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Motivated by recent epidemic outbreaks, including those of COVID-19, we solve the canonical problem
of calculating the dynamics and likelihood of extensive outbreaks in a population within a large class of
stochastic epidemic models with demographic noise, including the susceptible-infected-recovered (SIR)
model and its general extensions. In the limit of large populations, we compute the probability distribution
for all extensive outbreaks, including those that entail unusually large or small (extreme) proportions of the
population infected. Our approach reveals that, unlike other well-known examples of rare events occurring
in discrete-state stochastic systems, the statistics of extreme outbreaks emanate from a full continuum of
Hamiltonian paths, each satisfying unique boundary conditions with a conserved probability flux.
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Introduction.—Epidemic models are useful for under-
standing the general dynamics of infectious diseases,
rumors, election outcomes, fads, and computer viruses
[1–8]. Moreover, in the early days of emerging disease
outbreaks, such as the current COVID-19 pandemic,
societies rely on epidemic models for disease forecasting,
as well as identifying the most effective control strategies
[9–12]. To this end it is useful to quantify the risks of local
epidemic outbreaks of various sizes. Within a given
population, outbreak dynamics are typically described in
terms of compartmental models [1,4,13]. For example,
starting from some seed infection, over time individuals in a
population make transitions between some number of
discrete disease states (susceptible, exposed, infectious,
etc.) based on prescribed probabilities for a particular
disease [9,10,12,14–16]. In the limit of infinite populations
the stochastic dynamics approach deterministic (mean-
field) differential equations for the expected fraction of a
population in each state [1,4,13,17].
Yet for real finite populations, outbreak dynamics have a

wide range of different outcomes for each initial condition,
which are not predicted by mean-field models. A natural
and canonical question (for both statistical physics and
population dynamics) is, what is the distribution of out-
break sizes? Beside stochastic simulations [1,14,17,18],
methods exist for, e.g., recursively computing the outbreak
statistics [16,19,20], solving the master equation for the
stochastic dynamics directly by numerical linear algebra
[18], or deriving scaling laws for small outbreaks near
threshold [21–23]. Yet, in addition to being numerically
unstable for large populations, computationally expensive,
or limited in scope, such methods also fail to provide
physical and analytical insights, e.g., into how unusual in
extreme outbreaks occur.

Here we develop an analytical approach based on
WKB methods [24–26] which provides a closed-form
expression for the asymptotic outbreak distribution in
SIR (susceptible-infected-recovered), SEIR (susceptible-
exposed-infected-recovered), and COVID-19 models with
fixed population sizes (N) and heterogeneity in infectivity
and recovery [12,27–29]. We show that each outbreak is
described by a unique most-probable path, and provide an
effective picture of how stochasticity is manifested during a
given outbreak. For instance, compared with the expected
mean-field dynamics each outbreak entails a unique
depletion or boost in the pool of susceptibles and an
increase or decrease in the effective recovery rate, depend-
ing on whether the final outbreak is larger or smaller than
the mean-field prediction. Most importantly, unlike usual
rare-event predictions for epidemic dynamics, such as
extinction or other large fluctuations from an endemic
state [26,30–32], and fade-out [33], our results do not rely
on metastability [25,34–37] and thus are valid for the
comparatively short time scales of outbreaks,OðlnNÞ [38].
In sharp contrast to systems undergoing escape from a
metastable state, we show that the outbreak distribution
corresponds to an infinite number of distinct paths—one for
every possible extensive outbreak. Each outbreak connects
two unique fixed points in a Hamiltonian system, both with
nonzero probability flux. Hence, by solving a canonical
problem in population dynamics and nonequilibrium stat-
istical physics, we uncover a new degenerate class of rare
events for discrete-state stochastic systems.
Baseline model.—We begin with the SIR model, often

used as a baseline model for disease outbreaks [1,2,4,13].
Individuals are either susceptible (capable of getting
infected), infected, or recovered (removed), and can
make transitions between these states through two basic
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processes: infection and recovery. Denoting the total
number of susceptibles S, infecteds I, and recovereds R
in a population of fixed size N, the probability per unit time
that the number of susceptibles decreases by one and the
number of infecteds increases by one is βSI=N, where β is
the infectious contact rate [1,2,4]. Similarly, the probability
per unit time that the number of infecteds decreases by one
is γI, where γ is the recovery rate [1,2,4]. Combining both
processes results in a discrete-state system with the
following stochastic reactions:

ðS; IÞ → ðS − 1; I þ 1Þ with rate βSI=N; ð1Þ

ðI; RÞ → ðI − 1; Rþ 1Þ with rate γI: ð2Þ

As N is assumed constant, the model is appropriate for the
short time scales of early emergent-disease outbreaks, for
example, with an assumed separation between the outbreak
dynamics and demographic time scales, as well as rein-
fection [1]. From the basic reactions [Eqs. (1) and (2)], the
master equation describing the probability of having S
susceptibles and I infecteds at time t is

∂P
∂t ðS; I; tÞ ¼ −

βSI
N

PðS; I; tÞ − γIPðS; I; tÞ

þ βðSþ 1ÞðI − 1Þ
N

PðSþ 1; I − 1; tÞ
þ γðI þ 1ÞPðS; I þ 1; tÞ: ð3Þ

Solving this equation allows one to predict the probability
that a particular proportion of a population eventually
becomes infected for a given set of parameters. This is
our goal here, as in many other works [1,14,16–23]. Yet, in
general such equations cannot be solved analytically, and
one must resort to high-dimensional numerics, recursive
computations, and/or large numbers of simulations [18].
Notably, if N is large it is possible to construct an
asymptotic solution to Eq. (3) for all OðNÞ outbreaks
using a WKB method [24–26], as we will show.
First, to summarize what is known for large N, let us

define the fraction of individuals in each disease state
xw ¼ W=N, where W ∈ fS; I; Rg. Note that as the total
population size is constant, 1 ¼ xr þ xs þ xi. The mean-
field limit of the reactions [Eqs. (1) and (2)] corresponds to
a simple set of differential equations: _xs ¼ −βxixs,
_xi ¼ βxixs − γxi, and _xr ¼ γxi. Of particular interest is
the total fraction of the population infected in the long-time
limit, x�r ¼ xrðt → ∞Þ, whose average x�r can be found by
integrating the mean-field system. For small initial fractions
infected, the solution (according to the mean-field) depends
only on the basic reproductive number R0 ≡ β=γ [1,2,4,13]

and solves the equation 1 − x�r ¼ e−R0x�r [1,39].
But, what about a half, a fourth, twice, etc. of this

expected outbreak, or a case in which the entire population

eventually becomes infected? Since the SIR model is
inherently stochastic and governed by Eq. (3), such
solutions are also possible. To get a sense of how the
probabilities for various outbreaks arise, and to guide our
analysis, we perform some stochastic simulations and plot
(on a semilog scale) the fraction of outcomes that result in a
given total-fraction infected. Examples are shown in Fig. 1
for outbreaks: 100% (blue), 98% (red), and 96% (green)
when R0 ¼ 2.5. For reference, the mean-field outbreak of
89% (magenta) is also plotted. Here and throughout,
simulations were performed using Gillespie’s direct
method [1,14,40] starting from a single infectious individ-
ual. Notice that for each outbreak value, lnP is linear
in N, with a slope that depends on the outbreak,
lnPðx�rÞ ≃ NSðx�rÞ, see below. This asymptotic WKB
scaling is consistent with what we expect on general
theoretical grounds for large deviations in stochastic
population models with a small Oð1=NÞ noise parameter
[24–26,30].
Equipped with the WKB hypothesis for the distribu-

tion of outbreaks, we substitute the ansatz Pðxs; xi; tÞ ∼
exp½−NSðxs; xi; tÞ� into Eq. (3) and keep leading-
order terms in N ≫ 1. In particular, we do a Taylor
expansion of Pðxs; xi; tÞ; e.g., Pðxs þ 1=N; xi − 1=N; tÞ≃
e−NSðxs;xi;tÞ−∂S=∂xsþ∂S=∂xi . This allows one to find the
leading-order solution [41], called the action, given by
Sðxs; xi; tÞ [24,26,30]. Taking the large-N limit in this
way converts the master equation [Eq. (3)] into a Hamilton-
Jacobi equation, ∂tSðxs; xi; tÞ þHðxs; xi; ps; piÞ ¼ 0
[24,25], with a Hamiltonian given by

H ¼ βxixsðepi−ps − 1Þ þ γxiðe−pi − 1Þ: ð4Þ

Here the momenta of the susceptibles and infecteds are
respectively defined as ps ¼ ∂S=∂xs and pi ¼ ∂S=∂xi.
As a consequence, in the limit of N ≫ 1 the outbreak

dynamics satisfy Hamilton’s equations: _xw ¼ ∂H=∂pw and
_pw ¼ −∂H=∂xw, just as in analytical mechanics [42].
Furthermore, the solutions are minimum action [25] or
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FIG. 1. Extreme outbreak probability scaling with the popula-
tion size in the SIR model. Plotted is the probability that 100%
(blue), 98% (red), 96% (green), and 89% (magenta) of the
population are infected during an outbreak vs N. Results from
1011 simulations (symbols) are compared with theoretical lines
whose slopes are given by Eq. (7). Here R0 ¼ 2.5.
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maximum probability. Namely, given boundary conditions
for an outbreak, Hamilton’s equations will provide the most
likely dynamics. As in mechanics, once the dynamics are
solved, the action Sðxs; xi; tÞ can be calculated along an
outbreak path:

Sðxs; xi; tÞ ¼
Z

t

0

ðps _xs þ pi _xi −HÞdt0: ð5Þ

Before continuing our analysis, let us comment on the
distribution Pðxs; xi; tÞ and explain the sense in which
certain outbreaks are extreme. As Pðxs; xi; tÞ scales expo-
nentially with N (for large N), if the action Sðxs; xi; tÞ
associated with an outbreak differs significantly from 0, the
outbreak will occur with an exponentially small probability,
just as we observe in Fig. 1. In fact, the special case of
S ¼ 0 (pi ¼ ps ¼ 0) is nothing other than the aforemen-
tioned mean-field prediction, which nicely quantifies why
it is the most likely extensive outbreak.
Results.—In order to find the probability distribution of

outbreaks, we observe that the Hamiltonian in Eq. (4) does
not depend explicitly on time; that is, H evaluated along an
outbreak is conserved in time [42]. Now, we substitute _pi ¼
−∂H=∂xi and write the Hamiltonian for the SIR model in a
suggestive form H ¼ −xi _pi. Thus, if we consider the same
large-population limit as the usual mean-field analysis
discussed above and restrict ourselves to outbreaks that
start from small infection, e.g., xiðt ¼ 0Þ ¼ 1=N with
N ≫ 1, it must be that H ≃ 0. Notably, because the energy
is zero, we can drop the explicit time dependence in Eq. (5).
As a result, since the number of infecteds grows and then
decreases during the course of an outbreak with xiðtÞ ≠ 0
for general t, one must have pi ¼ const.
At this point, we highlight a crucial difference between

our analysis for stochastic outbreak dynamics, and the
traditional use of WKB for analyzing large deviations in
population models with metastable states. In the latter, the
traditional H ≃ 0 condition of the WKB usually derives
from the fact that the model has a locally unique stable
fixed point for the mean-field coordinates, e.g., _x ¼ 0
[25,26,30–32,34–37]. Common examples are stochastic
switching and extinction from endemic equilibria. In our
case, the zero-energy condition corresponds to a conserved
momentum, and in fact, an infinite number of them. The
nonzero momentum boundary conditions entailed by the
conserved momenta are distinct from other known catego-
ries of extreme processes in discrete-state nonequilibrium
systems and stochastic populations, and hence we uncover
a new degenerate class.
Now that we know that outbreaks in the SIR model are

defined according to a conserved momenta, i.e., m≡ epi ,
we can equate the Hamiltonian in Eq. (4) to zero and find
the nonconstant fluctuational momentum ps, along an
outbreak in terms of xs, m, and R0,

ps ¼ ln fR0xsm2=½mðR0xs þ 1Þ − 1�g: ð6Þ

This momentum is necessary for evaluating Eq. (5).
Continuing on toward our main goal of calculating the
action, we note that the integral over pi vanishes, since it is
a constant of motion and xiðt ¼ 0Þ ¼ xiðt → ∞Þ ≃ 0.
Furthermore, the integral over H also vanishes since
H ≃ 0. As a result, in order to determine the action, we
need to compute the integral over ps [Eq. (6)] from
the initial state xs ¼ 1 to the final state xsðt → ∞Þ ¼ x�s .
The only thing left for us is to express x�s in terms of the
conserved momentum m. This can be done by using
Hamilton’s equations; see the Supplemental Material,
Sec. I [43] for details. Doing so, we arrive at the total
action accumulated in the course of an outbreak:

Sðx�sÞ ¼ ln x�s þ ð1 − x�sÞ
× ðmð1þ R0x�sÞ − 1

þ lnf½mðR0 þ 1Þ − 1�=ðx�sm2R0ÞgÞ: ð7Þ

Note that S is a function of x�s only, since for fixed R0 there
is a complete mapping between the final outbreak size and
m [see the Supplemental Material, Eq. (A9) [43] for
x�sðmÞ]. Equation (7) is our main result: the asymptotic
solution of Eq. (3) for the distribution of all OðNÞ
outbreaks [44].
Our main result can now be tested in several ways. First,

we go back to the motivating Fig. 1. Recall that our
approach predicts that, as a function of N, the action gives
the slope of lnPðx�rÞ ≃ NSðx�rÞ. As such, we can overlay
lines in Fig. 1, where the slopes are predictions from
Eq. (7). Doing so for three extreme outbreak values (as well
as the mean field), we observe very good agreement,
especially for larger values of N. Second, we can fix N
and R0 and see how well Eq. (7) predicts the full
distribution. Such comparisons with stochastic simulations
are shown in the upper panel of Fig. 2(a). In particular, we
plot the fraction of 1012 simulations that resulted in an
outbreak x�r in blue, and the solutions of Eq. (7) with a
black line. Again, the agreement between the two is quite
good for the population size N ¼ 2000 and R0 ¼ 1.7.
Disagreement increases as the outbreak sizes approach
Oð1=NÞ. Qualitatively, we can see that our theory captures
the full cubic structure of the outbreak distribution, with
local maxima at the smallest outbreak (here 1=N) and the
mean-field solution, x�r ≃ 0.69 [24,30,33,35].
To get more insight into the outbreak distribution, one

can use Eq. (7) to compute the action, e.g., in the vicinity of
the mean field x�r . Locally the distribution is a Gaussian
around x�r , with a relative variance that takes a minimum at
R0 ≃ 5=3, for which stochastic deviations from the mean-
field outbreak are minimized (See the Supplemental
Material, Sec. III and Fig. S1 [43] for further details on
the distribution’s unique shape).
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Before moving to more general outbreak models we
mention a few important qualitative details that emerge
from our approach. In particular, let us consider the
stochastic dynamics for the fraction of the population
infected, _xi ¼ ∂H=∂pi. Substituting Eq. (6) into _xi, yields

_xi ¼ βxi½ðm − 1Þ=ðmR0Þ þ xs� − ðγ=mÞxi: ð8Þ

First, note that when m ¼ 1 (pi ¼ ps ¼ 0), we uncover the
mean-field SIR model system _xi ¼ βxixs − γxi. From the
mean field, we can recover Eq. (8) with the suggestive
transformations xs → xs þ ðm − 1Þ=mR0, and γ → γ=m
[45]. Recalling that each outbreak is parametrized by a
unique constant m, evidently the effect of demographic
stochasticity is to add an effective constant reduction (or
boost) to the pool of susceptibles and to increase (or
decrease) the effective recovery rate, depending on whether
the final outbreak is smaller (m < 1) or larger (m > 1) than
that of the mean field, respectively.
We can test our prediction that a conserved m constrains

an entire outbreak path by picking a particular final
outbreak size, corresponding to a particular value of m,
and comparing to stochastic trajectories. One method for
comparison is to build a histogram in the ðxi; xsÞ plane from
many simulations that end in the same outbreak size, and
plot the constant-m prediction. The latter can be found by
solving the differential equation dxi=dxs ¼ _xi=_xs from
Hamilton’s equations, which yields

xiðxs; mÞ ¼ 1 − xs þ ln

�
mðR0xs þ 1Þ − 1

mðR0 þ 1Þ − 1

�
=R0m: ð9Þ

An example is shown in Fig. 2(b) for a final outbreak of
86% when R0 ¼ 1.7 (the mean-field prediction is 69%).
The colormap for the histogram is plotted along with the
prediction from Eq. (9). As expected, the outbreak-path
prediction lies in the maximum density region. Thus, not
only does our approach predict probabilities, but also the
optimal dynamics that lead to outbreaks—driven by an
effective conserved momentum m.
General model.—We now generalize our results to more

complex and realistic outbreak models. Typically, such
models derive from the same basic assumptions as SIR, but
have more states and free parameters. For example,
epidemiological predictions for COVID-19 (at a minimum)
require an incubation period of around 5 days, and an
asymptomatic disease state, i.e., a group of people capable
of spreading the disease without documented symptoms
[27–29]. Both incubation and heterogeneity are important
ingredients in a more general class of outbreak models
[9,10,12,27–29]. Within this class, we assume that upon
infection, susceptible individuals first become exposed, and
then enter an infectious state at a finite rate α. By
assumption there are several possible infectious states
(e.g., asymptomatic, mild, severe, tested, quarantined,
etc.) that an exposed individual can enter according to
prescribed probabilities [9,10,12,27–29]. In addition, infec-
tious states can have their own characteristic infection rates
and recovery times. Putting these ingredients together, let
us define N infectious states In, where n ∈ f1; 2;…;N g,
each with their own infectious contact rate βn and recovery
rate γn, and which appear from the exposed state with
probabilities zn [12,27–29,47]. See the Supplemental
Material, Sec. II [43] for a list of reactions.
Following the WKB prescription above, the Hamiltonian

for our general class of outbreak models is

H ¼
X
n

βnxi;nxsðepe−ps − 1Þ þ γnxi;nðe−pi;n − 1Þ

þ αznxeðepi;n−pe − 1Þ: ð10Þ

Despite the increased dimensionality and parameter hetero-
geneity, the general outbreak system defined through
Eq. (10) can also be solved analytically by precisely the
same approach as the baseline SIR model. As in the latter,
the essential property that makes the system solvable is the
constancy of all momenta except for ps. This property
ensures that, here again, there is one free constant m that
determines all momenta and the final outbreak size.
Demonstrating this requires a few additional steps of
algebra, but the result is a simple update to Eq. (7) that
involves a sum over the heterogeneities fzn; βn; γng. See
the Supplemental Material, Eq. (A29) [43], for a general
outbreak solution. An important consequence of the general
solution is that, in the special case of the SEIR model [1],
where there is only one infectious state, the outbreak action
is identical to the SIR model, Eq. (7). Namely, finite
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FIG. 2. Outbreak distributions. (a) Final outbreak distribution
for the SIR model (top) and a COVID-19 model (bottom).
Stochastic simulation results (blue squares) are compared with
theory (black lines). Parameters are given in the main text.
Despite the varying complexity, the outbreak distributions in both
models are captured by the same theory. (b) Histogram of 2000
stochastic trajectories in the SIR model that result in the same
final (non-mean-field) outbreak x�r ¼ 0.86. The prediction of
Eq. (9) is shown with a blue curve. Parameters are N ¼ 1000 and
R0 ¼ 1.7. The colormap for the histogram is on natural log scale.
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incubation changes the dynamics of outbreaks, but has only
a preexponential contribution to their probability.
For example, a prediction from our general analysis is

shown in the lower panel of Fig. 2(a). The analytical
solution (black line) is in very good agreement with
stochastic simulations of a COVID-19 model with asymp-
tomatic (n ¼ 1) and symptomatic (n ¼ 2) infectious indi-
viduals. The infection parameters [48] take realistic
heterogeneous values, i.e., β1 ¼ 1.8, β2 ¼ 1.12, γ1 ¼ 1,
γ2 ¼ 0.8, α ¼ 2, z1 ¼ 0.3, and N ¼ 4000 [12,27–29,47],
where z1 ¼ 0.3 is a typical value for the fraction of
asymptomatic infection. Despite the increased complexity,
the distribution in the more general model is also well-
captured by our theory.
Before concluding, it is worth mentioning that although

in real outbreaks the parameters in Eq. (10) may fluctuate in
time, if the fluctuations are fast compared with outbreak
time scales OðlnNÞ [38], we expect the distribution to
approach the SIR model with effective time-averaged
parameters, which can be computed using methods detailed
in Refs. [49,50]. On the other hand, if the fluctuations are
slow with respect to the same time scales, we expect the
distribution to be described by integrating over the solution
of Eq. (10), with weights given by the probability-density
of rates [49,50]. In the intermediate regime, one must solve
a Hamiltonian system with increased dimensionality, which
includes both demographic noise and environmental vari-
ability. In this way, our results can provide a basis for
understanding even more complicated outbreak dynamics.
Conclusions.—We solved the canonical problem of

predicting the outbreak distribution of epidemics in large,
fixed-sized populations. Our theory was based on the
exponential scaling of the probability of extensive outbreaks
on the population size, which allowed the use of a semi-
classical approximation. By analyzing SIR, SEIR, and
COVID-19 models, we were able to derive simple formulas
for the paths and probabilities of all extensive outbreaks and
find an effective picture of how stochasticity is manifested
during outbreaks. Most importantly we showed that, unlike
other well-known examples of rare events in population
models, the statistics of extreme outbreaks depend on an
infinite number of minimum-action paths satisfying a
unique set of boundary conditions with conserved
momenta. Due to their distinct and degenerate phase-space
topology, extreme outbreaks represent a new class of rare
processes for discrete-state stochastic systems. As with
other extreme processes, our solution can form the basis for
predictions in many other scenarios, including stochastic
outbreaks mediated through complex networks.
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