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We introduce the concept of seeding of crystallization in time by studying the dynamics of an ensemble
of coupled continuous time crystals. We demonstrate that a single subsystem in a broken-symmetry phase
acting as a nucleation center may induce time-translation symmetry breaking across the entire ensemble.
Seeding is observed for both coherent and dissipative coupling, as well as for a broad range of parameter
regimes. In the spirit of mutual synchronization, we investigate the parameter regime where all subsystems
are in the broken-symmetry phase. We observe that more broadly detuned time crystals require weaker
coupling strength to be synchronized. This is in contrast to basic knowledge from classical as well as
quantum synchronization theory. We show that this surprising observation is a direct consequence of the
seeding effect.
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Introduction.—Time crystals are nonequilibrium phases
of matter with broken time-translation symmetry [1,2].
Initial theoretical investigations [3–10] and experimental
demonstrations so far [11–17] focused on breaking of
the discrete time-translation symmetry in closed systems,
followed soon after by dissipative systems as well
[18–22]. Introducing dissipation led to the “continuous
time crystals” (CTCs) [23–31]. Here, the continuous time-
translation symmetry is broken in the thermodynamic limit
when a self-organized steady state emerges with period of
oscillation depending only on the system parameters.
Emergence of global oscillations in coupled classical
systems has been extensively investigated, particularly in
chemistry [32,33] and biology [34,35] in the context of
quorum sensing [36]. Inspired by the growth of broken-
symmetry phases in classical phase transitions by seeding a
crystal in a solution [37], we investigate the following
question. Can the broken time-translation symmetry of a
seeding crystal induce time crystallization of the entire
system in a similar fashion? We answer this question in the
affirmative and demonstrate that seeding of crystallization
in time is, indeed, not only possible but, under certain
conditions, inevitable.
We investigate a network of n interacting CTCs where all

but one subsystem are in the unbroken-symmetry phase.
We derive the required conditions under which the time-
translation symmetry breaking permeates across the entire
system. We consider the thermodynamic limit and also
demonstrate that this effect occurs for finite timescales in
the finite-size scenario. We analyze the eigenspectrum of

the generator of dynamics to understand the mechanism
of crystallization of time. Furthermore, in the spirit of
mutual synchronization [38], we consider the dynamics
of the subsystems in the broken-symmetry phase but
oscillating at different natural frequencies. We obtain the
phase diagram of when synchronization of the two
subsystems occurs and find that farther detuned oscil-
lators can be more easily synchronized. This is in stark
contrast to current understanding of synchronization in
both classical as well as quantum systems. We show that
this surprising behavior is a direct consequence of the
seeding effect. In particular, we show that weakly coupled
subsystems oscillate with distinct observed frequencies,
but upon reaching a critical coupling one of the sub-
systems begins to seed oscillations from the other,
leading to synchronized dynamics.
Seeding crystallization.—Before exploring a concrete

example, we establish the general signatures of seeding of
crystallization in time both in the thermodynamic limit
as well as in the finite-size case. Spontaneous symmetry
breaking in a CTC is witnessed by the emergence of
transient oscillations of an order parameter hÔi for finite
size. These oscillations become persistent in the thermo-
dynamic limit [23] when the system size diverges.
Development of such persistent oscillations in generic
driven dissipative systems is not guaranteed and depends
on the interplay of coherent and dissipative dynamics,
characterized by parameters Ω and κ, respectively.
Dynamics of such a system is governed by a Liouvillian
superoperator,
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_ρ ¼ LCTC½Ω; κ�ðρÞ: ð1Þ

Specific examples of such models are considered below.
In a Dicke model of the CTC [23] crystallization occurs in
the weakly dissipative regime, Ω=κ > 1, while the system
remains time-translationally invariant in the strongly dis-
sipative regime, Ω=κ ≤ 1.
Consider a network of n coupled CTCs evolving

according to

_ρ ¼
X

α

LCTC½Ωα; κα�ðρÞ þ LV ½Γ�ðρÞ; ð2Þ

where α indexes the subsystem and LV ½Γ�ðρÞ describes
their interaction at strength Γ. All subsystems are in the
strongly dissipative regime, except for the seed, which is set
to be in the broken-symmetry phase,Ωseed=κseed > 1. In the
thermodynamic limit, seeding is witnessed by oscillating
order parameters hÔαi signifying a broken-symmetry phase
for any subsystem α. Figures 1(a) and 1(b) illustrate
this idea with an example of three subsystems, where A is
the seed.
For finite subsystems, the time-translation symmetry is

broken for finite timescales before the order parameter
oscillations vanish (even for the seed). A suitable tool for
analyzing this scenario is the spectrum of the Liouville
superoperator, denoted by complex eigenvalues λj, gen-
erating the dynamics of the system [20,23,39–42]. The
transient oscillations of the order parameter are a conse-
quence of finite imaginary parts of the eigenvalues,
ImðλjÞ ≠ 0, while their damping is the result of negative
real parts, ReðλjÞ < 0. Witnessing seeding in this case
amounts to requiring the imaginary part of the Liouville

eigenspectrum to remain gapped while its real part becomes
gapless as the subsystem’s size increases.
Model.—Consider n subsystems indexed by α, each

composed of Nα spin-1=2 atoms with total spin Sα ¼
Nα=2. The spins undergo collective dissipation at rates
κα=Sα and are pumped coherently with strength Ωα. We
now make a particular choice for the interaction LV ½Γ� in
Eq. (2) and discuss other interactions later. We assume
the subsystems interact dissipatively at rate Γ=S, where
S ¼ P

α Sα. Evolution of the total system is described by
the following master equation (see the Supplemental
Material [44]),

_ρ ¼
X

α

�
−i½ΩαŜ

x
α; ρ� þ

κα
Sα

D½Ŝ−α �ρ
�
þ Γ

S
D½Ŝ−�ρ; ð3Þ

where Ŝkα ¼ 1
2

P
j σ̂

k
α;j are the collective spin operators for

k ¼ x, y, z and subsystem α, and Ŝ−α ¼ Ŝxα − iŜyα and Ŝ− ¼P
α Ŝ

−
α are the collective annihilation operators. The dis-

sipators are given in Lindblad form as D½Ô�ρ¼ ÔρÔ†−
1
2
fÔ†Ô;ρg. For simplicity, we consider the subsystems with
κα ¼ κ and Sα ¼ Sβ.
We begin with an analysis of Eq. (3) in the thermody-

namic limit. Note that the rescaled spin operators m̂k
α≡

Ŝkα=Sα, obey the commutation relation ½m̂k
α;m̂l

α�¼ iεklmm̂m
α =

Sα, where εklm is the Levi-Civita symbol. In the thermo-
dynamic limit when Sα → ∞, these operators commute
and their two-point correlation functions factorize [23],
leading to a system of classical nonlinear dynamical
equations for the expectation values hm̂k

αi (see the
Supplemental Material [44]).

FIG. 1. (a) In the absence of interactions, crystallization (blue regions) does not permeate through the whole system. Subsystems B and
C remain time-translationally symmetric. (b) When interaction is turned on, ensemble A seeds crystallization to ensembles B and C after
some initial transient. (c),(d) Time evolution of hm̂z

αi for two subsystems A (seed) and B for finite size and the thermodynamic limit.
Parameters are ΩA=κ ¼ 1.5, ΩB=κ ¼ 0.9, and Γ=κ ¼ 0.1. (e) Normalized Fourier transform of hm̂z

αi. The coinciding peaks show that B
is phase locked to A. (f) Scaling of the dominant eigenvalue of the Liouville eigenspectrum for finite-sized subsystems when
N ¼ f6; 10; 14; 18; 22; 26; 30; 34; 38g. Increasing color saturation of the points represents increasing system size. Blue diamonds
represent coupling of Γ=κ ¼ 0.1 < Γcrit=κ and seeding occurs. The inset shows functional scaling of ImðλÞ and sits convergence to 0.89.
The orange circles represent the case of critical coupling Γcrit when both subsystems are in the unbroken-symmetry phase. The real part
of the dominant eigenvalue does not vanish anymore.
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Consider the case of n ¼ 2 subsystems labeled by A and
B, respectively. Subsystem A is the seed with ΩA=κ > 1,
while subsystem B is set in the strongly dissipative regime
with ΩB=κ < 1. In the absence of coupling, only A breaks
the time-translation symmetry. Introducing weak coupling
induces symmetry breaking in subsystem B as depicted
in Figs. 1(c) and 1(d) where we plot hm̂z

Ai and hm̂z
Bi,

respectively. In the finite-size case, oscillations of A and B
are transient but become persistent limit-cycle oscillations
when NA=B → ∞ as expected from [23]. Furthermore, we
observe the induced oscillations in ensemble B are phase
locked to the oscillations in A by examining the Fourier
transform F ½hm̂z

αi� in Fig. 1(e).
It is important to note the role of dissipation in breaking

the time-translation symmetry. In the case of a single
subsystem considered in [23], the limit-cycle oscillations
are a result of the interplay between coherent driving
producing oscillations and collective dissipation, causing
the damping of these oscillations. Stable limit cycles emerge
only once the coherent drive overcomes the dissipation and
Ωα=κ > 1. Therefore, it is surprising that limit-cycle oscil-
lations in Fig. 1(d) are seeded via dissipative coupling.
Furthermore, seeding occurs for arbitrarily small Γ=κ, albeit
producing only arbitrarily small oscillations.
Increasing the coupling strength also increases the

amplitude of seeded oscillations provided the coupling is
below a certain critical strength, Γ < Γcrit. Beyond this
critical coupling, both subsystems enter the unbroken-
symmetry phase. This critical coupling Γcrit can be
obtained via linear stability analysis (see Supplemental
Material [44]),

Γcrit ¼
2κðΩA − κÞ

2κ − ðΩA −ΩBÞ
; ð4Þ

where ΩA > ΩB. We note that increasing the coherent
driving strength of the seed ΩA results in larger critical
coupling for a fixed ΩB. This, in turn, allows the sub-
systems to be coupled more strongly before entering the
unbroken-symmetry phase.
In Fig. 1(f), we show scaling of the dominant eigenvalue

of the Liouvillian spectrum for increasing subsystem size.
For subcritical coupling, ReðλÞ converges to zero, while
ImðλÞ saturates to a finite value predicted by the mean-field
analysis indicated by a black arrow. For critical coupling, λ
converges to a large negative component, indicating
absence of a broken-symmetry phase. The asymptotic
eigenvalues were determined by fitting numerical eigen-
values to a large-Nα expansion with free coefficients, as
shown in Sec. C of the Supplemental Material [44]. We also
verified that in the case of oscillating coherences the next
dominant eigenvalue indeed saturates to a nonzero real
value with a large gap (see [44]). To further corroborate
our results, we plot time-dependent oscillations for up to

NA=B ¼ 100, which oscillate with frequency predicted by
the mean field, as shown in Figs. 1(c) and 1(d).
We now expand our discussion of seeding to n ensem-

bles. We consider a single seed and n − 1 subsystems in the
unbroken-symmetry phase. Figure 2(a) shows that seeding
is observed even for large numbers of subsystems. The
amplitude of limit-cycle oscillations decreases with
increasing n as seen in the inset of Fig. 2(a). Increasing
the coupling strength Γ=κ has the effect of boosting this
amplitude; however, beyond a critical coupling the dis-
sipation becomes unsustainable and limit-cycle oscillations
vanish. This can be seen in Fig. 2(b) where we plot the
observed frequency defined as ωobs

α ¼ 2π=Tα, where Tα is
the period of oscillation for subsystem α. The observed
frequencies of the n − 1 subsystems follow the frequency
of the seed, which decreases with increasing coupling
strength Γ and vanishes upon reaching the critical coupling
strength Γcrit. Note that this critical coupling depends on the
number of subsystems n.
Until this point, we have discussed dissipative coupling

of Eq. (3) only. Seeding of crystallization is observed for
coherent exchange interaction of the form Ŝþα Ŝ

−
β þ Ŝ−α Ŝ

þ
β .

The qualitative features of seeding for this type of coupling
are the same as for dissipative coupling described above
(see the Supplemental Material [44]).
Synchronization.—We now consider the dynamics of

Eq. (3) with n ¼ 2, where both subsystems are in the
broken-symmetry phase displaying limit-cycle oscillations
with different observed frequencies, ωobs

A ≠ ωobs
B , achieved

by setting ΩA ≠ ΩB. In the rest of this section, ΩA −ΩB
serves as a convenient measure of detuning between the
subsystems.
We are interested in the dynamics of the coupled system,

in particular, how the observed frequency ωobs
α changes

with varying coupling strength and detuning in anticipation
of observing synchronization. This requires a suitable
quantifier of how synchronized the two subsystems are.
Recent years have seen a substantial effort to develop
tools to quantify synchronization in quantum systems
[43,45]. An intuitive measure of synchronization for such

(a) (b)

FIG. 2. (a) Seeding of crystallization in time for a single seed
with Ωseed=κ ¼ 1.2 and n − 1 subsystems set in the unbroken-
symmetry phase, Ωα=κ ¼ 0.9 for all α, with coupling strength
Γ=κ ¼ 0.1. Seeding can be observed for all subsystems α with
identical limit-cycle oscillations of hm̂z

αi. (b) Observed frequency
ωobs
α vanishes beyond a critical coupling, signifying all subsys-

tems entering the unbroken phase.

PHYSICAL REVIEW LETTERS 128, 080603 (2022)

080603-3



mean-field analysis is the magnitude of the difference
between observed frequencies of the two subsystems,

Δobs ¼ jωobs
A − ωobs

B j: ð5Þ

It is straightforward to see that if the limit-cycle oscillations
of both subsystems are synchronized, then Δobs vanishes
and is positive otherwise.
Figure 3(a) shows Δobs as a function of the detuning

ðΩA −ΩBÞ=κ and the coupling strength Γ=κ. The driving
strength of subsystem A is fixed to ΩA=κ ¼ 1.15 and we
vary ΩB. For reference, we also plot the critical driving
strength Γcrit=κ of Eq. (4) beyond which both subsystems
enter the strongly dissipative regime.
In Fig. 3(a), we display the synchronization measure as a

function of detuning and coupling strength. We observe
that larger detuning, given by large ðΩA − ΩBÞ=κ, requires
weak coupling strength Γ=κ to produce synchronization of
the two subsystems. On the other hand, stronger coupling
must be applied when the two subsystems are weakly
detuned in order to synchronize them. We believe this is the
first time such behavior has been observed. This is in
contrast with countless examples of classical and quantum
synchronizing dynamics studied in literature that share a
common property, namely, that small detuning requires
weak coupling in order to produce synchronization, while
large detuning requires stronger coupling [38,46–49].

We now show that this unusual observation can be
explained using seeding of crystallization. Consider a
particular detuning in Fig. 3(a) where ΩA > ΩB. For weak
coupling Γ=κ the oscillations of both subsystems are
unsynchronized. Increasing the coupling strength has
two effects. It affects the observed frequency of oscillations
of the subsystems on one hand, but also acts as a new
source of dissipation countering the effect of coherent
drives ΩA and ΩB. Therefore, increasing the coupling
strength eventually forces subsystem B into a regime where
the coherent drive ΩB is not strong enough to sustain its
oscillations. At this point, subsystem A starts seeding
oscillations to subsystem B, forcing it to lock to its
frequency of oscillations as previously seen in Fig. 1(e).
Seeding of crystallization as the mechanism behind

synchronization of CTCs has another consequence. The
shape of the phase diagram in Fig. 3(a) depends not only on
the detuning and the coupling strength, but also on the
coherent driving strengths ΩA and ΩB. To see this, we fix
the coupling strength Γ=κ and increase the coherent drive
strength ΩA=κ. We expect that stronger coherent drive
ΩA=κ has the effect of shifting the boundary between
unsynchronized and synchronized dynamics toward larger
values of detuning ðΩA −ΩBÞ=κ. In Fig. 3(b), we show
Δobs as a function of the detuning between the CTCs for
increasing values of ΩA=κ. We observe that increasing
ΩA=κ for a fixed coupling strength Γ=κ produces larger
minimum detuning ðΩA − ΩBÞ=κ required for synchroni-
zation as depicted in the inset of Fig. 3(b). This confirms
our expectation.
We now turn to the case of multiple subsystems, each

with its own coherent drive strength Ωα picked from a
detuning range ΔΩ. Without loss of generality we assume
that the set fΩαg is distributed uniformly withinΔΩ in steps
of ΔΩ=ðn − 1Þ. Figures 3(c) and 3(d) display the time
evolution of hm̂z

αi for n ¼ 5 subsystems. When the detun-
ing interval ΔΩ is small, meaning the subsystems are only
weakly detuned, no synchronization is observed, as seen in
Fig. 3(c). Increasing ΔΩ beyond a critical value produces
synchronization in the whole system, as seen in Fig. 3(d).
Generalization of the synchronization measure in Eq. (5)
is given by the variance of the observed frequencies
Varðfωobs

α gÞ, which vanishes when the subsystems become
synchronized and is finite otherwise. Figure 3(e)
shows Varðfωobs

α gÞ for fixed coupling strength Γ=κ and
increasing detuning intervals ΔΩ, indicating clearly the
transition from unsynchronized dynamics when the sub-
systems are weakly detuned to synchronized dynamics for
large detunings.
Such counterintuitive behavior is not observed when the

subsystems are coupled coherently. In this case, slightly
detuned subsystems require weak coupling to synchronize
their dynamics, while large detuning demands strong
coupling, conforming to the usual behavior in synchroni-
zation theory.

(a)
(b)

(c)

(d)

(e)

FIG. 3. (a) Δobs indicating the synchronization region for n ¼ 2
and ΩA=κ ¼ 1.15. The white dashed curve is the critical coupling
from Eq. (4). (b) Increasing ΩA=κ also increases the minimum
detuning required in order to observe synchronization. The
coupling strength is kept at Γ=κ ¼ 0.05. (c),(d) Time evolution
of hm̂z

αi for detuning range ΔΩ=κ ¼ 0.05 and 0.3, respectively.
(e) Variance of the observed frequencies Varðfωobs

α gÞ vanishes
when the detuning interval ΔΩ=κ is high enough, indicating
synchronized dynamics. Parameters for (c)–(e) are n ¼ 5,
maxfΩα=κg ¼ 1.5, and Γ=κ ¼ 0.5.
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Conclusions.—Crystal structure and its formation is one
of the fundamental aspects of understanding the solid state.
The ability for nucleation centers to seed crystallization
in a solute and its role in spontaneous spatial symmetry
breaking has been appreciated for a long time. Results
presented in this Letter contribute toward understanding the
foundations of spontaneous continuous time-translation
symmetry breaking in coupled systems, an area which
has gone underexplored so far. Seeding of crystallization in
time is not only possible but in many cases inevitable, as it
occurs for both coherent as well as dissipative coupling and
a broad range of parameters. The role of dissipation in
spontaneous time-translation breaking is to destroy persis-
tent limit-cycle oscillations. It is therefore surprising that
dissipative coupling leads to proliferation of broken-
symmetry phases through the global system. Given appro-
priate coupling, we expect that other physical systems,
whether displaying continuous or discrete time-translational
symmetry breaking, can be used to observe such behavior.
We note that the emergence of oscillations in networks of

otherwise quiescent classical oscillators has been inves-
tigated in [50]. Unlike the seeding effect discussed in this
Letter, the oscillations either spread only to a fraction of
the subsystems or are observed only during the transient
dynamics. Results presented in this Letter are among the
first steps toward understanding similar phenomena in
quantum systems.
In the context of mutual synchronization, seeding leads to

the extraordinary observation that dissipatively coupled
CTCs do not follow the principle tenet of synchronization
theory: that increasing detuning requires stronger coupling
in order for the subsystems to synchronize. In fact, the
precise opposite is true in our case. Conventional and nature-
inspired synchronization schemes have numerous practical
applications in complex networks [51]. Researchers and
engineers go to great lengths designing dynamical systems
that are nearly identical in order to facilitate their synchro-
nization in these protocols. Our results show that this is not
necessarily needed, opening the path to new design phi-
losophies in network synchronization.

The authors would like to acknowledge useful conversa-
tions with Punit Parmananda. Numerics were performed
using QuTiP [52,53] and PYTHON library PIQS [54]. M. H. is
supported by MEXT Quantum Leap Flagship Program
Grants No. JPMXS0118067285 and No. JPMXS01
20319794. S. V. acknowledges support from a DST-SERB
Early Career Research Award (ECR/2018/000957) and DST-
QUEST Grant No. DST/ICPS/QuST/Theme-4/2019.

*michal@sfc.wide.ad.jp
†sai@phy.iitb.ac.in

[1] K. Sacha and J. Zakrzewski, Rep. Prog. Phys. 81, 016401
(2018).

[2] D. V. Else, C. Monroe, C. Nayak, and N. Y. Yao, Annu. Rev.
Condens. Matter Phys. 11, 467 (2020).

[3] K. Sacha, Phys. Rev. A 91, 033617 (2015).
[4] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett. 117,

090402 (2016).
[5] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi,

Phys. Rev. Lett. 116, 250401 (2016).
[6] A. Russomanno, F. Iemini, M. Dalmonte, and R. Fazio,

Phys. Rev. B 95, 214307 (2017).
[7] F. M. Surace, A. Russomanno, M. Dalmonte, A. Silva, R.

Fazio, and F. Iemini, Phys. Rev. B 99, 104303 (2019).
[8] T. L. Heugel, M. Oscity, A. Eichler, O. Zilberberg, and R.

Chitra, Phys. Rev. Lett. 123, 124301 (2019).
[9] R. Khasseh, R. Fazio, S. Ruffo, and A. Russomanno, Phys.

Rev. Lett. 123, 184301 (2019).
[10] A. Sakurai, V. M. Bastidas, W. J. Munro, and K. Nemoto,

Phys. Rev. Lett. 126, 120606 (2021).
[11] S. Pal, N. Nishad, T. S. Mahesh, and G. J. Sreejith, Phys.

Rev. Lett. 120, 180602 (2018).
[12] J. Rovny, R. L. Blum, and S. E. Barrett, Phys. Rev. Lett.

120, 180603 (2018).
[13] J. Smits, L. Liao, H. T. C. Stoof, and P. van der Straten,

Phys. Rev. Lett. 121, 185301 (2018).
[14] J. Zhang, P. Hess, A. Kyprianidis, P. Becker, A. Lee,

J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A.
Vishwanath et al., Nature (London) 543, 217 (2017).

[15] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani et al., Nature
(London) 543, 221 (2017).

[16] A. Kyprianidis, F. Machado, W. Morong, P. Becker, K. S.
Collins, D. V. Else, L. Feng, P. W. Hess, C. Nayak, G.
Pagano, N. Y. Yao, and C. Monroe, Science 372, 1192
(2021).

[17] H. Taheri, A. B. Matsko, L. Maleki, and K. Sacha, arXiv:
2012.07927.

[18] Z. Gong, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. 120,
040404 (2018).

[19] A. Lazarides, S. Roy, F. Piazza, and R. Moessner, Phys. Rev.
Research 2, 022002(R) (2020).

[20] A. Riera-Campeny, M. Moreno-Cardoner, and A. Sanpera,
Quantum 4, 270 (2020).

[21] H. Keßler, P. Kongkhambut, C. Georges, L. Mathey, J. G.
Cosme, and A. Hemmerich, Phys. Rev. Lett. 127, 043602
(2021).

[22] A. Sakurai, V. M. Bastidas, M. P. Estarellas, W. J. Munro,
and K. Nemoto, Phys. Rev. B 104, 054304 (2021).

[23] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M.
Dalmonte, and R. Fazio, Phys. Rev. Lett. 121, 035301
(2018).

[24] K. Tucker, B. Zhu, R. J. Lewis-Swan, J. Marino, F. Jimenez,
J. G. Restrepo, and A. M. Rey, New J. Phys. 20, 123003
(2018).

[25] B. Buča, J. Tindall, and D. Jaksch, Nat. Commun. 10, 1730
(2019).

[26] B. Zhu, J. Marino, N. Y. Yao, M. D. Lukin, and E. A.
Demler, New J. Phys. 21, 073028 (2019).

[27] C. Lledó, T. K. Mavrogordatos, and M. H. Szymańska,
Phys. Rev. B 100, 054303 (2019).

[28] K. Seibold, R. Rota, and V. Savona, Phys. Rev. A 101,
033839 (2020).

PHYSICAL REVIEW LETTERS 128, 080603 (2022)

080603-5

https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1146/annurev-conmatphys-031119-050658
https://doi.org/10.1146/annurev-conmatphys-031119-050658
https://doi.org/10.1103/PhysRevA.91.033617
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevB.95.214307
https://doi.org/10.1103/PhysRevB.99.104303
https://doi.org/10.1103/PhysRevLett.123.124301
https://doi.org/10.1103/PhysRevLett.123.184301
https://doi.org/10.1103/PhysRevLett.123.184301
https://doi.org/10.1103/PhysRevLett.126.120606
https://doi.org/10.1103/PhysRevLett.120.180602
https://doi.org/10.1103/PhysRevLett.120.180602
https://doi.org/10.1103/PhysRevLett.120.180603
https://doi.org/10.1103/PhysRevLett.120.180603
https://doi.org/10.1103/PhysRevLett.121.185301
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21426
https://doi.org/10.1126/science.abg8102
https://doi.org/10.1126/science.abg8102
https://arXiv.org/abs/2012.07927
https://arXiv.org/abs/2012.07927
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevResearch.2.022002
https://doi.org/10.1103/PhysRevResearch.2.022002
https://doi.org/10.22331/q-2020-05-25-270
https://doi.org/10.1103/PhysRevLett.127.043602
https://doi.org/10.1103/PhysRevLett.127.043602
https://doi.org/10.1103/PhysRevB.104.054304
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1088/1367-2630/aaf18b
https://doi.org/10.1088/1367-2630/aaf18b
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1088/1367-2630/ab2afe
https://doi.org/10.1103/PhysRevB.100.054303
https://doi.org/10.1103/PhysRevA.101.033839
https://doi.org/10.1103/PhysRevA.101.033839


[29] L. F. d. Prazeres, L. d. S. Souza, and F. Iemini, Phys. Rev. B
103, 184308 (2021).

[30] G. Piccitto, M. Wauters, F. Nori, and N. Shammah, Phys.
Rev. B 104, 014307 (2021).

[31] F. Carollo and I. Lesanovsky, arXiv:2110.00030.
[32] M. R. Tinsley, A. F. Taylor, Z. Huang, and K. Showalter,

Phys. Rev. Lett. 102, 158301 (2009).
[33] A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, and K.

Showalter, Science 323, 614 (2009).
[34] J. Aldridge and E. K. Pye, Nature (London) 259, 670 (1976).
[35] S. Danø, P. G. Sørensen, and F. Hynne, Nature (London)

402, 320 (1999).
[36] H. Singh and P. Parmananda, J. Phys. Chem. A 116, 10269

(2012).
[37] J. Mullin, Crystallization (Elsevier Science, Oxford, 2001),

https://www.elsevier.com/books/crystallization/mullin/978-
0-7506-4833-2.

[38] A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths,
Synchronization: A Universal Concept in Nonlinear Scien-
ces (Cambridge University Press, New York, 2003), Vol. 12,
https://www.cambridge.org/jp/academic/subjects/physics/
nonlinear-science-and-fluid-dynamics/synchronization-
universal-concept-nonlinear-sciences?format=PB.

[39] V. V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
[40] J. Tindall, C. S. Muñoz, B. Buča, and D. Jaksch, New J.

Phys. 22, 013026 (2020).
[41] P. Solanki, N. Jaseem, M. Hajdušek, and S. Vinjanampathy,

arXiv:2104.04383.
[42] B. Buča, C. Booker, and D. Jaksch, arXiv preprint arXiv:

2103.01808 (2021).
[43] N. Jaseem, M. Hajdušek, P. Solanki, L.-C. Kwek, R. Fazio,

and S. Vinjanampathy, Phys. Rev. Research 2, 043287 (2020).

[44] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.080603 for the
master equation derivation, linear stability of the fixed
points, large-N expansion analysis, and seeding in the case
of coherent coupling.

[45] F. Galve, G. Luca Giorgi, and R. Zambrini, Quantum
correlations and synchronization measures, in Lectures on
General Quantum Correlations and their Applications,
edited by F. F. Fanchini, D. d. O. Soares Pinto, and G.
Adesso (Springer International Publishing, Cham, 2017),
pp. 393–420, 10.1007/978-3-319-53412-1_18.

[46] S. Sonar, M. Hajdušek, M. Mukherjee, R. Fazio, V. Vedral,
S. Vinjanampathy, and L.-C. Kwek, Phys. Rev. Lett. 120,
163601 (2018).

[47] Y. Kato, N. Yamamoto, and H. Nakao, Phys. Rev. Research
1, 033012 (2019).

[48] A. Cabot, G. L. Giorgi, and R. Zambrini, New J. Phys. 23,
103017 (2021).

[49] N. Jaseem and M. Hajdušek, V. Vedral, R. Fazio, L.-C.
Kwek, and S. Vinjanampathy, Phys. Rev. E 101, 020201(R)
(2020).

[50] A. Biswas, P. Kumar, D. Das, and P. Parmananda, Phys.
Rev. E 99, 032223 (2019).

[51] H.-H. Choi and J.-R. Lee, Mobile Inf. Syst. 2017, 8932631
(2017).

[52] J. Johansson, P. Nation, and F. Nori, Comput. Phys.
Commun. 183, 1760 (2012).

[53] J. Johansson, P. Nation, and F. Nori, Comput. Phys.
Commun. 184, 1234 (2013).

[54] N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, and F.
Nori, Phys. Rev. A 98, 063815 (2018).

PHYSICAL REVIEW LETTERS 128, 080603 (2022)

080603-6

https://doi.org/10.1103/PhysRevB.103.184308
https://doi.org/10.1103/PhysRevB.103.184308
https://doi.org/10.1103/PhysRevB.104.014307
https://doi.org/10.1103/PhysRevB.104.014307
https://arXiv.org/abs/2110.00030
https://doi.org/10.1103/PhysRevLett.102.158301
https://doi.org/10.1126/science.1166253
https://doi.org/10.1038/259670a0
https://doi.org/10.1038/46329
https://doi.org/10.1038/46329
https://doi.org/10.1021/jp308752c
https://doi.org/10.1021/jp308752c
https://www.elsevier.com/books/crystallization/mullin/978-0-7506-4833-2
https://www.elsevier.com/books/crystallization/mullin/978-0-7506-4833-2
https://www.elsevier.com/books/crystallization/mullin/978-0-7506-4833-2
https://www.elsevier.com/books/crystallization/mullin/978-0-7506-4833-2
https://www.cambridge.org/jp/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB
https://www.cambridge.org/jp/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB
https://www.cambridge.org/jp/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB
https://www.cambridge.org/jp/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB
https://www.cambridge.org/jp/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1088/1367-2630/ab60f5
https://doi.org/10.1088/1367-2630/ab60f5
https://arXiv.org/abs/2104.04383
https://arXiv.org/abs/2103.01808
https://arXiv.org/abs/2103.01808
https://doi.org/10.1103/PhysRevResearch.2.043287
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.080603
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.080603
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.080603
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.080603
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.080603
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.080603
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.080603
https://doi.org/10.1007/978-3-319-53412-1_18
https://doi.org/10.1103/PhysRevLett.120.163601
https://doi.org/10.1103/PhysRevLett.120.163601
https://doi.org/10.1103/PhysRevResearch.1.033012
https://doi.org/10.1103/PhysRevResearch.1.033012
https://doi.org/10.1088/1367-2630/ac29fe
https://doi.org/10.1088/1367-2630/ac29fe
https://doi.org/10.1103/PhysRevE.101.020201
https://doi.org/10.1103/PhysRevE.101.020201
https://doi.org/10.1103/PhysRevE.99.032223
https://doi.org/10.1103/PhysRevE.99.032223
https://doi.org/10.1155/2017/8932631
https://doi.org/10.1155/2017/8932631
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.98.063815

