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The spin-motive force (SMF) in a simple ferromagnetic monolayer caused by a surface acoustic wave is
studied theoretically via spin-vorticity coupling (SVC). The SMF has two mechanisms. The first is the
SVC-driven SMF, which produces the first harmonic electromotive force, and the second is the interplay
between the SVC and the magnetoelastic coupling, which produces the dc and second harmonic
electromotive forces. We show that these electric voltages induced by a Rayleigh-type surface acoustic
wave can be detected in polycrystalline nickel. No sophisticated device structures, noncollinear magnetic
structures, or strong spin-orbit materials are used in our approach. Consequently, it is intended to broaden

the spectrum of SMF applications considerably.
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Introduction.—Spintronics is concerned with the inter-
conversion of charge transport and spin dynamics. The use
of charge current to control magnetization structures, such
as magnetic domain walls, has been extensively investi-
gated for spin-torque oscillators [ 1-3] and magnetoresistive
random access memory applications [4—6]. The spin-trans-
fer torque is a phenomenon where the orientation of the
magnetization is controlled by injected spin-polarized
current via the s-d coupling [7-9]. The spin-motive force
(SMF), known as an inverse spin-transfer torque effect, is
an electric voltage generation in a ferromagnetic metal due
to an emergent spin-dependent gauge field driven by the
interplay between conduction electron spins and the mag-
netization dynamics [10-13]. The first experiment involves
observing the SMF in a nanowire due to magnetic domain
wall motion [14-16].

The conventional SMF requires both nonvanishing time
and space derivatives of the magnetization as E.y,; «
m- (0,m x O;m), where m is the unit vector of the
magnetization. Therefore, the latter requirement of the
space derivative restricts the experimental setup. Indeed,
the SMF induced by excited magnetization dynamics
was measured in nonuniform magnetic textures formed
by a comb-shaped device [17], the magnetic vortex on a
gyrating disk [18], a wedged-shaped device [19], exchange-
coupled ferromagnetic bilayers [20], and helical magnetism
[21,22]. In an attempt to resolve the restriction, it is
theoretically proposed that the SMF is induced via spin-
orbit interaction, which does not require nonvanishing
space derivative, e.g., the SMF induced by the oscillating
magnetic field in systems with Rashba spin-orbit inter-
action [23] and time-varying gate voltage in systems with

0031-9007/22/128(7)/077201(6)

077201-1

strong spin-orbit interaction [24-27]. However, these
mechanisms require strong spin-orbit materials, which
means that they restrict the range of material choices.
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FIG. 1. Schematics of the mechanism of the spin elastodynamic
motive force. In a ferromagnetic metal, the symmetric part of the
deformation couples to magnetization (the magnetoelastic cou-
pling) while the antisymmetric part couples to electron spin (the
spin-vorticity coupling). When a surface acoustic wave is excited
in the ferromagnet, these couplings generate two different spatially
nonuniform spin dynamics of the magnetization and electron spins.
With the s-d coupling between magnetization and spins, the
unconventional spin motive force is induced. In particular, the
spin-vorticity coupling allows the spin-motive force that does not
rely on complicated structures and strong spin-orbit materials.
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Accordingly, they have not been observed experimentally
so far. As mentioned above, there is little variety in
experimental reports on the SMFs because of experi-
mental restrictions such as sophisticated device structures,
noncollinear magnetic structures, and strong spin-orbit
systems.

We propose the SMF induced by surface acoustic waves
(SAWs) via spin elastodynamics to overcome conventional
limitations. Three couplings drive the spin elastodynamics
in a ferromagnetic metal: spin-vorticity coupling (SVC),
magnetoelastic coupling, and s-d coupling (Fig. 1). In this
setup, the injected SAW generates the magnetization
dynamics with the nonvanishing time and space derivatives.
The advantage of the SAW device is that it does not require
nanofabrications of the magnetic metal itself, which are
indispensable for the conventional SMF. We prepare, e.g.,
the interdigital transducers on the outside of the sample. In
addition, the SVC, the coupling between conduction
electron spins and the vorticity field of the lattice, emerges
universally in various systems, and thus, it does not restrict
material choices. Indeed, SVC has attracted much attention
because it generates spin current without spin-orbit inter-
action. The spin current generated via SVC has been
experimentally observed in spin-current generation by
vortices associated with the liquid metal flow [28-32]
and by vortex motion of lattice associated with SAWs [33—
37]. The effective magnetic field owing to the rotational
motion has been directly detected using NMR and NQR
[38—44]. Also, magnetoelastic coupling has been widely
exploited for driving nonequilibrium spin dynamics with a
SAW[45,46]. In the presence of a SAW, the SVC, the
coupling of electron spins and the vorticity of the lattice of
the moving materials, plays a significant role in spin
manipulations [47-53].

Because of the rotational motion of the lattice associated
with the SAWSs, the conduction electrons are subjected to
SVC when they are applied to ferromagnetic metals.
Through the s-d coupling, the conduction electron spins
adiabatically follow the magnetization direction, and the
SVC is modulated by the magnetization’s precession
motion, which causes the SMF. Simultaneously, the mag-
netoelastic coupling operates on the magnetization to excite
the magnetization precession owing to lattice strain
dynamics.

The current study finds a way to get over the SMF’s
conventional limitations. Thus, we concentrate on the
SAW-induced SMF via SVC, a material-independent inter-
action [54]. We calculate the SAW-induced SMF up to
second order in lattice displacement via treating the
influence of magnetization dynamics as a unitary trans-
formation of the spin space. The SAW-induced SMF has
two mechanisms. The first, we call the SVC-driven SMF,
produces an ac electromotive force oscillating at frequency
o of the SAW, which is induced by the gradient spin
accumulation via the SVC. The second, we call the spin

elastodynamic motive force (SEMF), produces a dc electro-
motive force and an ac one oscillating at 2w due to the
interplay between the SVC acting on conduction electron
spins and the magnetoelastic coupling acting on magneti-
zation. The SEMF generates dc electromotive force in the
film thickness direction when an out-of-plane magnetic
field is applied. These findings show that the SEMF causes
nonreciprocity of the electromotive force.

Model.—We consider the free-electron system coupled
to the magnetization through the s-d coupling. The con-
duction electron’s Lagrangian is expressed by

2
L= / |:lfl8 +— d V V() =Jgm' -6(c.,. (1)

where cf,t and ¢/, are electron creation and annihilation
operators, respectively, 6 = (6%, 67, 6°) are the Pauli matri-
ces, m’ is the unit vector of the magnetization, J is the
exchange splitting constant, and V is the potential due to
the lattice and impurities. When the lattice distortion
dynamics are induced, the potentials are modulated as
V(x’ — u), where u is the displacement vector of the lattice.
Treating the lattice distortion effect, we perform the local
coordinate transformation from the laboratory frame x’ to
the rotating frame x = x’ —u. The conduction electron’s
Lagrangian is expressed as £ = Ly + Lg,, where L is
given by

. h?
o= / &, {ma, PV V) = Jgm 8oy (2)

where ¢, = V1 +V -uc,, and m' = R(r;;)m is the unit
vector of the magnetization in the rotating frame with
R(r;;) being the SO(3) rotation matrix and r;; = 5 (O;u/ —
8jui) being the rotation tensor associated with the coor-
dinate transformation. The Ly, is the SVC:

h .
'C'sv = Z/ CLO‘ : cht’ (3)
x

where € = 2¢;;,.0,r;; is the vorticity of the lattice motion.
Note that the modulation of the kinetic energy and the time
derivative appear; however, they are not dominant in this
study and are neglected. We perform the rotational trans-
formation in the spin space c¢,, = U(x,t)a,, with the
direction of magnetization m in the z direction, where
a;, and a,, are the electron creation and annihilation
operators, respectively, after the rotational transformation.
Here the unitary operator U is determined to satisfy
c¢'m-6c = a'6%a. The conduction electron’s Lagrangian
including the SVC after the transformation is given by

- AS)2 N
L= /ax,[ha %—V—i—ezﬁ)—]exaz ay, (4)
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where p = —iAV is the momentum operator and
V = U'VU. Here, 1213 and A® are the effective spin scalar
and vector potentials, given by A = (in/e)U'd,U+
(h/4e)UT(6-Q)U, and AS=—(ih/e)U'VU. Particu-
larly, the second term of A(S) is spin scalar potential induced
by the SVC. The effective electric field is obtained by
E* = —0,A® — VA}. The total SMF is given by E =
Ptr(6°E®), where P is the spin polarization of conduction
electrons. The SAW-induced SMF contains two terms:

Ph
Esmf - Econ e v(m Q>’ (5)
where the first term E ., ; = (Ph/e)m - (0,m x O;m) is the
conventional SMF, and the second term is the SMF induced
via the SVC, which is dominant in this setup.
The spin dynamics generated by SAWs under a static
magnetic field is determined by

atml = 7(heff + hme) xm' — a(atm/) x m/7 (6)

where y(> 0) is the gyromagnetic constant, « is the Gilbert
damping constant, and h.y is a static effective magnetic
field containing the static magnetic field and an anisotropy
field. We assume that the Barnett field is negligible
compared to the effective magnetic field due to the
magnetoelastic coupling, which is given by [55]

2
Pinei = _Vszeijm;‘[bléij +0y(1 =6, (7)
J

where e;; =1 (d;u; + 0;u;) is the strain tensor, M is
the saturation magnetization, and b; and b, are the
magnetoelastic coupling constants. The magnetization
processes around h.; with the resonance frequency of
the Kittel modes wg in the spin-wave approximation.
The magnetization vector in the rotating frame is given
by m =my+ om + O(u?), where mg = (sin 6, cos ¢y,
sin O sin ¢y, cos B) is the static component and dm is
the dynamical component with 6, and ¢, being shown in
Fig. 1. Note that the magnetization modulation associated
with the rotational transformation is negligible because of a
higher order of Gilbert damping.

The lattice displacement u# with the Rayleigh-type SAW
proceeding in the x direction is given by [56]

. 2Kk K2
i3 (eKtz — 220 okt
q +q’
i
iq it
u = uge' 0 . (8)

2
Koz 247 Kz
e e
lq ( Ki+q*

where 1y is the deformation amplitude of the SAW, 8, is the

sign function of ¢, and «;! and «;! are decay lengths of

longitudinal and transverse waves, respectively. Here, g, =
(—w, q) are a frequency @ of the SAW and a wave number
vector ¢ = (g, 0, 0) of a longitudinal wave, and x* = (1, x)
are time and coordinate. The vorticity € is given by

2ryw?
=

Q

8 exeitnt, (9)
CrR

where cp =w/|q| is a velocity of the SAW and
ro = |u.(z = 0)].

Results.—The SAW-induced SMFs contribute to the
SMF because the conventional SMF, as is well known,
turns out to vanish in the noncollinear magnetization
structure. The SAW-induced SMF is given by up to second
order in u.

(a) (b)
9z

e\

9-

—05 Gdec=0
fo=1
$o=7%
) ~1
© Z=z/K
05 Gdc=0

gz 7 9dc

|
e
3

>

o
(=3I
|
—
T
-
(=]
I
)

Y
I

7

bo Oo

FIG. 2. The dependence of the SEMF on the depth from the
surface (a),(b) and the direction of the applied magnetic field (c),
(d). The red and blue lines represent the second harmonic
component in the x direction and z direction, and the green
lines represent the dc component in the z direction. The depth
from the surface 7 is normalized by the decay constant of the
longitudinal wave ;. Here, we assume the isotropic system, and
b1 = b, is satisfied. (a) and (c) The case of an in-plane magnetic
field applied (6 = (7/2)), and the dc component vanishes. (b)
and (d) The case of an out-of-plane magnetic field applied
(¢po = 0), and both the second harmonic and dc components
are induced. According to (c), the characteristic nonreciprocity is
found in the z direction SMF.
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TABLE L

The characteristics of the SVC-driven SMF and the SEMF, which do not require any device and

material restrictions such as nonuniform device structure, noncollinear magnetization, and strong spin-orbit systems
if only the SAW devices are available. MEC represents magnetoelastic coupling and IP and OP represent cases
where the magnetic field is in the in-plane and out-of-plane directions. The SAW-induced SMFs produce various
types of electromotive forces such as dc and ac oscillating at @ and 2w.

Mechanisms Interaction Device IP (6, =0) OP (6, #0)

SEMF SVC, MEC . 2w dc, 2w

SVC-driven SMF SVC SAW device w w
E,;=E,+E,. (10) dimensionless functions representing phase shift and turn

The first term Ey, = —(#/2¢)V(mg - Q) is the ac compo-
nent oscillating at @ due to the gradient spin accumulation
induced by the SVC, which we call SVC-driven SMF,
given by

E
< o ) = &, sinf, sin pye* ( :
[0}

sin(q,x*) >
Esv,z

%éq cos(g,x*)

(11)

where &, = (Phry/eck)®® a function of @ with the
dimension of an electric field. The second term in
Eq. (10) is given by E,,, = —(h/2e)V(ém - Q) from the
combination of SVC and magnetoelastic coupling, which
we call spin elastodynamic motive force (SEMF). The
SEMF contains the second harmonic component oscillating
at 2w and dc component. The second harmonic component
is given by

Eg iy sin(2g,x* + 8,0,
< ’ ) zss_m§q<g (24 B )>, (12)
Es—m,z 2w gz COS(Zq”xﬂ + §q®z)

and the dc component is given by

(B=) —ewa(O) a3
Es—m,z dc T dc ’

where &, = (Phyb, /2ewgaM,)(ugry/cy)w® is the func-
tion of , and g, /., gq. are dimensionless functions of z, 6,
¢o, and 8. The dependence of the SEMF on the depth from
the surface and direction of the applied magnetic field are
shown in Fig. 2 (the detailed calculation can be found in the
Supplemental Material [57]). According to Fig. 2(c), the
second harmonic component on the z direction has char-
acteristic nonreciprocity. This nonreciprocity originates
from the magnetoelastic coupling, demonstrated in the
context of the spin-wave excitation by SAWs [58-62]. It
should be noted that neither the second harmonic gener-
ation nor nonreciprocity occurs in the conventional SMF.
These features are caused by the interplay between the
magnetoelastic coupling and the SVC. Note that ©,/, are

out to vanish in 6y = (xz/2).

Discussion.—Let us estimate the magnitude of the SVC-
driven SMF &, and the SEMF &, in polycrystalline
nickel with strong magnetoelastic coupling. When the
Rayleigh-type SAW with frequency f =10 GHz is
applied, SVC-driven SMF is estimated as &g~
501 x 1072 V/m, and SEMF is estimated as &~
5.25 x 1073 V/m. This estimation suggests that an observ-
able voltage, about nV order, induced for a distance of
about um, which is comparable with the continuous
generation of the conventional SMF [17]. Here, longitu-
dinal wave velocity is ¢; = 6.04 x 10° m/s, transverse
wave velocity is ¢, = 3.00 x 10> m/s [63], velocity of
Rayleigh-type SAW is cz = 2.80 x 103 m/s [64], satu-
ration magnetization is My = 0.61 T [65], damping con-
stant is a = 4.5 x 1072 [66], gyromagnetic ratio is y =
2.41 x 10> mA~!'s~! [67], magnetoelastic coupling con-
stant is b; = b, = 9.5 MJ/m?, and lattice displacement is
uy = 3.5 x 1072 m, which is 1% of the nickel lattice
constant.

Surprisingly, the current processes in typical ferromag-
netic materials with simple structures, such as nickel, can
induce the SMF. Complex device structures or noncollinear
magnetization structures are required in conventional
SMFs. A Rashba device with spatial inversion symmetry
breaking, a gate voltage modulation, and a strong spin-orbit
material are all material constraints for SMFs induced via
spin-orbit interaction. Because there are no restrictions on
device structures or materials, the SVC-driven SMF and the
SEMF enable technical applications, such as microfabri-
cation on magnetic materials. The SVC-driven SMF and
the SEMF simultaneously generate the dc and ac compo-
nents oscillating at @ and 2w, and the current mechanisms
are summarized in Table I.

Conclusion.—To address the limits of typical SMF
processes, we theoretically analyzed the SMF induced
by a Rayleigh-type SAW. We discovered two mechanisms
of the SAW-induced SMF via the SVC. The first is the
SVC-driven SMEF, which generates the first harmonic
electromotive force due to gradient spin accumulation
induced by SVC, and the second is the SEMF, which
generates dc and the second harmonic electromotive force
due to the combination of SVC and magnetoelastic

077201-4



PHYSICAL REVIEW LETTERS 128, 077201 (2022)

coupling. Particularly, the dc SMF is induced under an
applied out-of-plane magnetic field. The results suggest
that the second harmonic component on the z direction has
characteristic nonreciprocity. Our estimation suggests that
the electric voltage induced by the present SMFs is
detectable in polycrystalline nickel. The present SMFs
can be generated in ferromagnet without restrictions on
device structure or materials if only the SAW device is
available. Therefore, the SVC-driven SMF and the SEMF
are expected to expand the range of the SMF applications
greatly. Furthermore, the present results may have impli-
cations for strain-related spintronics, e.g., the piezospin-
tronic effect [68-70], flexible spintronics [71-73], and
mechanical control of spin-orbit interaction [74,75].
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