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Time delayed dynamical systems have proven to be a fertile framework for the study of physical
phenomena. In natural sciences, their uses have been limited to the study of dissipative dynamics. In this
Letter, we demonstrate the existence of nonlinear reversible conservative time delayed systems. We
consider the example of a dispersive microcavity containing a Kerr medium coupled to a distant external
mirror. At low energies and in the long delay limit, a multiscale analysis shows the equivalence with the
nonlinear Schrödinger equation. We unveil some of the symmetries and conserved quantities, as well as
bright temporal solitons. While elastic collisions occur for shallow wave packets, we observe the lack of
integrability at higher energies. We recover the Lugiato-Lefever equation in the weakly dissipative regime.
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Conservative dynamical systems are test benches for
nonlinear dynamics. During the second half of the twentieth
century, solitary wave solutions of the Korteweg–de Vries
and of the nonlinear Schrödinger (NLS) equations sparked a
revolution that gave rise to a plethora of works in natural
sciences. Conservative solitons can be observed in a variety
of fields including fiber optics [1,2], hydrodynamics [3–5],
Bose-Einstein condensates [6], and plasmas [7]. In optics,
the NLS equation describes the light propagation under the
combined action of chromatic dispersion and an intensity
dependent refractive index, the so-called Kerr effect. The
interplay between these two effects governs the emergence
of bright and dark conservative solitons, that possess, in
addition, the integrability property [8]. In practice, higher-
order nonlinear, dispersive, and especially dissipative effects
perturb this ideal picture. However, conservative systems
provide for a firm theoretical basis. For instance, weakly
dissipative solitons can successfully be understood as
perturbed conservative objects. Irreversible processes such
as gain and dissipation drive the evolution of the soliton
parameters like, e.g., the energy or the momentum, toward
an attractor [9–11].
On the other hand, many complex systems ranging from

biology to economy can be successfully modeled by time
delayed systems (TDSs), see [12,13] for reviews. In the limit
of long delays, TDSs are akin, at least in their complexity, to
one-dimensional spatially extended systems [14,15]. There,
it was shown that the temporal dynamics of TDSs can be
mapped onto a two-dimensional representation. This idea
was later generalized to multiple, hierarchically long time
delays, leading to multidimensional spatially extended
systems [16] and the observation of spirals and defect
turbulence. This formal correspondence enables a direct

interpretation of purely temporal phenomena in terms of
diffusive, dissipative spatiotemporal dynamics. Fronts, dis-
sipative solitons, spatiotemporal intermittency and defects,
coarsening, and concepts like Eckhaus instability or chimera
states can be observed in TDSs [13,17–24]. More recently, it
was shown [25] that considering a more general class of
singularly perturbed TDSs allows to cancel this generic
diffusive behavior which leads to a dispersive response and a
purely imaginary eigenvalue spectrum, typical of reversible
systems. In addition, some nondissipative properties of
functional and neutral TDSs have been studied by the
mathematical community, see, e.g., [26–28]. In this Letter,
we provide the physical description of a photonic system
modeled by a nonlinear, time-reversible, conservative TDS.
Moreover, we demonstrate the existence of conservative
solitons in TDSs.
We consider a microcavity containing a nonlinear

Kerr medium coupled to an external mirror as depicted
in Fig. 1(a). Our modeling approach follows the method
developed in [25,29–34]. The dynamical model for the
slowly varying electromagnetic field envelopes in the
microcavity E and the external cavity Y reads

_E ¼ ð−1þ ijEj2ÞEþ hY; ð1Þ

Y ¼ reeiφ½Eðt − τÞ − Yðt − τÞ�: ð2Þ

The microcavity outputO ¼ E − Y is the combination of the
intracavity photons transmitted by the microcavity and those
reflected. The output field is reinjected after a round-trip τ
with the attenuation and phase shift factor reeiφ yielding the
coupling between the fields E and Y in Eq. (2). The latter
equation does not contain any time derivative and it is
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therefore called a delay algebraic equation. This formalism
allows us to take into account all the multiple reflections in
the external cavity. Note that for re ≪ 1, the infinite
hierarchy generated in Eq. (2) could be truncated, leading
to an optical feedback term as in the Lang-Kobayashi model
[35]. However, in the good cavity limit (re → 1), the
multiple reflections should be conserved. For a perfectly
lossless bottom mirror jr2j ¼ 1 the coupling efficiency
parameter is h ¼ 2, which corresponds to the Gires-
Tournois interferometer regime [36]. Second- and third-
order dispersion are naturally captured by Eqs. (1) and (2) as
was shown in [25].
Due to the time-delay, the system composed of Eqs. (1)

and (2) possesses infinitely many degrees of freedom and its
eigenvalue spectrum is a countably infinite set. In the long
delay limit τ → ∞ the spectrum becomes pseudocontinuous
[37] and the real part γm of the eigenvalues λm ¼ γm þ iωm,
obtained around the ðE; YÞ ¼ ð0; 0Þ solution, can be
expressed as a function of its imaginary part ωm as [25]

γmτ ¼ ln re þ
h − 2

1þ ω2
m
þO

�
1

τ

�
; ð3Þ

ωmτ ¼ 2πmþ h − 2

1þ ω2
m
ωm − 2 arctan ωm þO

�
1

τ

�
; ð4Þ

withm ∈ Z, see the red dots in Fig. 1(b). Note that for h ¼ 2
the real part γm does not depend on ωm yielding a vertical,
yet lossy, spectrum which is shifted from zero by lnðreÞ=τ
(blue dots). In what follows we consider the lossless cavity
limit that corresponds to ðre; hÞ ¼ ð1; 2Þ and where λm
converges toward the unitary spectrum presented in solid
black in Fig. 1(b).
In itself, a unitary spectrum is rather surprising in the

context of TDSs since it implies the possibility to integrate
backward in time without any difficulty. This statement is

incompatible with the dynamics of the most widespread
TDSs that are based upon delay differential equations
(DDEs). The latter take the following form

_v ¼ f½vðtÞ; vðt − τÞ�; ð5Þ

with v a state variable vector. The so-called method of steps
[28] implies that an initial condition ϕðtÞ must be given
over an interval of duration τ in order to perform the
forward integration over a time τ. Then, this newly
propagated segment can be reused as a new initial condition
in order to perform the next step. That is, if ϕðtÞ is a Cp

function, integrating this function over n steps results in a
smoother Cpþn profile. Conversely, a Cp initial condition
can only be integrated backward during p steps before
potentially reaching a discontinuity. All the models based
upon DDEs suffer from this difficulty, even in photonics
where the latter are based upon the reversible Maxwell
equations; the approximations made during their derivation
[38] set limits over their time-reversed evolution. We note,
however, that the delay algebraic model given by Eqs. (1)
and (2) or in [25,29–34] do not suffer from this difficulty.
This can be understood by combining Eq. (1) with itself
evaluated at t − τ and using Eq. (2) to eliminate the external
field Y. Noting Eτ ≡ Eðt − τÞ we obtain

Eþ _E − ijEj2E ¼ ðEτ − _Eτ þ ijEτj2EτÞeiφ: ð6Þ

Equation (6) is a neutral delay differential equation
(NDDE) where both the delayed value of the field Eτ

and its derivative _Eτ appear. Since the right hand side of
Eq. (6) contains _Eτ, at each step, the initial condition is both
derived and integrated. One understands intuitively that, at
variance with DDEs, a Cp initial condition remains Cp and
that forward and backward integration do not create
asymmetry in the smoothness of the solution profile.
Following Kamenskii’s classification [28], Eq. (6) is an
example of a bilateral NDDE as it preserves its type under
time inversion. The general theory of these equations
appears to be rich and has not been fully developed yet.
From Eq. (6), the associated linear evolution operator φτ

propagating the field over a step reads

φτ∶EðtÞ ¼
�
1þ d

dt

�
−1
�
1 −

d
dt

�
eiφEðt − τÞ;

while the adjoint operator φ†
τ is defined as

φ†
τ∶WðtÞ ¼

�
1 −

d
dt

�
−1
�
1þ d

dt

�
e−iφWðtþ τÞ:

Since φ†
τφτ ¼ I, φτ is a unitary operator, which explains the

purely imaginary spectrum of Fig. 1(b). Consequently, the
inverse operator φ−1

τ , that corresponds to backward time
integration, is φ−1

τ ¼ φ†
τ .

(a) (b)

FIG. 1. (a) A schematic of a microcavity with round-trip time τc
enclosed by two distributed Bragg mirrors with reflectivities r1;2.
It is coupled to a long external cavity with round-trip time τwhich
is closed by a mirror with reflectivity re. E is the sum of the
forward and backward propagating fields that interfere upon the
Kerr medium while Y is the field impinging upon the top mirror.
(b) The eigenvalue spectrum Eqs. (3) and (4) for different values
of h and re. For h < 2 and re < 1 (red dots) the spectrum
resembles an inverted parabola. When h → 2 (blue dots) it
flattens as γmτ ¼ ln re. For re → 1, the spectrum converges to
the imaginary axis.
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Remarkably, the nonlinear equations (1) and (2) pos-
sess, in the long delay limit τ ≫ 1, periodic orbits with
period T ¼ τ þ Δ and Δ > 0 [41] that correspond to
solitary wave trains, see Fig. 2(a). The temporal profile
of a single pulse coincides extremely well, even on a
logarithmic scale, with a hyperbolic secant, a typical
solution of the NLS equation [2], see Fig. 2(b). The
small discrepancy at the tails is due to the fact that solitary
solutions in time delayed dynamical systems are periodic
orbits, which imposes a smooth reconnection of the
solution with itself. An identical discrepancy would be
observed if the NLS equation was solved over a periodic
domain.
The link between the NDDE (6) and the NLS equation

can be clarified by performing a multiscale analysis up to
third order or using the functional mapping method
[31,33]. We introduce the two time representation
[14,15] by defining σ ∈ ½0; τ� and θ ∈ N so that time
can be expressed as t½σ; θ� ¼ σ þ θτ. Assuming a field
with carrier frequency δ as EðtÞ ¼ AðtÞ exp ðiδtÞ one
obtains the following amplitude equation:

ið∂θþυ∂σÞAþ φ̃A−
β2
2
∂2
σA− i

β3
6
∂3
σAþγjAj2A¼0; ð7Þ

that is, the NLS equation with third order dispersion
with υ¼ 2=ð1þ δ2Þ, β2 ¼ 4δ=ð1þ δ2Þ2, β3 ¼ 4ð3δ2 − 1Þ=
ð1þ δ2Þ3 and γ ¼ 2=ð1þ δ2Þ. The effective round-trip
phase is φ̃ ¼ φ − δτ − 2 arctanðδÞ mod ð2πÞ. The second
order dispersion coefficient β2 cancels at resonance δ ¼ 0,
which corresponds to the transition from anomalous to
normal dispersion while third order dispersion β3 vanishes
for δ ¼ �δc where δc ¼ 1=

ffiffiffi
3

p
. In this case Eq. (7) is

equivalent to the classical NLS equation up to fourth
order. In the anomalous dispersion regime where δ ¼ −δc,
β2 < 0, γ > 0, and β3 ¼ 0, we obtain the so-called bright
hyperbolic secant solitons [2]. The latter can be expressed
as a one parameter family

Aðσ; θ; μÞ ¼
ffiffiffiffiffi
2μ

γ

s
exp ½iðμþ φ̃Þθ�

cosh ½
ffiffiffiffiffi
2μ
jβ2j

q
ðσ − υθÞ�

; ð8Þ

where we defined μ as the soliton energy, which together
with the effective round-trip phase φ̃ contributes to the
soliton frequency shift. The expression in Eq. (8) was given
as an initial condition with parameters ðμ;φÞ ¼ ð0.005; 0Þ,
times a carrier frequency exp ð−iδcσÞ, to the periodic orbit
solver of DDEBIFTOOL [42] which, after Newton iterations,
converged to the periodic orbit shown in Fig. 2. The
superposition in Fig. 2(b) using Eq. (8) was obtained without
fit. In the normal dispersion regime, dark solitons, kink, and
antikinks can be obtained similarly.
The existence of a unitary, hence reversible, differential

operator for small amplitude solutions as well as the normal
form (7) leading to the NLS equation indicates that Eq. (6)
may possess a more general symmetry. In particular, one
observes that Eq. (6) relates the field one step in the future
EþðtÞ to the initial condition ϕðtÞ as

Eþ þ _Eþ − ijEþj2Eþ ¼ ðϕ − _ϕþ ijϕj2ϕÞeiφ: ð9Þ

Exchanging the left and right hand sides of Eq. (6) defines
the field one step in the past E− as

E− − _E− þ ijE−j2E− ¼ ðϕþ _ϕ − ijϕj2ϕÞe−iφ: ð10Þ

Following [43] we denote the nonlinear evolution operator
over a step as Φτ and the mirror-conjugating involution R
defined as R½EðtÞ� ¼ E⋆ð−tÞ. Reversibility is demonstrated
since R∘Φτ∘R−1 ¼ Φ−τ, i.e., performing one step backward
in time with the initial condition ϕðtÞ is equivalent to one
step forward for another initial condition ϕ⋆ð−tÞ while
mirror conjugating the end result, i.e., EþðtÞ ¼ E⋆

−ð−tÞ. A
demonstration of this property is depicted in Fig. 3(a).
Starting from a complex, nonsolitonic initial condition we

(a) (b)

FIG. 2. (a) Temporal trace obtained by numerically integrating
Eqs. (1) and (2) for τ ¼ 300. The period of the solution is T ¼
301.5 and the inset presents an enlarged view over five round-
trips. The energy of the pulses is μ ¼ 0.0063. (b) Comparison
between the profile of a single pulse of (a) (blue dots) and the
analytical solution of the NLS equation (red circles) on a
logarithmic scale. The only discrepancy can be seen at the
interval boundaries (see inset).

(a)

(b) (c)

FIG. 3. (a) Numerical simulation showing the reversibility of
Eq. (6). An asymmetric initial condition [blue circles in (b),(c)] is
propagated 300 steps (blue part). Next, at the black dashed line in
(a), the operator R is applied. After 300 steps (red part), the final
profile shown in (b),(c) with red dots perfectly matches the initial
condition after applying R a second time.
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integrate Eq. (6) forward 300 steps, see Fig. 3(a). Then the
operator R is applied to the resulting field profile. Further
forward integration over 300 steps followed by the appli-
cation of R−1 ¼ R leads to the perfect superposition with
the initial condition shown in Figs. 3(b) and 3(c). We note
that the mirror-conjugate symmetry is present in the NLS
equation (7); it consists of setting Aðσ; θÞ → A⋆ð−σ;−θÞ.
We emphasize that, while the NLS equation is only an
approximation of Eq. (6), the time reversal symmetry of
Eq. (6) is an exact property.
The higher order terms that were neglected in deriving

Eq. (7) scale as Oðμ2Þ. As such, Eq. (6) is only integrable
for sufficiently small amplitude and smooth solutions. In
this regime, we launched two solitons of equal amplitudes
but slightly different carrier frequencies; this leads to
different drift velocities thereby allowing for collisions.
We notice that the in-phase (Figs. 4(a) and 4(b)) and the
antiphase (Figs. 4(c) and 4(d)) solitons reproduce exactly
the elastic behavior expected from an integrable equa-
tion [2].
Finally, we turn our attention to the existence of

conserved quantities. Using Eq. (1) to write the equation
for jEj2 and combining Eq. (2) allows us to identify a
discrete conserved quantity defined at each round-trip by

Qθ ¼ 2

Z
τ

0

jYθðσÞj2dσ þ jEθð0Þj2: ð11Þ

We interpret Qθ as the soliton mass that contains the
integral of the field intensity in the external cavity jYθj2,
while jEθð0Þj2 is the intracavity field value. When the
cavity snapshot is taken at a particular step θ, the pulse
energy can either reside in the external cavity and be
contained in the Y field, but it can also lay within the
microcavity field E. We clarify the role of the conserved
quantity in Fig. 5. The left panels (a),(c) depict the smooth
evolution of a single soliton in the ðσ; θÞ representation.

We notice that the nominal soliton mass in the NLS
equation qθ ¼

R
τ jEθj2dσ (black) is conserved up to the

point where the soliton exits at σ ¼ τ and reenters at σ ¼ 0

at round-trip θ ≃ 130. We notice that
R
τ jYθj2dσ also shows

a downward kink, however, as jEθð0Þj2 has an opposed
spike, Qθ is conserved. For a more complex initial con-
dition with higher energy, one can observe a quick
decomposition into multiple spikes after θ ≃ 40 steps,
cf. Fig. 5(b). Here, and even if the field remains well
localized within the time delay until θ ≃ 120 one already
notices that qθ is not conserved anymore, cf. Fig. 5(d). This
high amplitude transient with fast temporal variations
breaks the multiscale analysis leading to Eq. (7) and the
high order terms like, e.g., self-steepening, result in a
nonintegrable normal form. Yet,Qθ still remains conserved
in this case, too.
We conclude our analysis by performing the link

between Eqs. (1) and (2) and a paradigm of dissipative
pattern formation that is the Lugiato-Lefever equation [44].
The latter can be understood as a dissipative version of the
NLS equation in which the phase symmetry is broken by
the presence of monochromatic injection with amplitude Y0

and frequency offset δ with respect to the microcavity
resonance. In order to introduce this forcing, the external
cavity should be open and one has to simultaneously
introduce cavity losses by setting re < 1. This amounts
to adding to the right hand side of Eq. (2) a term
Y0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2e

p
, see [40]. A similar multiscale analysis per-

formed for small cavity losses and weak injection yields the
Lugiato-Lefever equation with third-order dispersion

(a)

(c) (d)

(b)

FIG. 4. Two-time representation of two colliding solitons of
Eqs. (1) and (2) in-phase (a),(b) and antiphase (c),(d) as a function
of the number of steps N. Panels (a) and (c) show the absolute
value of the profile while (b) and (d) show their phase. Each pulse
has an energy of μ ¼ 0.005 and δ1;2 ¼ −δc � 0.1 while
φ ¼ 1.95. The mean carrier frequency e−iδct was factored out
for clarity in (b),(d).

(a)

(c) (d)

(b)

FIG. 5. (a),(b) Evolution of Eqs. (1) and (2) for different initial
conditions. Note that the folding factor for these plots is τ, instead
of T as in Fig. (4), leading to the drift of the soliton. The initial
conditions are (a) a hyperbolic secant (8) with μ ¼ 0.005 and
(b) a condition which is far away from a steady state. (c),(d)
Evolution of different measures to visualize the conservation
properties. In (c) all quantities are conserved unless the pulse
reaches the edge of the cavity. Then onlyQθ is conserved. (d) The
norm

R
τ
0 jEθj2dσ is not conserved and 2

R
τ
0 jYθj2dσ as well as

jEθð0Þj2 show the same imperfections when a soliton exits the
cavity. However, Qθ is conserved.
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�
i∂θþ φ̃þ iυ∂σ−

β2
2
∂2
σ− i

β3
6
∂3
σþγjAj2

�
A¼FðAÞ; ð12Þ

where FðAÞ ¼ iðre − 1ÞAþ iY0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1 − reÞ

p
=ð1þ iδÞ con-

tains both the effects of losses and injection.
In conclusion, we have demonstrated that nonlinear

reversible TDSs exist and that they can host conservative
solitons in the long delay limit, thereby bridging the gap
with the results known for dissipative TDSs. The essential
structure consists of a bilateral NDDE with an imaginary
cubic nonlinearity which preserves the solution smoothness
upon forward and backward propagation and may generate
a unitary spectrum. The normal form identifies with the
nonlinear Schrödinger equation, thereby allowing for bright
and dark solitons although the lack of integrability can be
observed at high energies. We believe that bilateral NDDEs
open an avenue for the potential realization of conservative
nonlinear dynamics in TDSs, such as, e.g., the Fermi-Pasta-
Ulam-Tsingou [45] recurrence or the observation of the
Korteweg–de Vries solitons.
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