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Quantum matter at ultralow temperatures offers a test bed for analyzing and controlling desired
properties in strongly correlated systems. Under typical conditions the nature of the atoms fixes the
magnetic character of the system. Beyond classical light potentials leading to optical lattices and short-
range interactions, high-Q cavities introduce novel dynamics into the system via the quantumness of light.
Here we propose a theoretical model and we analyze it using exact diagonalization and density matrix
renormalization group simulations. We explore the effects of cavity mediated long-range magnetic
interactions and optical lattices in ultracold matter. We find that global interactions modify the underlying
magnetic character of the system while introducing competition scenarios. Antiferromagnetic correlated
bosonic matter emerges in conditions beyond what nature typically provides. These allow new alternatives
toward the design of robust mechanisms for quantum information purposes, exploiting the properties of
magnetic phases of strongly correlated quantum matter.
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Magnetic quantum matter in optical lattices offers a
collection of interesting phenomena in terms of quantum
simulation [1]. There are possible applications ranging from
quantum computing protocols to quantum system design.
These designs could help understand the underlying mech-
anisms that trigger different kinds of order in analog real
materials. The matter is controlled with flexibility, generat-
ing effective synthetic quantum matter solids. The degree of
precision achieved allows us to control the emergence of
different quantum many-body phases. In these settings,
strong quantum correlations are present, while paradigmatic
scenarios of condensed matter systems regarding quantum
phase transitions (QPT) are reproduced. Recent advances
controlling ultracold matter allow the experimental realiza-
tion of fermionic antiferromagnets [2-5]. These findings
contribute to understand, via quantum simulation, some
features linked to high-T'. superconductivity. In the typical
setting, the light fields act parametrically like classical waves
generating a “classical” optical lattice (COL). The state of
the photons is not altered by the backaction of matter. Going
beyond classical light fields by the inclusion of cavity
backaction in an ultracold system takes matter into new
regimes. Correlations induced by the high-Q cavity light to
the matter and vice versa modify significantly the energy
manifolds experienced by the matter [6]. Consequently, new
correlated phases of matter can emerge. Ultracold systems
without COL inside high-Q cavities with magnetic proper-
ties have been recently achieved by several groups with
bosons and fermions [7-13]. Several proposals regarding
exploiting these magnetic interactions without a lattice have
been put forward with neutral atoms [14—17]. In this limit,
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the interplay between cavity light and internal degrees of
freedom has been studied in combination with the dynamical
and dissipative nature of the system. Recently, the inclusion
of COL and cavity backaction was achieved [18-21]. In
these experiments, the competition of different spatial orders
is possible and COL can be controlled arbitrarily. Several
studies have explored these setups and QPTs [22-31].
However, the interplay regarding magnetism in COL with
cavity induced interactions, strong quantum correlations, and
insulating states remains largely unexplored.

Here, we show how the interplay of magnetism, COL,
and cavity induced magnetic interactions allow us to
control the emergence of nontrivial magnetic phases of
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FIG. 1. Schematic of the system of ultracold atoms in a high-Q
cavity with a COL and magnetic degrees of freedom. (a) Typical
atomic antiferromagnet. The V; (lattice) with intracavity light a
(cavity axis shade), pumped light (transverse shade) Q, ,, and
applied magnetic field B. (a) (top left) QPTs between AFM <~
FM are possible. (b) Effective atomic interaction processes for
different spin components: tunneling amplitude 7,, on-site re-
pulsion U, intrinsic (local) magnetic interaction V., and cavity
induced (global) magnetic interactions V.
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quantum matter. Light and matter are entangled via the
cavity generating effective magnetic global interactions.
Therefore, quantum antiferromagnets (AFM) and ferro-
magnets (FM) can be produced efficiently. Thus, quantum
state engineering of magnetic states with strong correla-
tions can be optimized in a single setup and goes beyond
what the nature of the atoms typically allows.

Effective spinor quantum optical lattice model.—We
study ultracold bosonic atoms with F =1 spin
o€ {],0,1}, trapped in a COL subject to a constant
magnetic field such that the magnetic sublevels split inside
a high-Q cavity. The alkali atoms in the COL have
tunneling amplitude 7,, on-site repulsion with strength
U, and local magnetic interactions (classical) o< V. The
Hamiltonian describing these processes without the cavity
is the Spinor Bose-Hubbard Hamiltonian [1,32]. We refer
to it as “spinor classical optical lattice” (SCOL) as the
lattice potential comes from a classical treatment of light.
The model is

Vv A .
Hscor :HU+—CZ(S%—2”1')’ (1)

2
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The spin operators for F =1 per site are S’w =
Zé,é’ E},iF’g,g,Bg,i, where v € {x,y,z} and F”, the angular

momentum matrices. The b;i(lgmi) correspond to bosonic
atoms at site i and spin o in the COL. The total spin per site
is Slz =y, 3’31 and the particle number per site operator is
i =>,n,;. Additionally, the atoms are inside a single-
mode high-Q cavity with the mode frequency w, and decay
rate x in off-resonant scattering Fig. 1. Linearly polarized
laser light is pumped into the cavity with the Rabi
frequency Q. ,(B) dependent on the applied magnetic
field B = Be, [33] and frequency ,(A. = w, — o,).
The atoms are illuminated from an axis perpendicular to
the cavity axis in a standing wave configuration. Each spin
component couples with the cavity mode via the effective
coupling strength g, = ¢J.Q, ,\/N,/A,, with the light-
matter coupling coefficient g, and the detuning between the
light and atomic resonance A, = w, — @, [34]. In the COL
basis (Wannier basis), the atoms experience the projection
of the cavity light mode with amplitude J, over N, sites
[33]. For simplicity, the COL is deep enough such that
cavity-induced tunneling amplitudes (long-range bond
processes) are neglected and only COL nearest-neighbor
tunneling remains [23,35]. Experimentally, this is possible
in the nonmagnetic version of our system [19]. The
Hamiltonian of the light-matter system is H =
Hscor + H* + H® + Hp. The cavity light Hamiltonian
is H* = —hA.a'a, the operators a' (a) create (annihilate)
photons. The applied magnetic field term is Hz =
HBJs Z,S,- -B with g5 the effective Landé factor [36].
The light-atom magnetic interaction (7“?) is controlled

using the vectorial components of the polarizability
encoded in Qz,p [7,9,33,36]. The light-matter interaction
is generalized to the lattice case by expanding in the
Wannier basis [37,38],

h
VN

The function ¢, ; encodes the mode structure of the light
into the matter [33]. This depends on the pump incidence
angle with respect to the cavity axis and COL plane [23].
Considering the experimental situation described in
Ref. [7] without COL, the couplings of the “x” and “y”
components of the angular momentum are neglected due to
energetic considerations, as |AA.| < pgB [33]. Similar
decompositions are possible in analog Fermi systems
(S =1/2) [39-41]. In general, the spatial structure of
the light modes gives a natural basis for collective
modes [23]. For simplicity, we neglected the nonvectorial
(nonmagnetic) contributions of the polarizability.
Moreover, we take |hA,| > hk, |hA,| to avoid heating
and ik, |hA,.| > 1y to avoid nonadiabatic effects in the
atomic lattice dynamics [42], and k < |A,.|. Nonadiabatic
effects are minimized in experiments under these assump-
tions [7]. We adiabatically eliminate the cavity light
following Ref. [42]. This amounts to effectively integrate

A

out the light. Qualitatively, (a) =0, then it follows,
(@) ~>:(3.9.,5.;). Beyond this limit, nonadiabatic
effects modify slightly the emergence of superfluid (SF)
phases. However, insulating states are robust, but effective
renormalization of parameters due to cavity noise effects is

needed [43]. We find an effective “spinor quantum optical
lattice” (SQOL),

Hah —

Z(gz(l’z,ié\l;r + f];@;i&)gw. (2)
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where Hp has been effectively decoupled from the low
energy atomic dynamics but fixes the quantization axis. We
call the model “quantum” as the cavity induced interaction
depends on the quantum state of light and the backaction of
the quantum state of matter [23]. Here f7 ; =Re(@} 0. )
Vo =hAg, /(A2 + k*)(1 4+ kpae),  and  nonadiabatic
corrections are K, = —k>/A2 [44]. k,,q Shows that photon
loses need to be minimized to control sign(A,). Stability of
photon steady states (A, > 0) is sensitive to atomic
deconfinement temperature effects. Metastable states are
possible for A, > 0. Photon steady states with either sign of
A, were achieved in ms [21]. The matter will self-organize
in such a way that the cavity induced interaction
components ‘i, j° are maximized (minimized) by
JTA:>0(ff;A. <0), as cavity light maximizes (mini-
mizes) akin to superradiance (subradiance). For minimized
cavity light, quantum fluctuations play a fundamental
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role [23,38]. The number of photons in the cavity is
npw = (a'a) ~ |Vo/(N,A) S f7(5.:8. ;)| In addition,
there is competition between the typical local (short-range)
processes in the Bose-Hubbard model ( U and 1), “local”
spin classical interactions (x V) and the “global” (long-
range) cavity induced spin quantum interactions (cx V).
Their interplay leads to different quantum critical points
(QCPs). Typical frequencies of the analogous system with-
out COL are k < |A.|~MHz and E; ~h x 4 kHz, Eg
being the recoil energy [7]. Typical values of the non-
magnetic system with COL are fy~Ep and A, ~
10-100 GHz [21]. In the case of SCOL (V, = 0), the
sign of the magnetic interaction V. is fixed by the
nature of the atom to be either ferromagnetic for V- < 0
or antiferromagnetic for V. > 0. Typical atoms used
are 8’Rb(F), Li(F), or ?Na(AFM) with V./U ~
(=0.005,-0.23,0.04) [32]. In the system with V, # 0,
parameters can be tuned externally (i.e., A.) triggering
different magnetic behavior. We study configurations
[¢+ =¢.;=(£1)'], where the pump incidence angle max-
imizes diffraction generating homogenous coupling (¢ ) or
staggered density coupling in the diffraction minima (¢_)
similar to current experimental settings. Tuning noninsulat-
ing antiferromagnetic and ferromagnetic states with ¢_ is
experimentally feasible [7]. More elaborate scenarios and
flexibility can be achieved depending on the pumps, the
cavity setup, and the magnetic field [6,23,38,45].

Magnetic interactions.—It is experimentally possible to
prepare the system with different spin populations without
the lattice in the cavity [7]. Without the cavity with COL,
the phase diagram is well known [1,32,46], having polar,
FM, and AFM phases. We choose commensurate fillings in
the lattice to study the behavior between Mott-insulator
(M) phases driven by U and the magnetic dynamics. In the
effective model for convenience, we introduce linear
€1, >; 8., (quadratic, € ;7g,) magnetic field shift
favoring (suppressing) one of the spin components
“t 1”7 (“0”) relevant for FM (AFM) ordering, ¢, a small
perturbation [32]. In the case where V- = 0 the behavior is
simplified as the “0” component decouples due to the
interaction form. The many-body quantum state is |¥) =
|¥o) ® [¥4,) [33]. For simplicity in what follows,
we consider ¢, > 0, suppressing polar configurations.
Preparing the system with the O component empty is
experimentally achievable [7].

Cavity induced ferromagnetic configurations (V -=0).—
The behavior is intuitive for ¢, and V, < 0, the system
maximizes either spin component 1 | depending on the
sign of €4 # 0 having a ferromagnet. Similarly, for ¢_,
Vo > 0, the system is always FM. In these cases, the
system behaves as a single component Bose-Hubbard
model either 1 |. The ground state is magnetically trivial
being fully polarized [47]. The system goes from FM
insulator (FMI) to F superfluid (FMSF) increasing f,/U.

Cavity  induced  antiferromagnetic  correlations
(Ve = 0).—Notably, if Vy <0,¢_ or Vo >0,¢,, the
situation is not magnetically trivial as AFM correlations
emerge. The system is a balanced mixture ) ;(i1;;) =
> {7} ;). However, the total population fluctuations per
site (A(7;)? = (A?) — (f;)?) for large U are minimized as
the Mott gap (A, = U) opens. The MI state exhibits large
fluctuations per site in the 1 | components. The system
goes from an AFM insulator (AFMI) to a paramagnetic SF
(PSF) as /U increases [33].

Deep Mott insulator limit AFMs (U > to, Vo = 0).—We
study the spin quantum correlations Cy | = cov(fy ;. 72 ;),
the staggered magnetization m,,, the magnetization mg; with
cov(X, ¥) = (X 1) = (X)(F), my=1/(|32;€”*5.,]*)/ N,
d; =i, +i, and the lattice position {i,,i,}.i,/, € Z.
The relation between fluctuations in this limit with Vi, > 0,
¢ or Vo <0,¢_ is A(R;)* =0, A(fy);)* = 1/4, and
Cyy = —1/4. In the case of V, > 0, and ¢, the ground
state is a degenerate insulator with global AFM correlations
(AFM;I) and maximal |C; || # 0. The ground state degen-
eracy is g% ~2M=1/3(N,)~1/2, all the states with magneti-
zation my =0 and one particle per site. This large
degeneracy persists for small #; [33]. The excitation gap is
A,=min(U,4Vy/Ny), m, - O(N7'), and ny, — O(N7')
for N > 1. Surprisingly, for Vi, < 0 with ¢_, we find that a
local insulating AFM state with degeneracy ¢ = 2,A, = U,
maximal m, = 1 and n, o N2, a staggered quantum anti-
ferromagnet, with m, the typical AFM order parameter. The
local AFM insulating states (AFM,I) present true conven-
tional AFM order and nontrivial magnetic quantum corre-
lations. In contrast, AFMgI has only nontrivial magnetic
quantum correlations. Either ground state has 1 | compo-
nents anticorrelated [33]. Thus, the many-body insulating
states with Cy | #0 are [y ) # [¥4) @ |¥)) with the
entanglement entropy between spin sectors S,; # 0, as we
confirm below. Deep in the M1, these facts are independent of
dimensionality. Away from the MI, the SF state emerges
decreasing spin correlations while reaching a paramagnetic
state, as U — 0 then C; | — O and [V, |) = |¥}) ® |¥)).

Competition of magnetic configurations.—Interestingly,
even if V. is fixed by nature for a given alkali atom,
modifying the pump angle and V, allows the competition
between AFM and FM in a single setup. The emergent
phases of quantum matter can be understood by analyzing
the number fluctuations for 1 | components, the total
number fluctuations, CT, ! and S,. The information of
fluctuations and correlations might be accessed via in situ
measurements [3] or direct measurements of AFM cor-
relations [48,49]. We perform simulations with exact
diagonalization (ED) and density matrix renormalization
group (DMRG) in one dimension [33,50,51]. We construct
the ground state phase diagrams in Figs. 2(a)-2(d) with ED
(eight sites, two spin components, and ~5 x 10° states).
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FIG. 2. Phase diagrams of magnetic configurations competition
scenarios. The spin quantum correlations |C; || for V, (global)
and V. (local) magnetic interactions. The competition triggers
QPTs between AFM <> FM. Black lines approximate the QCP of
the SF-MI QPT, where the total on-site number fluctuations are
half of the limit #, > U, max[A(#;)?] = 1 — N;!. Parameters are
@Ve>0,Vy<0,¢:(b)Ve<0,Vy>0,¢y;() V>0,
Vo >0, ¢_; (d) Ve <0, Vy <0, ¢_, with Ny =38, two spin
components, €, = 107U using ED.

The FM <> AFM competition for ¢, ,_ occurs by choosing
different or equal signs in V,c. The sharp boundaries
between FM-AFM (AFM-FM) occur being 1st order QPTs,
as Hilbert spaces are orthogonal, see below. The ratio
Vo/Vc determines the passage starting from insulating
regions AFMI (FMI) to have a 1st order transition to a FMI
(AFMI) state in the limit U > t;, while FMSF (PSF)
emerges for U < 5. As a function of the lattice depth
(effectively 1,/U) at fixed ratios V,/V, the following
scenarios are possible for ¢,
FMI <+ AFMI < PSF or AFMI < FMI < FMSF.

Using DMRG with up to ~100 sites with two spin
components and finite size scaling [33,51], we confirm a
finite A, that vanishes at the transition between AFM <>
FM phases in general, Figs. 3(a) and 3(b). In FM and
AFM; I phases A, ~ U. However, from the deep MI limit of
AFMgl, A, ~ min(N;!, U) can be considerably smaller. In
the large V,/U limit, A, ~ U. The AFM order parameter,
m, with ¢p_ decreases as A, closes, for details see Ref. [33].
In general, via the cavity induced magnetic interactions it is
possible to control whichever scenario one would desire.

Spin entanglement.—Typically entanglement partitioning
considers spatial subsystems. However, we are interested in
how the entanglement between spin projections relates to the
magnetic properties of the many-body state. Therefore, we
analyze by tracing over different spin projection subsystems
via the entanglement entropy S, = —Tr[p,log,p,] [52]. We
find that S, gets maximized in the insulator region of the
phase diagram for SCOL: V¢ >0, V, =0, and SQOL:
Ve=0,Vy >0, ¢, having max(S,) = log,(g%). This is
the entanglement entropy of the ideal AFM I, deep in the
MI, with maximal |C; ||. The transition is smooth due to
dimensionality and finite size. Surprisingly, this is not the

1072 107! 100

e Vp>0Vp=0 (C)
e Ve=0Vy>00¢,
o Ve=0Vy<0¢_

o Ideal AFMgI

(d)
o Ve <0Vy>00¢,
e Ve <0Vp<0¢

(e)
e Ve>0Vy <06,
o Ve>0Vy>06.

0
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FIG. 3. Excitation gap in units of U and entanglement entropy of
spin components. Panels (a), (b) A, from DMRG simulations
in one dimension with ¢_. White lines are the finite size scaling
fits (FFS) for the AFM < FM QPT (white points). FSS for the
critical 7, . ~ (a +a1N;3/ 4)U. Estimated SF-MI boundary,
white (black) dashed lines (similar procedure as in Fig. 1).
Parameters are V, = V¢ = 0.035U, {ay,a;} = {0.072,1.567};
(b) Vg = Ve =-0.03U, {0.028, 1.768}, with maximum number
of atoms per site n,, =4, commensurate filling N, = N,
€y = 10~*U. Panels (c)-(e), the entanglement entropy S,. Param-
etersare Vy # 0:[Vy|/|Vc| = 0.05; Ve = 0.03U, Ny = 6,¢4 =
1078U using ED.

case for AFM I with V. =0, V5 < 0, ¢p_. The difference
origins in the degeneracy of the ground states deep in the M1.
Here g, = ¢) = 2 having S, = 1. Increasing #,/U, non-
monotonic character emerges because the ground state
degeneracy increases reaching the MI-SF transition
as A, — 0, while §; maximizes. Beyond the QCP, S,
vanishes as PSF is separable, [¥| ;) = [¥;) ® [¥4), with
() = () #0 VY i, Fig. 3(c).

It stands out that for V¢, # 0 with the competition
between magnetic configurations, S, shows the first order
character of the AFM < FM QPT, Figs. 3(d) and 3(e).
These confirm that AFM and FM belong to orthogonal
Hilbert space sectors. Beyond the QPT, in the FM side,
S, =0and C; | =0, a completely polarized system with
(y;) #0, (fi_s;) =0V i. For AFM, spin entanglement
and C; | maximize. Moreover, QPT occurs for smaller
1o/ U for ¢_ than ¢, . Via S,, it is possible to discriminate
AFM, /¢ only for V¢ <0, Fig. 3(d).

Essentially, S, ~ 4log,(f(9./6))|C4,, | for some function
f(9). Away from the SF-MI QCP, S, ~ 4log, (g7 ,6)|C4 |-
The behavior of S, clarifies the impact of competition,
degeneracy, and magnetic correlations in the ground state.

We conclude that AFM;Is have more resilient entangle-
ment accessible for sufficiently large V, at lower lattice
depths. This could be useful as a resource for quantum state
preparation (cluster states) in quantum information (QI)
schemes [53,54]. This robustness could be exploited in
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analog experiments to Ref. [55]. Here qubit gates with
spinless neutral atoms (10%) using the Bose-Hubbard
Hamiltonian were explored.

Spinor quantum optical lattices offer great flexibility to
explore the nature of different magnetic quantum phases of
matter. We show that in the simplest setup, the emergence
and competition of correlated antiferromagnetic or ferro-
magnetic quantum phases of matter can be investigated.
Moreover, the system naturally supports additional com-
peting orders via the light-induced nonmagnetic interaction
terms (density wave, multimode, bond) [35,38]. Changing
atomic species (i.e., rare-earth atoms [56,57]) allows other
finite range interactions, density dependent tunneling
processes, and peer into the landscape of Kondo physics.
Using geometrically frustrated AFMs [58,59] will generate
emergent degrees of freedom and possibly long-range
quantum spin liquids [60-63]. It should be feasible to
explore the interplay with static gauge fields [64,65] and
cavity generated spin-orbit coupling via Raman transitions
[66,67]. Moreover, a plethora of possibilities using dynami-
cal gauge fields can be considered [68,69], exploring high
energy physics analogs beyond local field theories.

From the QI perspective, entanglement can be tailored on
demand and it is robust between spin components globally.
These suggest new means to manipulate and encode
information in the emergent magnetic structures found.
QI and topological order [70,71] could be explored further.
The combination with measurement allows dynamical
order control with passive measurement setups [40,41],
the inclusion of feedback protocols to tailor criticality [72—
75], engineering system dynamics [76—78], and to study the
interplay with time crystals [72,79-82].
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Note added.—Recently, we became aware of a paper [83]
related to our work in dipole systems with lattices without
insulators.
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