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We report the first direct measurements of the refractive index of silica glass up to 145 GPa that allowed
quantifying its density, bulk modulus, Lorenz-Lorentz polarizability, and band gap. These properties show
two major anomalies at ∼10 and ∼40 GPa. The anomaly at ∼10 GPa signals the onset of the increase in
Si coordination, and the anomaly at ∼40 GPa corresponds to a nearly complete vanishing of fourfold Si.
More generally, we show that the compressibility and density of noncrystalline solids can be accurately
measured in simple optical experiments up to at least 110 GPa.
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The physical properties and the structure of noncrystal-
line silica are of central importance in solid-state physics
and material sciences because SiO2 is a prototypical glass
former and a dominant component of many industrial
glasses. Pure vitreous silica, in particular, has been the
research focus of numerous studies aimed at understanding
and predicting the physical behavior of more complex
SiO2-rich glasses [1–4]. In geophysics, it is liquid silica
that is of special importance due to the high SiO2 content
(40–80 mol%) of virtually all terrestrial magmas. Silica-
rich liquids played a key role in the differentiation of
the early Earth [5] and may still be present near the core-
mantle boundary at the depth of ∼2900 km [6,7], where
the pressure (P) and temperature (T) are very high
(136 GPa= ∼ 4000 K). Deciphering the physical properties
of SiO2-rich melts as a function of P and T is thus key to
understanding Earth’s evolution and the nature of present-
day low seismic velocity zones at the base of the mantle [8].
Among the relevant physical properties of melts, their
density and viscosity are of primary geophysical impor-
tance because they determine the ability of magmas to rise
or sink. These two properties are linked to the compress-
ibility and structure of silica-rich melts [9], which remain
largely inaccessible to direct probing at deep mantle
conditions [10,11]. Silica-bearing liquids, however, present
structural similarities to corresponding glasses [12,13],
rendering the latter convenient and appropriate proxies
of the molten state.
The compressibility of silica glass has been reported

to ∼10 [14], ∼55 [15], and 110 GPa [16] with densities
agreeing within the uncertainty at overlapping pressures.
The density of SiO2 glass roughly doubles in the pressure
range from 1 atm (2.2 g=cm3) to 40 GPa (∼4.45 g=cm3).

At P > 40 GPa, the compressibility of silica glass decre-
ases gradually and at P > 60 GPa the glass density
approaches that of stishovite and of CaCl2-structured
SiO2 [16], the stable crystalline forms of SiO2 with VISi
(sixfold Si). The emergence of VISi in dense silica glass has
been established by a variety of spectroscopic and struc-
tural probes [1,2,15,17–28] as well as ab initio computa-
tions [29,30]. In this Letter we report on the optical
refractive index and its wavelength-dispersion, density,
compressibility, Lorenz-Lorentz polarizability, and band
gap of fused silica up to P > 110 GPa that provide new
insights into the structural evolution and transport proper-
ties of silica glass with pressure.
The index of refraction of fully compacted and optically

transparent silica glass was measured in diamond anvil
cells (DACs) using the reflectivity method [31–34] with a
broadband (supercontinuum) laser as a probe. See the
Supplemental Material [35] for full technical details.
This approach is based on the Fresnel law of refraction
which relates the reflectance of the diamond-sample inter-
face (Rdia-sam) to the refractive indices of diamond (ndia) and
sample (nsam). For perpendicularly incident light

Rdia-sam ¼ ðnsam − ndiaÞ2
ðnsam þ ndiaÞ2

: ð1Þ

The measured reflected signal contains contributions
from the two diamond-sample interfaces (I1 and I2) which
are related to Rdia-sam:

I1 þ I2
I0

¼ R3
dia-sam − 2R2

dia-sam þ 2Rdia-sam; ð2Þ
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where I0 is the probe intensity impinging onto the upstream
diamond-sample interface (see Fig. S1 in Ref. [35] for
graphical definitions). The derivation of Eq. (2) as well as
details on the spectroscopic determination of the intensity
ratio (½I1 þ I2�=I0) are provided in the Supplemental
Material [35]. Briefly, the intensity ratio is averaged over
the 550–650 nm spectral range [Fig. 1(a)] to obtain a single
value which is used to solve Eq. (2) for Rdia-sam. Then, by
solving Eq. (1) for nsam at a fixed ndia ¼ 2.418 [74], we
obtain the refractive index of silica glass at 600 nm. The
assumption of the pressure-independent index of diamond
is appropriate as discussed in Ref. [35].
On compression, the refractive index of silica glass

increases rapidly up to ∼40 GPa [Fig. 1(b)] in agreement
with the literature data based on Brillouin scattering
measurements [75]. The pressure derivative of the index
abruptly reduces at P ∼ 40 GPa but remains positive up to
145 GPa. The increase in refractive index is reversible upon
decompression to ∼30 GPa, but at P < ∼30 GPa, the
index of decompressed glass is systematically higher than
that measured on compression. The index of silica glass
decompressed from 145 GPa to 1 atm is roughly equal to
that of α-quartz, suggesting an irreversible densification,
and transition from a cristobalitelike (precompression) to
quartzlike (postcompression) tetrahedral network, consis-
tent with earlier studies [2,14,22,75,78–82].
In one of the compression runs we analyzed the fringe

spacing of the intensity ratio spectra (Fig. S3) to obtain the
wavelength dispersion of the refractive index at 500–
850 nm (Fig. S4 [35]). The index dispersion averaged
over 500–850 nm increases by ∼80% upon compression
from 1 atm to∼37 GPa but decreases at higher pressures by
∼13% up to 111 GPa (Fig. S5). We further analyzed
the index dispersion using the single-oscillator model
of Wemple and DiDomenico [35,83]. From the fitted

oscillator energy E0 we estimate the value of the
band gap Eg ¼ 1.5E0 [83] which is constant and equal
to 8.03 (�0.04) eV in the range 27 < P < 37 GPa and then
linearly increases up to 8.8 (�0.2) eVat 111 GPa (Fig. S6).
This behavior is qualitatively consistent with theoretical
predictions [30,84].
To gain structural insights we compare the refractive

index of silica glass to that of α-cristobalite and α-quartz
(low-density polymorphs of SiO2), as well as coesite-V
[85], stishovite, and the CaCl2 phase of SiO2 (high-density
polymorphs). The indices of these phases were computed
from first principles as described in Ref. [35]. The
refractive index of α-cristobalite at 1 atm is only ∼2%
larger than that of the glass and increases at a compar-
able rate up to ∼10 GPa [Fig. 1(b)] [75], likely due to the
structural similarities and high compressibility of their
SiO4 networks [86,87]. At P > 15 GPa, the index of α-
cristobalite becomes lower than that of silica glass due to the
decrease in its pressure derivative at ∼10 GPa (Fig. S10).
This observation hints that the structural similarity between
α-cristobalite and the glass is preserved in the limit of P <
∼10 GPa but is lost at higher pressure. The refractive index
of coesite-V, a metastable polymorph of SiO2 with both
VSi (37.5%) and VISi (62.5%) [85], is nearly independent of
P at 60–100 GPa and is similar to that of the glass. The
indices of stishovite and CaCl2 phase have a negative
pressure dependence and are systematically lower than that
of the glass at P > 40 GPa.
Our refractive index data allow exploring the compress-

ibility of silica glass. In one experiment without the pres-
sure transmitting medium, the absolute volume of silica
glass was determined by directly measuring the thickness
and area of a fully compacted sample at P > ∼27 GPa [35].
The spacing of the interference extrema in the intensity
ratio spectra [Fig. 1(a)], which are formed due to the DAC
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FIG. 1. (a) Intensity ratio spectra (½I1 þ I2�=I0) at 27 (black) and 111 GPa (red). The gray box depicts the spectral range used to
evaluate the refractive index. (b) Refractive index of silica glass measured in this work. The thick black line is a guide to the eye.
Previous data on the index of silica glass are from Refs. [75,76]. Results of our own DFT computations [35] of the refractive indices of
crystalline SiO2 phases are shown as continuous curves and color coded as labeled. Pressure was measured by the diamond Raman edge
method and the relative pressure uncertainty is �5% [35,77].
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cavity being a Fabry-Perot interferometer, yields the
product of sample thickness and refractive index. Using
our experimentally determined refractive index we
obtained the sample thickness at its center and ∼5 μm
away from the gasket edge (Fig. S2 and Fig. S7A). The
uncertainty in sample thickness measured at different
positions is that of the refractive index (∼1%). To obtain
the area of the sample, we photographed the DAC cavity in
transmitted light under fixed illuminating conditions and
camera settings. Automated finding of all the pixels
brighter than a fixed threshold yielded the sample area
(Fig. S7B) with an uncertainty of ∼1.5% [35]. The product
of averaged sample thickness and area yielded the volume
with an uncertainty of ∼3.2% at 27 GPa which decreases to
∼2.6% at pressures between 55 and 111 GPa [35].
The sample volume (V) decreases by ∼27% upon

compression from ∼27 to ∼111 GPa, as recorded in the
experiments without pressure medium (Fig. S9). TheseP-V
data can be converted to density if the density at a reference
pressure (e.g., 27 GPa) is known. The available reports on
density [15,16] can provide such a reference. Here, how-
ever, we independently measured the density of a thin
(∼8 μm) doubly polished silica glass slab, gold coated on
one side, up to ∼30 GPa in a DAC with argon as a pressure
medium [35]. The uncoated side of the slab was in direct
contact with one of the anvils. The interference spectra,
measured by reflecting the broadband probe from the
glass-gold interface, yielded slab thicknesses utilizing
the pressure dependence of silica glass refractive index
based on the present measurements and the reference value
at ambient pressure [76] (Fig. S10). The evolution of
the slab thickness with P yielded linear strain along the
compression axis while linear strain perpendicular to the
compression axis (in the radial direction) was extracted
from the optical photographs of the DAC sample chamber.
The evolution of the slab volume yielded the density of
silica glass up to ∼30 GPa by accepting the value of
2.2 g=cm3 at 1 atm. The densities measured in the run with
argon pressure medium are plotted in Fig. 2 (inset). Using
the density of 3.9 g=cm3 measured at 27 GPa in the run
performed in an argon pressure medium as a reference,
we convert the volume data measured in experiments
without pressure medium to absolute density (Fig. 2).
The agreement with the previous reports on silica glass
density [14–16] is within the error bars.
The compression curve of silica glass has a slope similar

to that of α-cristobalite at P < ∼10 GPa (Fig. 2 inset). The
glass, however, retains its high compressibility up to
∼40 GPa whereas α-cristobalite and α-quartz are less
compressible at P > ∼10 GPa. These observations indicate
that compression mechanisms are being activated in silica
glass at P ∼ 10 GPa that are not available in α-cristobalite
and α-quartz: specifically, the production of VSi and VISi
from IVSi [23]. Our density data thus suggest that the
coordination of Si is four up to P ∼ 10 GPa, in agreement

with the previous studies of dense silica glass structure
[15,17,20,24]. The onset of increase in silicon coordination
at P ∼ 10 GPa is also supported by the refractive index data
discussed above. The densities converted to Eulerian finite
strain have been analyzed with standard methods to model
the high-pressure density evolution of SiO2 glass within the
framework of the finite strain equation of state [35]. The
Eulerian strain analysis reveals a sequence of deviations
from linear compression at P ∼ 10 − 13, ∼25 (subtle), and
∼40 GPa (Fig. S12). Fused silica shows a distinct high-
pressure softening with a minimum of the bulk modulus at
∼25–30 GPa (Fig. S16). At P > 40 GPa the glass becomes
more incompressible and its compression behavior is linear
(Fig. S12 [35]).
The density of silica glass at P > 40 GPa progressively

approaches that of the stable sixfold-coordinated crystalline
SiO2 (Fig. 2), which has been invoked as evidence of
completed transition to stishovitelike local structure with
VISi [15]. However, the compressibility of the glass at P >
40 GPa is still higher than that of stishovite. In addition, the
pressure derivatives of the refractive indices of silica glass
and stishovite have opposite signs (Fig. 1(b)]. The ongoing
increase in Si coordination from VSi to VISi and, possibly,
VIISi in the glass is a viable explanation of both these
observations.
To gain further insights into Si coordination we esti-

mated its average value hNci, using the measured wave-
length dispersion of the refractive index via the empirical
relation hNci ∼ ðEd=βÞ [35]. Here, Ed is the fitted oscillator
strength and β is an empirical parameter that reflects the
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ionic or covalent bonding character suggested by Wemple
and DiDomenico [83]. Although the character of the Si─O
bond at high pressure is unknown, the bounds we obtain
from the Wemple-DiDomenico analysis (albeit qualitative)
contain most of the extant data on hNci in SiO2 glass in the
pressure range between 30 and 110 GPa (Fig. 3). The ionic
and covalent bounds of our model intersect the value of
coesite-V (i.e., 5.6) at ∼40 and ∼70 GPa, respectively. The
average Si coordination inferred in Refs. [24,25] plot close
to the ionic bound, suggesting that the Si─O bond in silica
glass is largely ionic. By the same logic, the results of
Ref. [26] suggest a predominantly covalent character of the
Si─O bond.
To link the refractive index and density data to electronic

properties, we evaluated the Lorenz-Lorentz (LL) polari-
zability (αLL):

αLL ¼ 1

ρ

ðn2 − 1Þ
ðn2 þ 2Þ

3M
4π

; ð3Þ

with density (ρ), optical refractive index (n), and molecular
weight (M) of all the SiO2 phases considered here. The
primary observation is that the polarizability of silica glass
decreases approximately linearly up to ∼30 GPa (Fig. 4)
due to its high compressibility. This is consistent with
molecular dynamics simulations that showed that the
probabilities of IVSi → VSi and IVSi → VISi transitions peak
at P ∼ 10–30 GPa [23]. We surmise, therefore, that the
fraction of IVSi in the glass structure remains significant at
P ¼ 10–30 GPa. The polarizability slope becomes less

negative at ∼30–40 GPa, and at P > ∼40 GPa the slope
is the same as that of stishovite and CaCl2-type SiO2. The
observed trend of the LL polarizability at 46 < P <
111 GPa is independently reproduced through the propor-
tionality between the density dependence of polarizability
and that of the model single oscillator energy E0 [35].
The inset of Fig. 4 emphasizes the relatively sharp

crossover in the slope of αLL to that of crystalline phases
with VISi. We attribute the rapid change of slope at
∼40 GPa to almost complete vanishing of IVSi in the glass,
which is also supported by the Eulerian finite strain
analysis of the density data (Fig. S14), consistent with
computational studies that found that the fraction of IVSi is
less than 10% at P > ∼40 GPa [23,29,30]. The vanishing
of IVSi in the structure of silica glass causes a decrease of
its compressibility at P > ∼40 GPa and implies the tran-
sition to a less effective densification by VSi → VISi
and/or contraction of SiO6-octahedra. However, the abun-
dance of VSi in silica glass at P > ∼40 GPa is unclear.
Computational studies disagree on the abundance of
VSi proposing that it falls below 10% at P > ∼60
[23,30] or at P > 120 GPa [29]. The emergence of VIISi
at the level of >10% is also controversial (at 46–83 [30] vs
180 GPa [29]). Our results support the emergence of VIISi at
60–100 GPa because the average Si coordination exceeds
six at greater pressures (Fig. 3). Overall, the refractive
index and density data on silica glass reinforce the view
of a continuously evolving Si coordination number at
P > 40 GPa.
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To the best of our knowledge, only the densities of SiO2,
MgSiO3, and GeO2 glasses have been measured to pres-
sures exceeding 100 GPa [16,88,89]. The glass density in
these previous studies was derived from the evolution of the
sample volume with pressure as quantified from the x-ray
absorbance of the glass in two mutually perpendicular
directions, which requires tightly focused synchrotron
x rays and x-ray transparent gaskets (e.g., Be). In this
Letter we demonstrated that the evolution of the sample
volume and density of transparent glasses can be accurately
measured up to at least 110 GPa by optical techniques,
i.e., outside synchrotron facilities. Therefore, the reported
developments open new research avenues to study
mechanical and electronic properties of noncrystalline
solids with vast implications in materials sciences and
geophysics. In addition, such information may serve to
benchmark computational studies of transport properties of
glasses and melts at extreme conditions.
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