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We propose inverse renormalization group transformations within the context of quantum field theory
that produce the appropriate critical fixed point structure, give rise to inverse flows in parameter space, and
evade the critical slowing down effect in calculations pertinent to criticality. Given configurations of the
two-dimensional ϕ4 scalar field theory on sizes as small as V ¼ 82, we apply the inverse transformations to
produce rescaled systems of size up to V 0 ¼ 5122 which we utilize to extract two critical exponents. We
conclude by discussing how the approach is generally applicable to any method that successfully produces
configurations from a statistical ensemble and how it can give novel insights into the structure of the
renormalization group.
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Introduction.—Invertibility is a concept that emerges
naturally in the mathematical and physical sciences. A
simple example of an inverse problem can be defined as
follows: given a set of configurations which are sampled in
a Monte Carlo simulation, specify the most accurate
coupling constants in the underlying Hamiltonian or action
of the system that are able to reproduce them. The problem
can be formally expressed as the minimization of a distance
metric between two probability distributions under the
condition that the model distribution has a dependence
on a set of variational parameters, which in the considered
case is the set of the coupling constants. The same concept
underpins numerous approaches within machine learning.
An example arises in quantum field-theoretic machine
learning algorithms where arbitrary continuous data can
be reproduced based on representations constructed by
specifying the optimal values of the coupling constants
within algorithms derived from lattice field theories [1].
The renormalization group [2–4], which is omnipresent

in quantum field theory and statistical physics, is consid-
ered to be a noninvertible concept. Scale transformations
which construct reduced self-similar representations of
systems necessarily incur some loss of information about

the original representation. One should then classify the
renormalization group as a semigroup. Nevertheless, the
concept of inverse renormalization has been discussed
within the context of statistical physics based on systems
with simple degrees of freedom, such as the binary Ising
model [5–8]. One then expects that the transition to
quantum field theory will give rise to a variety of intri-
cacies, with a central one being the conception of appro-
priate inverse transformations for systems with continuous
degrees of freedom.
To our knowledge, no inverse renormalization group

approach has ever been exploredwithin quantum field theory,
despite the fact that computational applications pertinent to
the standard renormalization group are numerous, for in-
stance, see Refs. [9–11]. The benefits of inverse renormal-
ization would be tremendous: one could apply the
transformations iteratively in the vicinity of a phase transition
to increase the size of the system and eliminate the critical
slowing down effect. Inverse flows in parameter space would
then enable the accurate location of the critical fixed point.
Furthermore, relations between observables of the original
and the rescaled system could be derived to calculatemultiple
critical exponents and to obtain complete knowledge of the
considered phase transition. Compared to the standard
renormalization group, which reduces the size of the system
by eliminating degrees of freedom and can hence be applied
for only a finite number of steps, inverse renormalization
increases the size of the system and can therefore, in principle,
be applied for an arbitrary number of steps.
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In this Letter, we propose inverse renormalization group
transformations as a means to study phase transitions in
quantum field theory. We explore if the application of
inverse transformations is able to iteratively increase the
size of the system and if it accurately produces the
anticipated flows in parameter space. We then derive
expressions between observables of the original and the
rescaled system that enable the accurate calculation of
multiple critical exponents. The results are illustrated using
the second-order phase transition of the two-dimensional
ϕ4 scalar field theory. We conclude by discussing how the
approach is generally applicable to any method that
produces configurations from a statistical ensemble and
how it can give novel insights into the structure of the
renormalization group.
Fundamentals of the inverse renormalization group.—

To construct inverse transformations for systems on graphs
or lattices we will devise a set of operations that mimics
the inversion of a previously induced transformation.
Explicitly, we consider a system of lattice size L in each
dimension and apply a renormalization group transforma-
tion to reduce its size as

L → L0 ¼ L=b; ð1Þ

where b > 1 is the rescaling factor. All relevant quantities
are expressed in terms of lattice units. Our aim is now to
learn a set of operations that can mimic the inversion of this
transformation:

L0 → L ¼ bL0: ð2Þ

The benefit of the approach is that the operations can be
iteratively applied to arbitrarily increase the size of the
system (see Fig. 1). Specifically, if we consider an initial
system of size L in each dimension and correlation length ξ,
then the consecutive applications will produce systems of
sizes L0 → L1 ¼ bL0 → L2 ¼ bL1 → …, where the rela-
tion describing the increase in the system size at step j is

Lj ¼ bðj−iÞLi: ð3Þ

Here j > i ≥ 0 and L0 ¼ L. The increase in the lattice
size will additionally induce an increase in the correlation
length:

ξj ¼ bðj−iÞξi; ð4Þ

with ξ0 ¼ ξ. To proceed we introduce the concept of a
reduced coupling constant, which is a measure of the
distance of a coupling constantK from the critical pointKc,
and which can be defined as

t ¼ Kc − K
Kc

: ð5Þ

The correlation length ξ arises dynamically in the
vicinity of a phase transition and it inherently depends
on the distance t from the critical point; in the thermo-
dynamic limit it diverges at K ¼ Kc. Through the appli-
cation of iterative transformations which increase the
correlation length, each of the rescaled systems will have
a different distance t0 from the critical point and as a result a
different coupling constant K0. This is the essence of the
renormalization group flow induced in parameter space.
We now consider an intensive observable O in the

original system which is a function of the coupling constant
K. Because of the divergence of the correlation length at the
critical point Kc, the intensive observable quantities O and
O0 of the original and the rescaled systems will be equal:

OðKcÞ ¼ O0ðKcÞ: ð6Þ

This equation provides a self-consistent manner in
locating the critical fixed point: specifically it is the point
in parameter space where the observables of the two
systems intersect. To locate the critical point it is advisable
to compare an original and a rescaled system of the same
lattice size to reduce finite size effects [12].
Under the condition that observables O0 in the rescaled

system appear according to the probability distribution of
the original system [12,13], we can extrapolateO0 along the
trajectory of a coupling constant K using histogram
reweighting [13–16], while relying on the action S of
the original system:

hO0i ¼
P

N
l¼1O

0
σl exp½−ðKm − Kð0Þ

m ÞSðmÞ
σl Þ�

P
N
l¼1 exp½−ðKm − Kð0Þ

m ÞSðmÞ
σl Þ�

; ð7Þ

where σl is a configuration of the system, N is the number

of samples, and the action S ¼ P
m Kð0Þ

m SðmÞ of the original
system is expressed as a sum over products of coupling

constants Kð0Þ
m and their corresponding action terms SðmÞ. In

the example considered above, the discussed histogram
reweighting approach considers strictly the extrapolation of
exclusively one coupling constant K in parameter space.

FIG. 1. Illustration of the inverse renormalization group.
Inverse transformations are applied to iteratively increase the
size L in each dimension by a factor of b, therefore evading the
critical slowing down effect.
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A critical exponent that characterizes a phase transition
is the exponent β, which couples to the magnetization
mi ∼ jtijβ and mj ∼ jtjjβ, and which can be equivalently

expressed in terms of the correlation length as mi ∼ ξ−β=νi

and mj ∼ ξ−β=νj , where ν is the exponent that governs
the divergence of ξ. By dividing, substituting, and taking
the natural logarithm of the expressions we arrive at the
following relation:

β

ν
¼ −

ln mj

mi

ln ξj
ξi

¼ −
ln mj

mi

ðj − iÞ ln b : ð8Þ

The above expression can be redefined to be suitable for
a finite system using l’Hôpital’s rule [12], arriving at the
expression

β

ν
¼ −

ln dmj

dmi
jKc

ln ξj
ξi

¼ −
ln dmj

dmi
jKc

ðj − iÞ ln b : ð9Þ

Following a similar procedure for the magnetic suscep-
tibility χi ∼ jtij−γ and χj ∼ jtjj−γ we obtain

γ

ν
¼

ln dχj
dχi

jKc

ln ξj
ξi

¼
ln dχj

dχi
jKc

ðj − iÞ ln b : ð10Þ

Using the above equations and the renormalization
group, one can calculate critical exponents through numeri-
cal derivatives of the observables m and χ in the vicinity of
the critical point Kc.
Inverse renormalization in the ϕ4 theory.—We consider

the discretized two-dimensional ϕ4 scalar field theory on a
square lattice with the lattice action [1]:

S ¼ −κL
X

hiji
ϕiϕj þ

ðμ2L þ 4κLÞ
2

X

i

ϕ2
i þ

λL
4

X

i

ϕ4
i : ð11Þ

Here κL, μ2L, and λL are dimensionless parameters. The
system undergoes a second-order phase transition between
a symmetric and broken-symmetry phase for specific
values of μ2L < 0 when λL > 0 and κL > 0 [17]. We will
consider the case λL ¼ 0.7, κL ¼ 1 and vary the coupling
constant μ2L ≡ K. We simulate the system using a combi-
nation of the Metropolis and Wolff algorithms [18–21], and
the errors are calculated with a binning analysis using 104

configurations in 10 separate bins. Observables of interest
are the magnetization M ¼ jPi ϕij, and the magnetic
susceptibility χ ¼ ð1=VÞðhM2i − hMi2Þ. We denote as
m ¼ ð1=VÞM the intensive magnetization which is nor-
malized by the size of the system V ¼ L × L.
Starting from a ϕ4 theory with lattice size L ¼ 32 in each

dimension, we first apply a standard renormalization group
transformation with b ¼ 2 on configurations sampled at

μ2L ¼ −0.9515 in the vicinity of the phase transition to
produce a rescaled system with size L0 ¼ 16. Specifically
the transformation consists of separating the system in
blocks of size b × b, where the degrees of freedom are
summed within each block. If the sum is positive or
negative then we select the rescaled degree of freedom
as the mean of the positive or negative degrees of freedom
within the block, respectively. Since the lattice size is
halved the correlation length will be reduced similarly,
ξ0 ¼ ξ=2. The emergent renormalization group flow then
drives the system away from the critical point towards
either the broken-symmetry or the symmetric phase,
depending on where the system was initially positioned
in. This implies that if the original system had a certain
magnetization m then the rescaled system will have
magnetization m0 > m (m0 < m) if it was initially in the
broken-symmetry (symmetric) phase. The results, obtained
with the use of histogram reweighting, are depicted in
Fig. 2 where the standard renormalization group flow and a
critical fixed point have emerged.
Every successful standard renormalization group trans-

formation encodes important information. First, that the
original and the rescaled systems are an accurate repre-
sentation of the same physical model. Second, that con-
figurations of the rescaled system follow the probability
distribution of the original system, and, third, that a critical
fixed point structure exists at criticality. We have verified,
through the obtained results, that the standard renormali-
zation group transformation, implemented as above, sat-
isfies these conditions. By learning how to mimic the
inversion of this transformation we anticipate that the same
conditions will additionally be satisfied on the inverse
transformation. The inverse transformation can then be
iteratively applied to arbitrarily increase the size of the
system.
To mimic the inversion of a transformation we will rely

on the application of a set of transposed convolutions [22],
which can be easily implemented, for instance, via
the Keras library [23]. Details can be found in the
Supplemental Material [24]. The input system to the

FIG. 2. Absolute value of the magnetization versus the dimen-
sionless squared mass. L0 denotes a system produced with the
standard renormalization group approach which reduces the size
of the system. The region bounded by the lines denotes the
statistical uncertainty.
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transposed convolutions is the rescaled system with size
L0 ¼ 16 and the output is a system with size L ¼ 32 which
is equal to the original. We remark that the inverse trans-
formation is not anticipated to be a perfect inversion of the
original one. Importantly, the set of transformations have
no dependence on the size of the system and can therefore
be applied to any arbitrary size L.
We will now apply the inverse transformations to

iteratively increase the lattice size by a factor of b ¼ 2
through the relation of Eq. (3). We anticipate that the
iterative increase in the lattice size will also equally increase
the correlation length [see Eq. (4)], under the condition that
there exists some finite correlation length present in the
initial configurations, therefore driving the system towards
the critical point irrespective of the phase that it is initially
positioned in. This implies that if the original system had
magnetization m then the rescaled system will have
magnetization m0 < m (m0 > m) if it was initially in the
broken-symmetry (symmetric) phase, respectively. The
results are depicted in Fig. 3. We observe, based on
the intersection of observables [see Eq. (6)], that the
critical fixed point agrees with the expected values of
μ2c ¼ −0.95151ð25Þ [19], μ2c ¼ −0.9516ð8Þ [20], and that
the anticipated behavior of the inverse flows in parameter
space has emerged. The previous results, which relied on a
comparison of the rescaled versus the original system at the

same lattice size, served as a proof-of-principle demon-
stration to establish the inverse renormalization group
approach. In fact, this comparison is neither needed nor
desired because it requires the simulation of the original
system at all lattice sizes and is therefore hindered by the
critical slowing down effect.
The critical slowing down effect can be entirely avoided

in calculations pertinent to criticality through the use of
Eqs. (9) and (10). Based on the original system with
L0 ¼ 32 we obtain with the inverse transformations a set of
rescaled systems Lj ¼ 64, 128, 256, and 512, from which
we calculate two critical exponents through a numerical
derivative of the magnetization and the magnetic suscep-
tibility. Since the method does not require any additional
simulation in the vicinity of the phase transition, other than
the one at L0 ¼ 32, no critical slowing down effect
emerges. In addition, it is possible to compare two rescaled
systems, for instance, the ones with L3 ¼ 256 versus
L4 ¼ 512 to further increase the accuracy of the results
as the comparison between larger lattices will substantially
diminish finite size effects.
Results for all possible sets of systems are provided in

Table I and the magnetic susceptibility for the rescaled
systems is depicted in Fig. 4. We calculate the critical
exponents based on the same range of coupling constants
−0.9516 ≤ μ2L ≤ −0.9514, to guarantee consistency in the
results. We observe that there is a clear convergence
towards the expected values of γ=ν ¼ 7=4 ¼ 1.75 and
β=ν ¼ 1=8 ¼ 0.125 of the Ising universality class as the
comparison between systems is conducted on larger lattice
sizes, therefore diminishing finite size effects.
To demonstrate that the learned set of transformations is

generally applicable to different lattice sizes, as well as to
different points in parameter space, we apply the inverse
renormalization group to configurations obtained at a
different set of coupling constants along the critical line
(see Ref. [19]). Specifically, we simulate the ϕ4 scalar field
theory with lattice size L0 ¼ 8 in each dimension and a set
of coupling constants κL ¼ 1, μ2L ¼ −1.2723, and λL ¼ 1.
We then apply the inverse transformations to obtain
systems of lattice size up to L ¼ 512, from which we
calculate the critical exponents. The results are depicted in
Table II, where we observe a convergence towards the
anticipated values, therefore verifying that the method is
applicable to different lattice volumes and to phase tran-
sitions that occur in different regions of parameter space.

FIG. 3. Absolute value of the magnetization versus the dimen-
sionless squared mass. L0 denotes a system produced with the
inverse renormalization group approach which increases the size
of the system. The region bounded by the lines denotes the
statistical uncertainty.

TABLE I. Values of the critical exponents γ=ν and β=ν. The original system has lattice size L ¼ 32 in each dimension and its action
has coupling constants μ2L ¼ −0.9515, λL ¼ 0.7, and κL ¼ 1. The rescaled systems are obtained through inverse renormalization group
transformations.

Li=Lj 32=64 32=128 32=256 32=512 64=128 64=256 64=512 128=256 128=512 256=512

γ=ν 1.735(5) 1.738(5) 1.741(5) 1.742(5) 1.742(5) 1.744(5) 1.744(5) 1.745(5) 1.745(5) 1.746(5)
β=ν 0.132(2) 0.130(2) 0.128(2) 0.128(2) 0.128(2) 0.127(2) 0.127(2) 0.126(2) 0.126(2) 0.126(2)
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In summary, through the use of inverse renormalization
group transformations we were able to iteratively increase
the size of the system in absence of the critical slowing
down effect and to obtain two critical exponents of the
second-order phase transition. It is intriguing that the
combination of the probabilistic perspective and the inverse
renormalization is able to produce extrapolations of observ-
ables for the iteratively increasing lattice sizes Lj ¼ 16, 32,
64, 128, 256, and 512 given exclusively one Monte Carlo
simulation obtained at one point in parameter space for
lattice size L0 ¼ 8 or L0 ¼ 32. This information would
have not been otherwise accessible and could have been
previously obtained only through the use of computation-
ally demanding simulations conducted directly at the
specific lattice sizes Lj.

Conclusions.—We have shown that inverse renormaliza-
tion group transformations emerge as an approach within
quantum field theory which is able to evade the critical
slowing down effect in numerical calculations pertinent to
criticality. Specifically, using the two-dimensional ϕ4 scalar
field theory of lattice size L0 ¼ 8 or L0 ¼ 32 in each
dimension, we applied the inverse transformations to
iteratively increase the size of the system to L0 ¼ 512,
without the need to conduct additional simulations, and we
observed the induced renormalization group flow in
parameter space. The approach enables the accurate extrac-
tion of the critical exponents for the magnetization and the
magnetic susceptibility using exclusively configurations
produced from the inverse transformations.
Numerous research directions can be envisaged.

Quantum field-theoretic machine learning algorithms [1]
can be implemented to learn the appropriate coupling
constants of the rescaled systems allowing for complete
physical interpretability of the results. The structure of
the inverse renormalization group transformations and
the emergent flows could then be understood fully.
Furthermore, the extraction of additional critical exponents
can be achieved by introducing terms which induce
symmetry-breaking in the original system. These terms
could be extrapolated to the iteratively rescaled ones
through the use of histogram reweighting which is agnostic
to the form of the underlying original and renormalized
action [13]. Furthermore, possible extensions of the inverse
renormalization group to multiscale methods which imple-
ment real-space transformations could be explored [25]. In
addition, one could construct the linearized renormalization
group transformation matrix [5], using the rescaled con-
figurations to extract the relevant operators. Computational
investigations of the renormalization group have been
applied in a diverse range of quantum field theories [9–11],
including quantum chromodynamics, and inverse trans-
formations within these systems are therefore open to
explore. Finally, the method only requires one set of
configurations in the vicinity of the phase transition and
it is therefore generally applicable to any approach that
successfully samples configurations from a statistical
ensemble.

FIG. 4. Magnetic susceptibility χ versus the dimensionless
squared mass. The region bounded by the lines denotes the
statistical uncertainty.

TABLE II. Values of the critical exponents γ=ν and β=ν. The original system has lattice size L ¼ 8 in each dimension and its action has
coupling constants μ2L ¼ −1.2723, λL ¼ 1, and κL ¼ 1. The rescaled systems are obtained through inverse renormalization group
transformations.

Li=Lj 8=16 8=32 8=64 8=128 8=256 8=512 16=32 16=64 16=128 16=256 16=512

γ=ν 1.694(6) 1.708(6) 1.717(6) 1.723(6) 1.727(6) 1.730(6) 1.721(6) 1.728(6) 1.732(6) 1.735(6) 1.737(6)
β=ν 0.154(2) 0.147(2) 0.142(2) 0.139(2) 0.137(2) 0.135(2) 0.140(2) 0.136(2) 0.134(2) 0.132(2) 0.131(2)

Li=Lj 32=64 32=128 32=256 32=512 64=128 64=256 64=512 128=256 128=512 256=512

γ=ν 1.735(6) 1.738(6) 1.740(6) 1.740(6) 1.741(6) 1.742(6) 1.742(7) 1.743(6) 1.743(7) 1.743(7)
β=ν 0.133(2) 0.131(2) 0.130(2) 0.129(2) 0.129(2) 0.129(2) 0.128(2) 0.128(2) 0.127(2) 0.127(2)
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In conclusion, the inverse renormalization group, an
approach that successfully evades the critical slowing down
effect which has hindered numerical simulations of systems
that undergo phase transitions since their initial conception,
is a vastly unexplored concept within quantum field theory,
and further exploration could potentially yield novel
mathematical and physical insights into the structure of
the renormalization group, thereby paving the way for a
deeper understanding of a concept ubiquitous in physics.
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Note added.—Recently, we became aware of the inves-
tigations reported in Ref. [26], which proposes related ideas
applied to discrete spin systems.
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