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Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France

(Received 29 November 2021; revised 21 January 2022; accepted 7 February 2022; published 23 February 2022)

We propose and demonstrate the appearance of an effective attractive three-body interaction in
coherently driven two-component Bose-Einstein condensates. It originates from the spinor degree of
freedom that is affected by a two-body mean-field shift of the driven transition frequency. Importantly, its
strength can be controlled with the Rabi-coupling strength and it does not come with additional losses. In
the experiment, the three-body interactions are adjusted to play a predominant role in the equation of state
of a cigar-shaped trapped condensate. This is confirmed through two striking observations: a downshift of
the radial breathing mode frequency and the radial collapses for positive values of the dressed-state
scattering length.
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Thanks to their extreme diluteness, particles in ultracold
gases dominantly interact pairwise. At low temperatures,
the thermal de Broglie wavelength is larger than the range
of the Van der Waals potential Re, and the two-body
interaction can accurately be replaced by a contact potential
[1]. Moreover, the only parameter characterizing the
interaction, i.e., the scattering length a, can be tuned via
scattering resonances [2]. Thanks to these properties,
ultracold gases are ideal candidates to quantitatively
explore quantum many-body physics with pairwise inter-
actions [3]. For example, the superfluid to Mott transition
[4] or the BEC-BCS crossover [5–9] have been studied.
Although three-body interactions are usually a small

correction compared to two-body interactions in dilute
gases, their theoretical consideration has a long history
[10–12]. They lead to interesting nonlinear dynamics
[13–21] and to the appearance of droplets [22,23]. At low
temperatures, a three-body interaction is characterized by a
scattering hypervolume D [24]. D is a complex number
whose real part is associated with an energy shift and its
imaginary part with three-body losses. Enhancement of
three-body interactions, i.e., of the real part ofD, is expected
close to resonances due to energy coincidence with weakly
bound three-body states [22,24–28]. Unfortunately, typical
interatomic interaction potentials possess numerous deeply
bound two-body states and the enhancement of the real part
of D comes together with a concomitant increase of its
imaginary part due to three-body recombination toward
these states [29]. For example, three-body Efimov resonan-
ces have been experimentally observed through the enhance-
ment of losses [30,31]. In optical lattices, the engineering of
three-body interactions was proposed via strong three-body
losses and quantum Zeno effect [32,33] or via a coherent
coupling between two spin states [34].
Alternatively, an effective three-body interaction can be

induced through a density dependant two-body coupling

strength. This method requires an additional degree of
freedom that rapidly adjusts to the local density and can be
adiabatically eliminated. For a condensate in quasi-one-
dimensional (1D) or quasi-2D geometries, the wave func-
tion in the confined direction provides this additional
degree of freedom [35–37]; its size slightly increases
(decreases) for repulsive (attractive) two-body interactions.
This effect leads to an effective attractive three-body
coupling constant g3 ∝ −a2 in the equation of state in
the reduced geometry. Note that it is a perturbative
expansion, valid when the three-body energy is a small
correction to the two-body energy. Manifestations of these
three-body interactions were observed in frequency shifts
of breathing oscillations in a quasi-2D geometry [37] and in
the breaking of integrability in quasi-1D gases [36].
In this Letter, we demonstrate that the additional spinor

degree of freedom in coherently driven two-component
condensates can similarly induce effective three-body
interactions after its adiabatic elimination. The method
crucially relies on two facts: first, the scattering lengths in
the dressed states depend on their spin composition [38,39];
second, the spin composition is affected by density-induced
mean-field shifts of the driven transition [40,41]. In contrast
to condensates in a reduced dimension, the two parameters
in driven two-component condensates (the detuning fre-
quency δ=2π and the Rabi-coupling frequencyΩ=2π) allow
the independent control of the two-body and three-body
coupling constants. The two-body interactions can thus be
reduced such that the three-body interactions prevail in the
equation of states. In addition, these three-body interactions
appear at the mean-field level and can be made significantly
larger in magnitude than the recently studied beyond mean-
field three-body effects [42,43].
Experimentally, we study two consequences of the

effective attractive three-body interactions that appear in
the lowest energy dressed state of a driven two-component
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39K condensate. First, the radial breathing mode frequency
of an elongated condensate, which is usually independent
of the two-body interaction, exhibits a downshift. Second,
we measure the detuning threshold for radial collapse as a
function ofΩ. We find that the condensate collapses despite
a positive scattering length due to the attractive three-body
interactions. Importantly, we detect no increase of losses
associated with the introduction of the coherent coupling
that enables the tuning of the two-body and three-body
interactions.
Let us consider a Bose gas in a volume V consisting of N

atoms of massmwith two coupled internal states, σ ¼ ↑;↓.
For simplicity, we work with symmetric interactions,
g↑↑ ¼ g↓↓ ¼ g, and we define ḡ ¼ ðg↑↑ − g↑↓Þ=2 (with
gσσ0 ¼ 4πℏ2aσσ0=m and ℏ the reduced Planck constant). In a
homogeneous system with density n, the mean-field energy
for a condensate in the spinor state ðϕ↑;ϕ↓Þ reads

EMF

V
¼ −

ℏΩ
2

ðϕ�
↑ϕ↓ þ ϕ�

↓ϕ↑Þ þ
ℏδ
2
ðjϕ↑j2 − jϕ↓j2Þ

þ
X
σσ0

gσσ0

2
jϕσj2jϕσ0 j2:

The ground state is found upon minimization of the energy
with respect to the internal state. The first term fixes the
relative phase of the spinor that we can thus write
ðϕ↑;ϕ↓Þ ¼

ffiffiffi
n

p ½sinðθ=2Þ; cosðθ=2Þ�. The energy is

EMF

N
¼ −

ℏΩ
2

sinðθÞ − ℏδ
2
cosðθÞ þ gn

2
−
ḡn
2
sin2ðθÞ ð1Þ

with θ ∈ ½0; π� found upon minimization. Up to first
order in the ratio γ ¼ ½ðḡnÞ=ðℏΩÞ�, which compares
the differential mean-field shift to the Rabi frequency,
we find

θ ≈ θ0 − 2γ
δ=Ω

ð1þ δ2=Ω2Þ3=2 with cotanðθ0Þ ¼
δ

Ω
: ð2Þ

In the absence of interaction (γ ¼ 0), θ ¼ θ0 corresponds to
a condensate in the single particle eigenstate of lowest
energy j−i ¼ sinðθ0=2Þj↑i þ cosðθ0=2Þj↓i. In the pres-
ence of interaction, γ is the key parameter controlling
the modification of the internal state away from j−i. It
results in the following mean-field energy per particle:

EMF

N
≈ ϵ− þ g2

n
2
þ g3

n2

3
ð3Þ

with g2 ¼ g −
ḡ

1þ δ2=Ω2
ð4Þ

and g3 ¼ −
3ḡ2

ℏΩ
δ2=Ω2

ð1þ δ2=Ω2Þ5=2 : ð5Þ

The first term in Eq. (3) is the single particle eigenenergy
ϵ− ¼ −ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
=2 of the j−i state. g2 ¼ 4πℏ2a−−=m

corresponds to the two-body coupling constant for atoms
in j−i [39]. It is solely determined by the ratio δ=Ω [see
Fig. 2(b)]. g3 is an attractive three-body coupling constant
appearing due to the mean-field–induced change in θ
[Eq. (2)]. It is zero both for large absolute value of δ=Ω
when the two states are uncoupled and for δ ¼ 0 as the
energy [Eq. (1)] is then always minimal for θ ¼ θ0 ¼ π=2.
Interestingly, g3 can be independently controlled from g2

through the value of Ω. Nonetheless, there are some
limitations. First, Ω can not be made arbitrarily small as
the adiabatic following of the dressed state requires _γ ≪ Ω
when the density varies in time. Second, the energy
expansion in powers of the density [Eq. (3)], i.e., the
three-body approximation, is only valid for γ ≪ 1. This
second condition is more restrictive for our experimental
conditions (see below) and taking γ ≈ 1 or ℏΩ ≈ ḡn, we
find that the maximum absolute value of the three-body
energy per particle g3n2=3 amounts to a significant fraction
of ḡn. It can thus compete with the two-body energy g2n=2.
In the limit γ ≫ 1 and ḡn ≫ ℏjδj, θ ≈ π=2 and the energy
[Eq. (1)] recovers a two-body behavior with g2 ¼ ðg − ḡÞ.
We now turn to the experimental observation of the

three-body interactions. We work with the second and third
lowest Zeeman states of the lowest manifold of 39K, namely
j↑i ¼ jF ¼ 1; mF ¼ −1i and j↓i ¼ jF ¼ 1; mF ¼ 0i. At a
magnetic field of 54.690(1) G, the three relevant scattering
lengths are a↑↑¼37.9 a0, a↓↓ ¼ 36.9 a0 [44], and a↑↓ ¼
−54.2 a0, where a0 is the atomic Bohr radius [45]. With
these specific parameters, the scattering length a−− has a
minimum −8.4 a0 for δ ≈ 0 and zero crossings at δ=Ω ≈
�0.47 (see Fig. 3). Because of an experimental rms
magnetic field noise of 0.8(2) mG corresponding to 0.56
(14) kHz, we choose to work with Ω=2π ≥ 7 kHz in order
to keep a good control of the parameter δ=Ω. For this value
of Ω and δ=Ω ≈ 0.8, the maximum absolute value of the
three-body coupling constant is jg3j=ℏ ¼ 3 × 10−38 m6 s−1.
This value is larger by a factor of ∼100 compared to
the dominant three-body loss coefficient K↓↓↓

3 =6 ≈ 3 ×
10−40 m6 s−1 in our potassium mixtures [46]. The hyper-
volume D for our parameters is thus essentially real with
jℜðDÞj ≫ ℑðDÞ. jg3j is also larger than the three-body
coupling constant emerging from beyond mean-field
effects [43] by a factor of ∼50 and the latter is neglected
in the present work.
The experiment starts with a quasipure Bose-Einstein

condensate with ∼1.4 × 105 atoms in state j↑i in a cigar-
shaped trap with frequencies ðω⊥;ωkÞ=2π¼ð300;16.4ÞHz.
The condensate in the ground state is then prepared in an
adiabatic passage, in which the rf detuning is swept from
7.5 Ω to its final value δ. Its shape and duration of 0.4 ms are
chosen in order to be adiabatic with respect to the internal-
state dynamics but it is short as compared to 2π=ω⊥. As a
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consequence, the rf sweep is equivalent to a quench of the
interaction parameters and it induces some dynamics of the
cloud. In the longitudinal direction, the evolution is slow and
we neglect it on the 15 ms timescale of our experiment [47].
We focus our analysis on the radial dynamics of the
condensate in its central part where the 1D density n1D is
approximately constant.
In a first series of experiments, we chose parameters

(Ω=2π ¼ 25.4 kHz and δ=Ω > 0.8) for which, we observe
small amplitude breathing oscillations of the radial size
(see inset in Fig. 1) [48]. On the 15 ms timescale of the
experiment, we find that the atom number is reduced by a
maximum of 20%. Interestingly, we measure a reduction of
the breathing mode frequency when δ=Ω is decreased from
1.4 to 0.8 (see Fig. 1), whereas, in the absence of three-
body interaction, it is expected to be constant and equal to
2ω⊥ independently of the two-body contact interaction due
to a hidden symmetry of the Hamiltonian under scale
transformation [49–51].
Let us now compare the measured frequencies to

theoretical expectations for a condensate for which the
equation of state is given by Eq. (3). In a variational and
scaling approach [52,53], the frequency of small [48]
breathing oscillations writes

ωb ¼ 2ω⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E3=Epot

q
; ð6Þ

where E3 < 0 and Epot are the three-body and potential
energy in the equilibrium state. We calculate these two
quantities from imaginary time evolution of a 2D extended
Gross-Pitaevskii equation [54] and deduce the value of the
breathing mode frequency (see Fig. 1). Within the exper-
imental error bars, we find a perfect agreement with the
measured values and we thus attribute the breathing mode
frequency downshift to the attractive three-body inter-
actions. Note that in the explored range, decreasing δ=Ω
corresponds both to a decrease of g2 and to an increase
of jg3j.
By lowering further the value of δ=Ω, we observe large

losses that rapidly occur around ∼1 ms after the beginning
of the rf sweep, i.e., when the condensate has shrunk to a
high density. In order to study this behavior, we wait 3 ms
after the sweep and plot the remaining central 1D density as
a function of δ=Ω for two values of Ω [see Fig. 2(a)]. At
large values of jδ=Ωj, there are few losses and the 1D
density is close to the initial one. On the contrary, for low
values of jδ=Ωj, the 1D density is observed to be reduced
by a factor of ∼3. Interestingly, the losses appear sharply as
a function of jδ=Ωj and we interpret this behavior as
originating from a radial collapse of the cloud, which is
certainly expected for δ=Ω ≈ 0 where the minimum scat-
tering length is a−− ¼ −8.4 a0 < 0. In the following, we
do not try to precisely understand the collapse dynamics,
including the role of losses, but rather focus our analysis on
the threshold values δc=Ω below which a collapse occurs.
The collapse thresholds δc=Ω are plotted as a function of

Ω in Fig. 3 and are found to be larger for lower values ofΩ.
Such a behavior reveals the role of three-body interactions
in the radial collapse as g2 solely depends on the ratio δ=Ω.
Moreover, for Ω=2π < 20 kHz the collapse is observed for
δ=Ω > 0.47, which corresponds to a positive scattering
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FIG. 1. Breathing frequency at Rabi frequency Ω ¼ 25.4 kHz
as a function of the detuning δ=Ω. The points correspond to the
experimental data. The vertical error bars correspond to a 1.5%
uncertainty in the measured frequency. The horizontal error
bars are linked to our 0.8(2) mG magnetic field fluctuations.
The shaded area corresponds to the theoretical estimates for
2.3 × 109 m−1 < n1D < 2.65 × 109 m−1 taking into account the
uncertainty in the value of n1D due to experimental fluctuations,
losses, and uncertainty in the detection efficiency. Inset: radial
breathing oscillations for δ=Ω ¼ 0.9. The rms size σ of the gas
is measured as a function of the wait time t after 9.7 ms of
free expansion, including an initial 0.4 ms rf sweep back to
δ ¼ 7.5 Ω.
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FIG. 2. (a) Remaining 1D density as a function of the final
detuning δ=Ω: × ∶Ω=2π ¼ 7.6 kHz, ∘∶ Ω=2π ¼ 29.8 kHz. The
curves are fits with the function ncollþðn1D−ncollÞerf½ðjδj−δcÞ=
ðWΩÞ�, where ncoll, n1D,W, and δc are free parameters. (b) Scatter-
ing length a−− as a function of δ=Ω.
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length a−−, i.e., repulsive two-body interactions [see
Fig. 2(b)]. As an example, for Ω ¼ 7.6 kHz, δc=Ω ¼
0.82ð5Þ corresponds to a−− ≈ 10 a0 (see Fig. 2).
In order to quantitatively interpret our findings, we

develop a model that assumes a Gaussian radial density
profile at all times t with a rms radius

ffiffiffiffiffiffiffiffi
hr2i

p
¼ sðtÞaho,

where aho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
corresponds to the noninteracting

equilibrium rms radius. The energy density is then calcu-
lated upon local minimization with respect to internal state
according to Eq. (1). After integration over the radial
profile, the total energy E can then be cast as

E
Nℏω⊥

¼ ϵ−
ℏω⊥

þ _s2

2
þ s2

2
þ 1

2s2
þ EintðsÞ

Nℏω⊥|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VðsÞ

; ð7Þ

where the terms on the right-hand side respectively
correspond to the single particle internal energy, the kinetic
energy associated to particle flow, the harmonic potential
energy, the zero-point kinetic energy [55], and the inter-
action energy [57]. In the limit γ ≪ 1, the latter can be
calculated from Eq. (3) and amounts to ½EintðsÞ=N� ¼
½ðg2n1DÞ=ð4πa2ohs2Þ� þ ½ðg3n21DÞ=ð12π2a4ohs4Þ�. Since we
only see important losses when the collapse has occurred,
we do not include a loss term in the initial dynamics. In our
framework, the latter reduces to the one of a classical
particle in an effective potential VðsÞ given by the three last
terms in Eq. (7).

Since γ ∼ 1 for some of our parameters, we rely on
numerical calculations of EintðsÞ [57]. Typical effective
potentials VðsÞ close to the collapse threshold are plotted in
the inset of Fig. 3. They exhibit a local maximum for low
value of s that may be overcome or not depending on the
initial energy, which is given by the initial rms size of the
cloud. The latter is numerically computed [54] to 1.1 μm
corresponding to sð0Þ ¼ 1.7. For each value of Ω, we find
the collapse threshold δc=Ω for which the local maximum
of VðsÞ is equal to V½sð0Þ�. This model for the collapse
threshold (dashed curve in Fig. 3) captures the trend of the
threshold values δc=Ω but slightly overestimates them. As
an improvement to our model, we take into account the
main beyond mean-field two-body correction to a−− (see
the supplemental material of [43]). A better match to the
experimental data is then obtained (solid line in Fig. 3),
strengthening our interpretation [58].
To conclude, we have shown that a Rabi-coupled two

component Bose-Einstein condensate with different scatter-
ing lengths offers a way to induce an attractive three-body
term in the equation of state. The latter appears, at the mean-
field level, because of a density-dependent detuning of the
drive. It is tunable through the Rabi-coupling strength and
can be adjusted to play an important role in the condensate
dynamics. The attractive three-body energy can also be made
much larger than the energy associated with the three-body
loss rate. Experimentally, we observe two striking conse-
quences of the attractive three-body term: a shift of the radial
breathing mode frequency and radial collapses despite
repulsive two-body couplings g2 > 0. Our findings can be
easily generalized to the asymmetric case (a↑↑ ≠ a↓↓). In
this case, there is experimentally much more freedom in the
choice of the atomic species, of the specific spin states, and
of the magnetic field such that optimal conditions, i.e., a
large three-body coupling constant and a low three-body loss
rate, could be found.
The presence of three-body interactions modifies the

thermodynamical properties of quantum Bose gases with
consequences such as a change of the condensation
temperature [59] or frequency shifts of low energy exci-
tation modes [19]. Stronger excitations such as vortices
[60], dark solitons [15], or dispersive shock waves [17,18]
will also have modified properties. In particular, the addi-
tional nonlinear term breaks the integrability in the soliton
dynamics [61].
Finally, we discuss the possibility of creating a repulsive

three-body term with a condensate in an internal state
that maximizes the energy [Eq. (1)] [62]. In this case θ ∈
½−π; 0� and g3 is positive. Unfortunately, a condensate
in such a state suffers from large two-body losses [39]. The
two-body loss rate is Γ ∼ ℏnā2=mlΩ, where ā ¼ ða↑↑ −
a↑↓Þ=2 and lΩ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mΩ
p

is a length scale associated with
Ω. Reducing the value of Ω would open a window where
the repulsive three-body energy E3 ∝ g3n2 could dominate
over the two-body loss rate for E3=ℏΓ ∝ nl3Ω ≫ 1.
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FIG. 3. Collapse threshold as a function of the Rabi frequency
Ω=2π. The squares are the experimental data. The dotted blue line
at δ=Ω ¼ 0.47 corresponds to a−− ¼ 0. The solid purple (dashed
red) line corresponds to the theoretical prediction taking into
account the mean-field effect on the internal state with (and
without) the renormalization of the two-body interaction (see
text). Inset: Effective potentials V for Ω=2π ¼ 30 kHz for δ=Ω ¼
0.54 (top curve), δ=Ω ¼ 0.49 ¼ δc=Ω (middle curve), δ=Ω ¼
0.44 (bottom curve). The dotted line is the initial energy for the
middle curve corresponding to sð0Þ ¼ 1.7.
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Repulsive three-body interactions produced in this manner
would offer an alternative way to create gaseous droplets
compared to beyond mean-field effects [63–68]. Quantum
droplets [69] and few-body bound states [70,71] were
recently discussed in the case of 1D bosons with repulsive
three-body interactions. With such nonlinear interactions,
Bose-Einstein condensation in a harmonic trap is also
predicted to become first order [72].
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