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We reveal that finite-size solid acoustic resonators can support genuine bound states in the continuum
(BICs) completely localized inside the resonator. The developed theory provides the multipole
classification of such BICs in the resonators of various shapes. It is shown how breaking of the
resonator’s symmetry turns BICs into quasi-BICs manifesting themselves in the scattering spectra as high-
Q Fano resonances. We believe that the revealed novel states will push the performance limits of acoustic
devices and will serve as high-Q building blocks for acoustic sensors, antennas, and topological acoustic
structures.
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Bound states in the continuum (BICs) are the non-
radiating states of an open system with a spectrum
embedded in the continuum of the radiating modes of
the surrounding space [1,2]. BICs were first predicted in
quantum mechanics by von Neumann and Wigner in 1929
[3] but shortly after they were extended to the wave
equations in general as their specific solutions. As a result,
BICs were found in various fields of physics such as atomic
physics, hydrodynamics, acoustics, and mechanics [4–8].
The zero radiative losses lead to a diverging radiative
quality factor (Q factor) making BICs extremely prospec-
tive for the energy localization and enhancement of the
incident fields. Recently, these unique properties of BICs
have been actively utilized in photonics, where they have
already proven themselves as an effective platform for
lasing, polaritonic, sensing, and optical harmonic gener-
ation applications [9–14].
Decoupling the resonance from all open scattering

channels one can obtain a genuine BIC, which becomes
possible only if the number of the adjusting parameters is
more than the number of the scattering channels. A typical
example of a system with a finite number of scattering
channels is a resonator coupled to one or several waveguide
modes or infinite periodic structure [15–19]. For finite size
structures the number of scattering channels is infinite,
and the existence of BICs in such systems is prohibited by
the nonexistence theorem [1]. The only exception is the
structures surrounded by a completely opaque shell pro-
viding decoupling of the internal resonances from the
outside radiation continuum, which in quantum mechanics
corresponds to infinite high potential barriers, in acoustics
to hard-wall boundaries, and in optics to perfect conducting
walls or epsilon-near-zero barriers [20–23]. Finding a
genuine BIC in compact systems is a challenging funda-
mental problem, and its solution would make possible the
implementation of subwavelength high-Q resonators hav-
ing broad range of potential applications.

In this Letter, a back door in the “nonexistence theorem”
is revealed. While BICs are prohibited in finite photonic,
acoustic, and quantum mechanical systems, we show that
acoustics is relieved of these constraints for some special
cases. We propose a genuine acoustic BIC in compact solid
resonators placed in nonviscous fluids (gas or liquid). The
origin of the unexplored BICs is illustrated in Fig. 1. In
acoustics, in contrast to photonics and quantum mechanics,
there are two types of waves: (i) pressure waves with
longitudinal polarization (ukk) and (ii) shear waves with
transversal polarization (u⊥k) [24]. Here, u is the dis-
placement vector and k is the wave vector. While in solids,
both waves coexist, nonviscous fluids host only pressure
waves which are longitudinal. In the general case of an
arbitrary shaped solid resonator, all the eigenmodes are
hybrid, containing longitudinal and transverse components,
and thus, are coupled to the radiation continuum. However,
one can find specific shapes of the resonators allowing
purely torsion modes for which displacement is tangential
at each point of the resonator boundary. The torsion
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FIG. 1. Polarization of eigenmodes in a solid acoustic reso-
nator. The transversal modes (u⊥k) do not couple to the radiation
continuum forming a bound state in the continuum. Here, κ is the
coupling coefficient, u is the displacement vector, and k is the
wave vector.
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oscillations do not produce pressure on the surrounding
fluid being completely decoupled from the radiation
continuum. Their energy remains perfectly confined inside
the resonator forming genuine acoustic BICs in contrast to
Refs. [25] and [26] where only a quasi-BIC has been
discussed.
We may designate the proposed nonradiating states as

polarization-protected acoustic BICs as they are possible
exclusively due to the fact that nonviscous fluids support
longitudinal waves only, while solids host both longitudinal
and transversal waves. Because of similar reasons, the shear
modes in a solid slab appear to be nonradiating [27,28]. To
be frank, BICs in compact resonators can exist even in
optics, for example, in the form of the radial plasmonic
oscillations in a metal spherical particle at the plasma
frequency. In this case, the longitudinal plasmonic oscil-
lations are not coupled to the far-field electromagentic
radiation which is purely transverse. However, the obser-
vation of these modes is hindered due to high losses in
plasmonic nanostructures.
We start with considering a problem of eigenmodes in a

rigid sphere of radius a in order to show rigorously that the
polarization-protected BICs exist in compact resonators.
We assume that the sphere is made of a solid isotropic
material surrounded by a gas or fluid environment. The
displacement field uðrÞ inside and outside the sphere obeys
the Helmholtz equation [24]

Δuj
iðrÞ þ ðkjiÞ2uj

iðrÞ ¼ 0: ð1Þ

Here, the lower index i ¼ s, p encodes the displacements
of shear or pressure waves, respectively; the upper index
j ¼ fin; outg corresponds to the fields inside and outside
of the resonator, respectively; kji ¼ ω=cji is the wave vector;
and cji is the velocity of displacement waves. The boundary
conditions at the surface of a solid sphere placed in gas or
fluid can be written in spherical coordinates ðr; θ;φÞ as
follows [29]:

σinrr ¼ −pout; σinrθ ¼ 0; σinrφ ¼ 0; uinr ¼ uoutr ; ð2Þ

where σij ¼ λδijTrε̂þ μεij is the Cauchy stress tensor,
2ε̂ ¼ ½∇uþ ð∇uÞT� is the strain tensor, and pout is the gas
pressure, which is connected to the displacement field as
ρoutω2uout ¼ ∇pout (see Supplemental Material [30]). We
also assume that outside the sphere the solution has a form
of the outgoing waves. Based on that, the solutions of the
vector Helmholtz equation (1) can be written in terms of the
vector spherical harmonics [31]

ujðrÞ ¼
X

lm

ajlmMlmðr; kjsÞ

þ bjlmNlmðr; kjsÞ þ cjlmLlmðr; kjpÞ: ð3Þ

Here, l ¼ 0; 1; 2;… is the total angular momentum quan-
tum number and m ¼ 0;�1;…;�l is the projection of the
total angular momentum on the z axis (magnetic quantum
number) [see Fig. 2(b)]. While outside the cavity one
should put aoutlm ¼ boutlm ¼ 0 for all l and m as fluid (gas)
supports only longitudinal waves, inside the cavity one
should account for all the vector harmonics. As a result, the
homogeneous system of equations on the expansion
coefficients can be obtained,

D̂lmflm ¼ 0; ð4Þ

where vector flm ¼ ½ainlm; binlm; cinlm; coutlm�T is the vector of
coefficients, and D̂lm ¼ diag½D̂1×1

lm ; D̂3×3
lm � is a block-

diagonal matrix with the explicit form provided in the
Supplemental Material [30]. By virtue of the block-
diagonal form of D̂lm, the equation on eigenfrequencies
is factorized:

det D̂1×1
lm|fflfflfflffl{zfflfflfflffl}

BIC

· det D̂3×3
lm|fflfflfflffl{zfflfflfflffl}

Rad: modes

¼ 0: ð5Þ

Generally, the eigenfrequency can be rescaled by the factor
of cs=a. However, to have an illustrative physical example
we will use the secondary frequency axis corresponding to
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FIG. 2. Polarization-protected BICs in a solid spherical reso-
nator. (a) Spectrum and radiative Q factor of the resonator.
Parameters of the resonator are mentioned in the text. (b) Dis-
tributions of the azimuthal component of the displacement (uφ)
for the dipole, quadrupole, octupole, and hexadecapole BICs with
m ¼ 0.
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the sphere of radius a ¼ 5 cm placed in air with density
ρ0 ¼ 1.23 kg=m3. The density of the material of the sphere
equals to ρ ¼ 10ρ0, while the velocity of shear and pressure
waves are taken equal to cs ¼ 2c0, cp ¼ 3c0, respectively,
where c0 ¼ 343 m=s is the velocity of sound in the air.
The spectrum of the resonator (eigenfrequencies and Q

factors) obtained from the numerical solution of Eq. (5) is
shown in Fig. 2(a). It consists of radiative modes and BICs
with infinitely high radiative Q factors. One can show that
purely real eigenfrequencies corresponding to BICs satisfy
the equation det D̂1×1

lm ¼ 0, which can be written explicitly
as follows (see Supplemental Material [30]):

ð1 − lÞjlðxÞ þ xjlþ1ðxÞ ¼ 0: ð6Þ

Here jlðxÞ it the spherical Bessel function, and x ¼ ksa.
Because of the spherical symmetry of the problem, the
obtained equation does not depend on m, therefore, its
solution is ð2lþ 1Þ-fold degenerate. The table containing
the roots of Eq. (6) is provided in the Supplemental
Material [30].
It also follows from Eqs. (4) and (5) that binlm ¼ cinlm ¼

coutlm ¼ 0 for BICs and, consequently, the displacement field
u contains only vector harmonics Mlm and they are
completely localized inside the resonator. This is in
complete accordance with a general theorem [32] which
establishes that for nonradiating resonators of finite size,
the corresponding radiated fields must vanish in the
vacuum region outside the resonator. Vector harmonics
Mlm correspond to the torsion oscillations which totally
lack radial components in sharp contrast to Llm and Nlm
and, thus, cannot excite pressure waves in the surrounding
fluids. The distribution of the displacement field for BICs
with m ¼ 0 and l ¼ 1, 2, 3, 4 is shown in Fig. 2(b).
Equation (6) can be also obtained from Eq. (1) applying
stress-free boundary conditions [33,34].
A curious fact deserving special attention is that the

fundamental acoustic BIC in a solid sphere is a quadrupole
mode (l ¼ 2) rather than a dipole. This fact can be
understood intuitively: the time-average angular momen-
tum of the resonator should be zero, i.e., the resonator
should not rotate as a whole. For the dipole modes, the
external and internal layers oscillate in antiphase compen-
sating the rotation [see Fig. 2(b)], and it results in quite a
large radial wave number ksa ≈ 5.8. For the quadrupole
mode ksa ≈ 2.5 and the oscillation phase does not change
along the radial direction. Thus, the time-average angular
momentum is compensated by antiphase oscillations of the
upper and lower hemispheres [see Fig. 2(b)].
A BIC, according to its definition, is completely

decoupled from all propagating waves of the surrounding
space, and, thus, it cannot be excited from the far-field
by pressure waves. However, the excitation is possible by
near-field sources or due to nonlinear effects [35–37].
Another efficient method, that is the most used in practice,

is based on the introduction of small coupling between the
BIC and radiative modes. Therefore, a genuine BIC turns
into a quasi-BIC (QBIC)—a high-Q state that manifests
itself in the scattering spectrum as a narrow Fano resonance
[38]. Recently, the QBICs were suggested as very prom-
ising candidates for sensing, lasing, and nonlinear optics
applications [14,39–44].
In order to show how a genuine acoustic BIC turns into a

QBIC, we slightly deform the spherical resonator of radius
a into an oblate spheroid with the semiaxes a and b [see
inset in Fig. 3(a)]. The dependence of the resonant
frequency and Q factor for the quadrupole BIC (l ¼ 2)
on the asymmetry parameter α ¼ 1 − a=b is shown in
Fig. 3(a). As it was mentioned above, the BICs in spherical
resonator are ð2lþ 1Þ-fold degenerate multiplets. In
the spheroid, this multiplet splits into one singlet state
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FIG. 3. Splitting of a quadrupole multiplet into BIC and quasi-
BIC in a solid spheroid. (a) Frequency shift and Q factors versus
asymmetry parameter α ¼ 1 − b=a. (b) Dependence of the Q
factor on the asymmetry parameter α for quadrupole, octupole,
and hexadecapole quasi-BICs with m ¼ �2.
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corresponding to the BIC and 2l of two-fold degenerate
doublet QBICs (see Supplemental Material [30])
[Fig. 3(a)]. The Q factor of the QBICs drops quadratically
with the asymmetry parameter α [see Fig. 3(b)] that
completely agrees with the general theory of QBICs [38].
In terms of the group theory, the quadrupole BIC in a

spheroid (D∞h symmetry) corresponds to one-dimensional
irreducible representation (irrep) A2u, and the doublets of
QBICs correspond to two-dimensional irreps E1u and E2u.
The degeneracy of the QBICs remains due to the rotational
symmetry of the spheroid, thus, the doublet can be
associated with clockwise- and counterclockwise rotational
modes. Following Ref. [45] we can write the multipole
series of the BICs and QBICs, and selection rules for their
excitation by a plane pressure wave incident from different
directions (see Table I). The survivor BICs in a spheroid are
contributed only by the vector harmonicsMlm with even l
and m ¼ 0. As a spheroid has a symmetry plane (xy),
there is a second series of genuine BICs contributed by the
vector harmonics Mlm with odd l and m ¼ 0 (see
Supplemental Material [30]).
One may see from Table I that QBICs from E1u can be

excited by a plane pressure wave propagating along the x or
y axis. The QBICs from E2u can be excited only at oblique
incidence. Indeed, the excitation from the x, y directions is
forbidden due to inconsistency between the parity of the
mode and the incident wave, and the excitation from the z
direction is forbidden due to the fact that the incident wave
contains only the harmonics with m ¼ 0.
Figure 4(a) shows the scattering efficiency σsct of a solid

spheroid excited by a plane pressure wave propagating
along the x axis. The scheme of excitation is illustrated in
Fig. 4(c). The spectra for different eccentricities e were
calculated numerically using COMSOL Multiphysics. One
can see that the QBIC corresponding to irrep E1u appears as
a high-Q Fano resonance that collapses when e tends
to zero manifesting the formation of a genuine BIC.
Figure 4(b) shows the contribution of the resonant and
nonresonant scattering channels σlm to the total scattering

efficiency σtot. Figures 4(d) and 4(e) show the directivity
patterns for the total scattered field and scattered field
accounted for only the resonant harmonics of the QBIC
(see Table I). The diagrams are plotted for the spheroid
with e ¼ 0.1 at the resonant frequency of the QBIC
(ksa ¼ 2.51). One can see that the QBIC behaves as a
dipole in the far field but the nonresonant scattering
drastically changes the directivity pattern.
A reasonable question is, Can we find all possible shapes

of resonators capable of supporting such BICs? From group
theory it can be shown that symmetry breaking results in
mixing the multipoles (see Table I). In the general case of
an arbitrarily shaped resonator, all modes are radiative.
However, multipole mixing occurs according to the selec-
tion rules defined by the symmetry group of the resonator.
Thus, BICs survive in the resonators when the multipoles
Mlm do not couple with Nlm and Llm. Such a requirement
is fulfilled for resonators with an infinite-fold rotation
axis-like cylinder, cone, dimer, etc. (D∞h and D∞v sym-
metry groups).
In this prospective, special attention should be paid to the

polarization-protected acoustic BICs in a solid cylinder of
radius a and height h. Though the eigenvalue problem for
an open cylindrical resonator cannot be solved analytically
since the variables cannot be separated, it becomes
possible for the BIC as the system behaves as a closed
one. Therefore, the eigenfrequencies can be calculated
analytically using the stress-free boundary conditions:

TABLE I. Splitting of a quadrupole multiplet BIC (l ¼ 2) in a
spheroid. Multipole content of the modes and selection rules for
their excitation by a plane wave. Here index p is a non-negative
integer.

Irrep Mode Multipoles
Excitation
along x or y

Excitation
along z

A2u BIC M2;0;…;M2p;0 No No

E1u QBIC
L1;�1…;L2pþ1;�1

Yes NoN1;�1…;N2pþ1;�1

M2;�1…;M2p;�1

E2u QBIC
L3;�2;…;L2pþ1;�2

No NoN3;�2;…;N2pþ1;�2

M2;�2;…;M2p;�2
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FIG. 4. (a) Spectrum of scattering efficiency of a solid spheroid
calculated for various eccentricities e. (b) Spectrum of the
total and partial scattering efficiencies calculated near a QBIC
(E1u) for e ¼ 0.5. (c) The excitation scheme. (d) Directivity
patterns of the total scattered field and (e) scattered field
accounted for the resonant contribution of a QBIC only. The
diagrams are plotted for e ¼ 0.1 at the resonant frequency of a
QBIC (ksa ¼ 2.51).
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ðω=csÞ2 ¼ ðαn=aÞ2 þ ðπq=hÞ2. Here αn is the nth root of
the Bessel function J2ðxÞ, and q is an integer.
The total Q factor (Qtot) of acoustic BICs is limited by

the absorption Q factor (Qabs) that is defined by the
attenuation of shear waves in real materials. For example,
the longitudinal loss factor η ¼ E00=E0 of steel is reported
to be on the order of 10−4 − 10−5 [46,47], where E ¼
E0 þ iE00 is the complex Young’s modulus. A loss factor of
the same order is reported for different ceramics and glasses
[46], while for silica the loss factor is on the order of 10−6.
Since the longitudinal and shear loss factors are of the same
order [48], one can expect the totalQ factor of BICs will be
around Q ¼ 1=η ∼ 104 to 106. Analysis of the influence of
other Q-factor reduction mechanisms, such as viscous or
thermal losses, is presented in the Supplemental Material,
section (S9) [30].
In conclusion, we have revealed that genuine acoustic

bound states in the continuum may exist in compact solid
resonators with a rotational symmetry placed in a gas or
nonviscous fluid environment. The predicted states are
possible due to polarization mismatch between the shear
waves in the solid resonator and pressure waves in the
surrounding media. Usually, BICs have topological proper-
ties as they are robust in configuration space to variation of
some parameters of the system. However, the topological
properties for the revealed acoustic BIC are a matter of
further research. We believe that our findings are an
important step in the development of high-Q resonant
acoustics, and the revealed novel BICs in compact struc-
tures will serve as building blocks for acoustic antennas,
high-sensitive acoustic sensors, and topological acoustic
structures.
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[15] T. Lepetit and B. Kanté, Controlling multipolar radiation
with symmetries for electromagnetic bound states in the
continuum, Phys. Rev. B 90, 241103(R) (2014).

[16] A. Pilipchuk, A. Pilipchuk, and A. Sadreev, Bound states in
the continuum in open spherical resonator, Phys. Scr. 95,
085002 (2020).

[17] A. Lyapina, D. Maksimov, A. Pilipchuk, and A. Sadreev,
Bound states in the continuum in open acoustic resonators,
J. Fluid. Mech. 780, 370 (2015).

[18] C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D.
Joannopoulos, and M. Soljačić, Observation of trapped light
within the radiation continuum, Nature (London) 499, 188
(2013).

[19] Z. F. Sadrieva, M. A. Belyakov, M. A. Balezin, P. V.
Kapitanova, E. A. Nenasheva, A. F. Sadreev, and A. A.
Bogdanov, Experimental observation of a symmetry-
protected bound state in the continuum in a chain of
dielectric disks, Phys. Rev. A 99, 053804 (2019).

[20] M. G. Silveirinha, Trapping light in open plasmonic nano-
structures, Phys. Rev. A 89, 023813 (2014).

[21] S. Lannebère and M. G. Silveirinha, Optical meta-atom for
localization of light with quantized energy, Nat. Commun.
6, 8766 (2015).

PHYSICAL REVIEW LETTERS 128, 084301 (2022)

084301-5

https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1088/1361-6633/abefb9
https://doi.org/10.1088/1361-6633/abefb9
https://doi.org/10.1016/0003-4916(63)90299-9
https://doi.org/10.1016/0003-4916(63)90299-9
https://doi.org/10.1017/S0305004100026700
https://doi.org/10.1016/0022-460X(66)90154-4
https://doi.org/10.1016/0022-460X(66)90154-4
https://doi.org/10.1038/s41467-020-19091-3
https://arXiv.org/abs/2109.09498
https://arXiv.org/abs/2109.09498
https://doi.org/10.1002/adom.202001469
https://doi.org/10.1002/adom.202001469
https://doi.org/10.1515/nanoph-2019-0024
https://doi.org/10.1515/nanoph-2019-0024
https://doi.org/10.1038/nature20799
https://doi.org/10.1126/science.aaz3985
https://doi.org/10.1126/science.aaz3985
https://doi.org/10.1038/s41377-020-0286-z
https://doi.org/10.1126/science.aas9768
https://doi.org/10.1103/PhysRevB.90.241103
https://doi.org/10.1088/1402-4896/ab99fb
https://doi.org/10.1088/1402-4896/ab99fb
https://doi.org/10.1017/jfm.2015.480
https://doi.org/10.1038/nature12289
https://doi.org/10.1038/nature12289
https://doi.org/10.1103/PhysRevA.99.053804
https://doi.org/10.1103/PhysRevA.89.023813
https://doi.org/10.1038/ncomms9766
https://doi.org/10.1038/ncomms9766


[22] F. Monticone and A. Alu, Embedded Photonic Eigenvalues
in 3d Nanostructures, Phys. Rev. Lett. 112, 213903 (2014).

[23] I. Liberal and N. Engheta, Nonradiating and radiating
modes excited by quantum emitters in open epsilon-near-
zero cavities, Sci. Adv. 2, e1600987 (2016).

[24] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders,
Fundamentals of Acoustics, 4th ed. (John Wiley & Sons,
New York, 1999).

[25] L. Huang, Y. K. Chiang, S. Huang, C. Shen, F. Deng,
Y. Cheng, B. Jia, Y. Li, D. A. Powell, and A. E. Mirosh-
nichenko, Sound trapping in an open resonator, Nat.
Commun. 12, 4819 (2021).

[26] A. S. Pilipchuk, A. A. Pilipchuk, and A. F. Sadreev, Bound
states in the continuum in open spherical resonator, Phys.
Scr. 95, 085002 (2020).

[27] I. Quotane, E. H. El Boudouti, and B. Djafari-Rouhani,
Trapped-mode-induced fano resonance and acoustical trans-
parency in a one-dimensional solid-fluid phononic crystal,
Phys. Rev. B 97, 024304 (2018).

[28] S. Mizuno, Fano resonances and bound states in the
continuum in a simple phononic system, Appl. Phys.
Express 12, 035504 (2019).

[29] M. A. Isakovich, General Acoustics (Nauka, Moscow,
1973).

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.128.084301 for thedetails of the rigorous
derivation of the Helmholtz equation for the displacement field
in isotropic media from the equation of motion for the elastic
media; for the connection between pressure and displacement
field in the non-viscous fluid; for information about vector
harmonics, their main properties, and explicit view in spherical
and cylindrical systems of coordinates; for the explicit deriva-
tion of the eigenfrequency equation for the BICs in sphere and
cylinder; for the mode profiles for BICs with l ¼ 1; 2; 3; 4 and
m ¼ 0; 1; 2; 3; 4; for the table with the classification of the
eigenmodes in solids withD∞h symmetry; for the information
about the influence of different non-radiative losses on BICs,
and, for the details of the numerical simulations.

[31] C. F. Bohren and D. R. Huffman, Absorption and Scattering
of Light by Small Particles (John Wiley & Sons, New York,
2008).

[32] D. L. Colton, R. Kress, and R. Kress, Inverse acoustic and
electromagnetic scattering theory (Springer, Berlin, 1998),
Vol. 93, p. 165.

[33] A. Tamura, K. Higeta, and T. Ichinokawa, Lattice vibrations
and specific heat of a small particle, J. Phys. C 15, 4975
(1982).

[34] S. Tamim and J. Bostwick, The elastic rayleigh drop, Soft
Matter 15, 9244 (2019).

[35] E. Bulgakov, K. Pichugin, and A. Sadreev, All-optical light
storage in bound states in the continuum and release by
demand, Opt. Express 23, 22520 (2015).

[36] A. Chukhrov, S. Krasikov, A. Yulin, and A. Bogdanov,
Excitation of a bound state in the continuum via
spontaneous symmetry breaking, Phys. Rev. B 103,
214312 (2021).

[37] L. Yuan and Y. Y. Lu, Excitation of bound states in the
continuum via second harmonic generations, SIAM J. Appl.
Math. 80, 864 (2020).

[38] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y.
Kivshar, Asymmetric Metasurfaces with High-q Resonan-
ces Governed by Bound States in the Continuum, Phys. Rev.
Lett. 121, 193903 (2018).

[39] K. Koshelev, A. Bogdanov, and Y. Kivshar, Meta-optics
and bound states in the continuum, Sci. Bull. 64, 836
(2019).

[40] K. Koshelev, Y. Tang, K. Li, D.-Y. Choi, G. Li, and Y.
Kivshar, Nonlinear metasurfaces governed by bound states
in the continuum, ACS Photonics 6, 1639 (2019).

[41] Z. Liu, Y. Xu, Y. Lin, J. Xiang, T. Feng, Q. Cao, J. Li, S.
Lan, and J. Liu, High-q Quasibound States in the Con-
tinuum for Nonlinear Metasurfaces, Phys. Rev. Lett. 123,
253901 (2019).

[42] A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. Kivshar,
and H. Altug, Angle-multiplexed all-dielectric metasurfaces
for broadband molecular fingerprint retrieval, Sci. Adv. 5,
eaaw2871 (2019).

[43] A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude,
Light-emitting metasurfaces, Nanophotonics 8, 1151
(2019).

[44] M. Liu and D.-Y. Choi, Extreme huygens’ metasurfaces
based on quasi-bound states in the continuum, Nano Lett.
18, 8062 (2018).

[45] S. Gladyshev, K. Frizyuk, and A. Bogdanov, Symmetry
analysis and multipole classification of eigenmodes in
electromagnetic resonators for engineering their optical
properties, Phys. Rev. B 102, 075103 (2020).

[46] J. Zhang, R. Perez, and E. Lavernia, Documentation of
damping capacity of metallic, ceramic and metal-matrix
composite materials, J. Mater. Sci. 28, 2395 (1993).

[47] T. Irvine, Damping properties of materials, Magnesium
5000, 10 (2004).

[48] T. Pritz, Relation of bulk to shear loss factor of solid
viscoelastic materials, J. Sound Vib. 324, 514 (2009).

PHYSICAL REVIEW LETTERS 128, 084301 (2022)

084301-6

https://doi.org/10.1103/PhysRevLett.112.213903
https://doi.org/10.1126/sciadv.1600987
https://doi.org/10.1038/s41467-021-25130-4
https://doi.org/10.1038/s41467-021-25130-4
https://doi.org/10.1088/1402-4896/ab99fb
https://doi.org/10.1088/1402-4896/ab99fb
https://doi.org/10.1103/PhysRevB.97.024304
https://doi.org/10.7567/1882-0786/ab032f
https://doi.org/10.7567/1882-0786/ab032f
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.084301
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.084301
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.084301
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.084301
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.084301
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.084301
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.084301
https://doi.org/10.1088/0022-3719/15/24/010
https://doi.org/10.1088/0022-3719/15/24/010
https://doi.org/10.1039/C9SM01753D
https://doi.org/10.1039/C9SM01753D
https://doi.org/10.1364/OE.23.022520
https://doi.org/10.1103/PhysRevB.103.214312
https://doi.org/10.1103/PhysRevB.103.214312
https://doi.org/10.1137/19M1277539
https://doi.org/10.1137/19M1277539
https://doi.org/10.1103/PhysRevLett.121.193903
https://doi.org/10.1103/PhysRevLett.121.193903
https://doi.org/10.1016/j.scib.2018.12.003
https://doi.org/10.1016/j.scib.2018.12.003
https://doi.org/10.1021/acsphotonics.9b00700
https://doi.org/10.1103/PhysRevLett.123.253901
https://doi.org/10.1103/PhysRevLett.123.253901
https://doi.org/10.1126/sciadv.aaw2871
https://doi.org/10.1126/sciadv.aaw2871
https://doi.org/10.1515/nanoph-2019-0110
https://doi.org/10.1515/nanoph-2019-0110
https://doi.org/10.1021/acs.nanolett.8b04774
https://doi.org/10.1021/acs.nanolett.8b04774
https://doi.org/10.1103/PhysRevB.102.075103
https://doi.org/10.1007/BF01151671
https://doi.org/10.1016/j.jsv.2009.02.003

