–41,50] the upper bounds for the fluid
parameter variations are even slightly stricter). Data for Pr ¼ 0.74 (gas N2) and Pr ¼ 0.84 (gas SF6) were taken using the same apparatus
as in [47] but were not published there. The inset shows an enlargement at the highest Ra in normal representation for both axes (see also
Supplemental Material [9], which includes [10–12]).
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Theoretical background.—We first recall that the mean
kinetic energy dissipation rate ϵu and the thermal dissipa-
tion rate ϵθ fulfil the exact relations [72,73]

ϵu ≡ νhð∇uÞ2i ¼ αghuzTi ¼
ν3

H4
ðNu − 1Þ Ra

Pr2
; ð6Þ

ϵθ ≡ κhð∇TÞ2i ¼ ðκΔ2=H2ÞNu: ð7Þ

Decomposing the temperature field as

T ≡ Tl þ θ; TlðzÞ≡ Tb − ðz=HÞΔ; ð8Þ

and taking into account huziz ¼ 0 for any z, one obtains
huzTiz ¼ huzθiz and, hence,

huzTi ¼ huzθi: ð9Þ

From (4) and (7)–(9), we get

huzθi ¼ ðκH=ΔÞhð∇θÞ2i ð10Þ

and then with (6) and (1) we obtain

hð∇uÞ2i ¼ Ra½κ=ðΔH3Þ�huzTi:

From this, applying successively (9), the Cauchy-Schwarz
inequality, and relation (10), we derive

Ra ¼ ΔH3

κ

hð∇uÞ2i
huzTi

¼ ΔH3

κ

hð∇uÞ2ihuzθi
huzθi2

≥
ΔH3

κ

hð∇uÞ2ihuzθi
hu2zihθ2i

≥ H4
hð∇uÞ2ihð∇θÞ2i

hu2ihθ2i : ð11Þ

For a slightly supercritical Ra≳ Rac;Γ the flow is sym-
metric so that hui ¼ 0 and hθi ¼ 0 holds. Therefore, we
can apply the Poincaré-Friedrichs inequality to the right-
hand side of (11) to obtain

Rac;Γ ≳H4
hð∇uÞ2ihð∇θÞ2i

hu2ihθ2i ≳ Λ2; ð12Þ

whereΛ is the smallest relevant eigenvalue of the Laplacian
in a cylindrical domain with a unit height and aspect ratio Γ,
for certain integers m, n, and k,

Λ ¼ m2π2 þ 4α2nkΓ−2 ∼ 1þ CΓ−2: ð13Þ

For Dirichlet or Neumann boundary conditions, αnk are the
first relevant roots of the Bessel function Jn or of its
derivative, respectively. Under the assumption that the
relevant eigenvalues admit positive as well as negative
values of θ and u in both horizontal and vertical directions,
we obtain an estimate of the smallest relevant value of Λ for
m ¼ 2, n ¼ k ¼ 1, leading to C ≈ 1.49.

For an infinite fluid layer (or for a cell with an infinite
diameter D, i.e., Γ → ∞) Rac;∞ ≈ 1708. Using this, rela-
tions (13) and (12), under assumption that Γ and Rac;∞ are
independent parameters, we obtain

Rac;Γ ∼ Rac;∞ð1þ CΓ−2Þ2 ð14Þ

as estimate for the critical Rac;Γ for the onset of convection
in a container with finite aspect ratio Γ.
Similarly, we estimate the growth of Nu near Rac;Γ from

(11), the Poincaré-Friedrichs inequality, and hθ2i ≤ Δ2,

Ra ≥ ΛH2hð∇θÞ2i=hθ2i ≥ ΛH2Δ−2hð∇θÞ2i: ð15Þ

From (8), (7), and (15) we finally obtain Ra ≥ ΛðNu − 1Þ,
which, when combined with (13), implies that close to the
onset of convection, the Nusselt number behaves as

Nu − 1 ∼ ð1þ CΓ−2Þ−1Ra: ð16Þ

From this and the fact that, in the classical turbulent regime
(for not too small Pr and not extremely high Ra), Nu
roughly grows as ∼Ra1=3, one can expect a collapse of the
OB numerical and experimental data for various Γ, if these
are plotted as f ≡ ðNu − 1ÞRa−1=3 against

Ral ≡ Rað1þ CΓ−2Þ−3=2 ð17Þ

(for fixed Pr). Close to the onset of convection, this
dependence reduces to f ∼ Ra2=3l , while in the developed,
statistically steady convective flow f ∼ Ra0l ∼ const. The
variable Ral is nothing else but a Rayleigh number not
based on the cell heightH, but on the proper length scale l,
Eq. (5). In the limit Γ → ∞, the length scale l equals H,
while for Γ → 0, it is D.
Numerical LSA.—We have verified the estimate (14) for

the Γ dependence of the critical Rac;Γ for the onset of
convection with linearized DNSs for the 2D and 3D cases
and with the eigenspectrum LSA for the 2D case. The
growth rates obtained with both methods are in a very good
agreement, see Figs. 1(a) and 1(b). The numerically
obtained Rac;Γ as function of Γ [Eq. (14)] for the isothermal
sidewalls are in excellent agreement with the analytical
estimates. Equation (14) captures the trend and reflects well
also the shape of the neutral curve for the case of adiabatic
sidewalls. The best-fit constants C (C ≈ 0.52 for the 2D
domain and C ≈ 0.77 for the cylinder) are, however,
smaller than the theoretical predictions for the isothermal
sidewalls, see Figs. 1(b) and 1(c). Isosurfaces of the
temperature of the flow fields near the onset of convection
are shown for some Γ in Fig. 1 as well. The azimuthal-
mode transition found for the cylinder between Γ ¼ 1 and 2
is consistent with the experiments [68].
Comparison with heat transfer data from OB experi-

ments and DNS.—Our above theoretical analysis has
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suggested the rescaling Ra → Ral as a central step to
collapse the heat transfer data NuðRa;ΓÞ for given Γ, see
Eq. (17). This rescaling reflects that the relevant length
scale in RBC for general Γ is l ∼D=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ2 þ C
p

¼
H=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C=Γ2
p

, see Eq. (5), and not simply the height
H. For large Γ one recovers l ¼ H, but for small Γ one has
l ¼ D. We will now check whether this collapse holds and
plot the compensated Nusselt number f ≡ ðNu − 1Þ=Ra1=3
from OB experiments and well-resolved DNSs [74] for
various Γ, both vs Ra and vs Ral (withC ¼ 1.49). We do so
for two different Pr, namely, for water (Pr≈4.4, Fig. 2) and
for gas (Pr≈0.8, Fig. 3) at room temperature. While in
Figs. 2(a) and 3(a) [fðRaÞ], the data for small Γ show no
trend and seem to scatter, in Figs. 2(b) and 3(b) [fðRalÞ],
they nicely collapse on one curve and on the theoretical
curve of the unifying theory for turbulent thermal con-
vection [28–30]. A comparison with non-OB data for
cryogenic gaseous helium [42,43,57,75,76] is given in
the Supplemental Material [9]. As the derivation of
the scaling relations is for OB conditions, we do not
expect non-OB data to fulfil these relations, and indeed,
in general, they do not (see [34,77,78] and Supplemental
Material [9]).
Let us now estimate the Γ dependence of the onset of the

ultimate regime of thermal convection, i.e., Rau;Γ. (The
other aspects of the ultimate regime are beyond the scope of
this Letter.) The Γ dependence of Rau;Γ has been observed
in the Göttingen data [34,39–41,50], with increasing Rau;Γ
for decreasing 1 ≥ Γ ≥ 1=3; see the vertical lines for large
Ra in Fig. 3(a). However, as suggested by our theory, in the
rescaled Fig. 3(b), these vertical lines collapse at the same
Ral;u ≈ 2.4 × 1013. This implies that the Γ dependence of
Rau;Γ in the OB case is

Rau;Γ ≈ Ral;u½Γ2=ðCþ Γ2Þ�−3=2; ð18Þ

which for Γ ≪ 1 simplifies to the estimate Rau;Γ ∼ Γ−3, in
agreement with the experimental data [54]. Note that in
Fig. 3 the agreement between the derived relation (18) and
measurements is demonstrated for all available almost-OB
experimental data, that is, for Γ ¼ 1, 1=2, and 1=3. Figure 3
and Eq. (18) also show that the presented DNS for small Γ
by far do not have large enough Ra to see the expected
onset of the ultimate regime.
In conclusion, we have developed a theory to account for

the Γ dependence of the heat transfer in buoyancy driven
convection under OB conditions in cylindrical cells. In
particular, we find the Γ dependence of the onset of
convection Rac;Γ [Eq. (14), consistent with the LSA] and
of the onset of the ultimate regime Rau;Γ [Eq. (18),
consistent with the Göttingen experiments]. Both equations
reflect that the relevant length scale in OB RBC is
l ¼ D=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ2 þ C
p

¼ H=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C=Γ2
p

, which only in the
limiting cases Γ → ∞ or Γ → 0 become the cell height

H or the cell diameter D, respectively. Speaking more
generally, our results show how strongly finite-size effects
affect scaling relations and that small-Γ OB DNSs or
(almost) OB experiments require much large Ra to achieve
the ultimate regime.
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