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Hybrid semiconductor-superconductor nanowires are predicted to host Majorana zero modes that induce
zero-bias peaks (ZBPs) in tunneling conductance. ZBPs alone, however, are not sufficient evidence due to
the ubiquitous presence of Andreev bound states. Here, we implement a strongly resistive normal lead in
InAs-Al nanowire devices and show that most of the expected Andreev bound state–induced ZBPs can be
suppressed, a phenomenon known as environmental Coulomb blockade. Our result is the first experimental
demonstration of this dissipative interaction effect on Andreev bound states and can serve as a possible
filter to narrow down the ZBP phase diagram in future Majorana searches.
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Electron tunneling in a dissipative environment has been
widely studied by probing the transport through a nanoscale
tunnel junction in contact with resistive leads [1–7]. The
tunneling electrons interact with the electromagnetic plas-
mon modes of this ohmic environment, resulting in a
suppression of the tunneling conductance (G≡ dI=dV) at
low bias voltage (V) and temperature (T), a phenomenon
known as “environmental Coulomb blockade” (ECB)
or “dynamical Coulomb blockade.” This phenomenon
induces a characteristic power law in conductance as
G ∝ maxðkBT; eVÞ2r, similar as that in tunneling between
two Luttinger liquid leads [8,9]. kB is the Boltzmann
constant and r ¼ R=ðh=e2Þ is the ratio between the lead
resistance (R) and the quantum resistance (h=e2). Later on,
replacing the metallic tunnel junction with a semiconductor
nanostructure, e.g., a quantum point contact [10,11] or a
quantum dot [12–15], has significantly increased the system
tunability and enabled various quantum phase transitions.
For example, in a quantum dot with a single dot level
resonantly coupled to the dissipative source and drain leads
with the coupling strength being ΓS=D, both experimental
[13] and theoretical [15] studies have demonstrated that
(1) in the asymmetric coupling regime (ΓS ≠ ΓD), the
Coulomb conductance peaks are significantly suppressed
as T decreases, same as the typical ECB suppression; (2) in
the symmetric coupling regime (ΓS ¼ ΓD), the Coulomb
peak height, to the contrary, increases as T decreases and
finally saturates to the quantized conductance of e2=h.

Motivated by this striking contrast, a theoretical study
[16] has proposed a strongly dissipative lead being imple-
mented in hybrid semiconductor-superconductor nano-
wires to identify signatures of Majorana zero modes
(MZMs) [17–20]. Probing MZMs with a regular lead
reveals zero-bias peaks (ZBPs) in tunneling conductance.
The quantitative behavior of ZBPs observed in experiments
[21–26], however, does not fully follow theoretical pre-
dictions. For example, the perfect Majorana quantization
[27,28] has not been observed yet. This quantization is
enabled by Andreev reflection where the injected electrons
and Andreev reflected holes “see” the same barrier, similar
to a quantum dot with symmetric resonant tunneling
(ΓS ¼ ΓD), leading to perfect transmission (ZBP quantiza-
tion). Meanwhile, the biggest challenge of “Majorana
hunting” comes from the coexistence of Andreev bound
states (ABSs) in the same system [29]. These ABS-induced
ZBPs, superficially similar to MZM signatures, can easily
emerge due to potential inhomogeneity [30–33] or disorder
[34–38], which cannot be currently eliminated [39,40].
The ABS conductance usually has different tunnel cou-
plings for electrons and holes, similar to a quantum dot with
asymmetric coupling (ΓS ≠ ΓD), resulting in nonquantized
ZBPs. Following the dissipative dot model, a strongly
dissipative lead could suppress the ubiquitous ABS-
induced ZBPs (asymmetric coupling) at low T, while the
quantized ZBPs (symmetric coupling) should still survive
as long as r < 1=2 [16].
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In this Letter, we engineer such a dissipative lead in
hybrid InAs-Al devices and demonstrate that strong dis-
sipation can indeed suppress most ZBPs resulting from
zero-energy ABSs. The survival of quantized ZBPs, pos-
sibly due to MZMs or quasi-MZMs [41,42], will be studied
in the future.
Figure 1(a) shows a scanning electron microscope

(SEM) image of the device (Device A). The Cr=Au film
(red) was made thin and resistive, serving as an ohmic
dissipative environment (referred as “dissipative resistor”).
This resistor is connected to the InAs-Al nanowire through
the Ti=Au contacting lead (yellow), which is made thick
and negligible in resistance. The resistance of the dissipa-
tive resistor is estimated to be ∼5.7 kΩ based on indepen-
dent calibration (see Fig. S1 in Ref. [43] for details). A total
bias voltage Vbias is applied to the left lead. The current I,

after flowing through the dissipative resistor and the
InAs-Al device, is drained and measured at the right
contact. Differential conductance G is then calculated after
subtracting the series resistance, Rseries, which includes the
dissipative resistor and the fridge filters. The bias V across
the InAs-Al device is calibrated by subtracting the voltage
drop shared on Rseries: V ¼ Vbias − I × Rseries. Therefore,
G ¼ ½1=ðdV=dIÞ� ¼ ½1=ðdVbias=dI − RseriesÞ�. The tunnel
gate (VTG) tunes the tunnel barrier in InAs, while the
global back gate (VBG) tunes both the barrier and the
superconducting nanowire region. The dissipative resistor
should be on chip and close to the InAs-Al device to
guarantee significant ECB: if their physical distance were
too large, the effect of ECB would decay and finally
disappear, in which case the resistor would then behave like
the fridge filters.
To demonstrate ECB, we first apply an out-of-plane

magnetic field (B) of 1 T (perpendicular to the Al film) to
suppress its superconductivity. The InAs-Al part is then
equivalent to a normal tunnel junction. Figure 1(b) shows
the significant suppression of G at low V and T, consistent
with the hallmark of ECB. In Fig. 1(c), we rescale the data
of Fig. 1(b) (the negative bias branch) using dimensionless
units, where all curves collapse onto a single universal
curve [the red line in Fig. 1(c)] with minor deviations.
The red line is obtained via numerical differentiation of
the current through a dissipative tunneling barrier [13]:
IðV;TÞ∝VT2rjΓðrþ1þieV=2πkBTÞ=Γð1þieV=2πkBTÞj2,
where Γ is the Gamma function. The dissipation strength r
is extracted from G ∝ T2r at zero-bias (Fig. 1(c) inset). For
T < 100 mK, G deviates from the power law (blue line),
suggesting a gradual saturation of the electron T: fridge T
of ∼30 mK roughly corresponds to an electron T ∼ 50 mK.
We use the electron T, estimated based on this “power-law”
thermometer [44], for the rescaled x axis ejVj=kBT in Fig. 1
(c) for curves of T < 100 mK.
The dissipation strength, r ¼ 0.21, translates to an

effective resistance r × h=e2 ¼ 5.42 kΩ, roughly consis-
tent with our independent estimation of the dissipative
resistor ∼5.7 kΩ. We have also checked similar power laws
in Devices B and C, designed with larger dissipative
resistors as shown in Figs. 1(d) and 1(e). The extracted
exponent r ¼ 0.37 (0.75) for Device B (C) corresponds
to an effective resistance of 9.55ð19.36Þ kΩ, also
roughly consistent with our independent estimation of
7.5ð27.28Þ kΩ. The deviations could be due to inaccurate
estimations of the dissipative resistor (see Fig. S2 in
Ref. [43]) or contributions from other dissipation sources.
When the dissipative resistor R is comparable to the
resistance of the tunneling junction (RT), the effective R
should be replaced by 1=ð1=Rþ 1=RTÞ [45], also causing
deviations. Power-law fits at the other gate voltages (see
Fig. S3 in Ref. [43]) show fluctuations possibly due to
reasons mentioned above. In Fig. 1(e), G at larger bias
deviates from the universal red line. This deviation, also

(a)

(b) (c)

(d) (e)

FIG. 1. (a) False-color SEM image of Device A. Thickness of
the dissipative resistor (red), contact or gate (yellow), and InAs
(diameter) are labeled. The substrate is p-doped Si covered by
300 nm thick SiO2, acting as a global back gate. (b) GðV; TÞ of
device A at different Ts. B⊥ ¼ 1 T. (c) Replotting (b) using
dimensionless units. Inset: T dependence of the zero-bias G. (d)
and (e) are for Devices B and C with different dissipative
resistors.
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expected for Devices A and B for larger bias, is related to
the power law being only valid within a finite energy
bandwidth [7].
For comparison we have also tested and confirmed that a

regular InAs-Al nanowire device without the dissipative
resistor (Device X) does not show such ECB power-law
suppression (see Fig. S4 in Ref. [43]).
We now set B ¼ 0 T and study the dissipative tunneling

into a superconductor in Device A. In the literature on
“Majorana nanowires,” the term “dissipation” usually refers
to interface disorder and soft induced superconducting
gaps [46,47]. To avoid confusion, in this Letter we refer
“dissipation” only to effects caused by the dissipative
resistor. In fact, we have shown the atomically abrupt
InAs-Al interface [48], hard gaps, and large ZBPs [26] in
these InAs-Al devices without dissipation. Now with the
dissipative resistor (Device A), the gap is still hard, together
with the existence of Coulomb blockade (see Fig. S5 in
Ref. [43]). But the coherence peaks are smeared, possibly
due to nonequilibrium dissipation. Nevertheless, we can
still resolve clean ABS levels as shown in Fig. 2.
Figure 2(a) shows the gate dependence of an ABS. The

two subgap levels do not cross, suggesting a singlet ground
state [29]. Applying B parallel to the nanowire Zeeman
splits the two peaks and drives the inner peaks toward zero

as shown in Figs. 2(b) and 2(c) (the splitting and the outer
peaks are sometimes barely visible). In regular devices
without dissipation, further increasing B can lead to level
crossing and ZBP formation as shown in Fig. 2(h) for
Device X. This ZBP, resulting from ABS level crossing, is
ubiquitous and its underlying physics is well established
[29,48]. Now back to our Device A with dissipation; in
Figs. 2(b) and 2(c), the expected crossing points (arrows;
see also Fig. S6 in Ref. [43] for “waterfall” plots) show
significant suppression of zero-bias G and resolve split
peaks instead of ZBPs. This zero-bias peak being sup-
pressed to zero-bias valley (or split peaks) in devices with a
strongly dissipative lead is the main observation of this
Letter. We attribute this observation to the electron-boson
interaction effect caused by the dissipative lead. ECB
suppresses G in a nonuniform way: the suppression is
stronger for lower T and V. Therefore, the zero-bias G at
base T is suppressed the most, while the high-bias G is less
affected, leading to the splitting of ZBPs [16].
Figure 2(d) shows another ABS whose ground state can

be tuned from singlet (S) to doublet (D) continuously. At
the parity switching point (arrow), the levels are expected to
cross and form a ZBP for a regular nondissipative device.
Here with dissipation, the “expected” ZBP is again sup-
pressed. Figures 2(e) and 2(f) show the B dependence of the
ABSs. For the singlet case [Fig. 2(e)], the two peaks merge
towards zero energy (black arrow) where the “expected”
ZBP is suppressed. In Fig. 2(f), the two peaks move away
from zero energy, being consistent with the doublet
behavior [29]. For additional B and gate scans of the
ABSs in Figs. 2(a)–2(f), see Figs. S7 and S8 in Ref. [43].
For comparison, we show a ZBP data set in the control

Device X (without the dissipative resistor) in Figs. 2(g)
and 2(h). The ZBP, formed by merging of two ABS levels,
shows some robustness (nonsplitting) in gate [Fig. 2(g)]
and B [Fig. 2(h)] scans. The ZBP is not quantized, ruling
out its topological origin; see Fig. S9 in Ref. [43] for
additional scans. Figure 2(i) shows line cuts to contrast
suppressed ZBPs in Device A (black) and ZBPs in
Device X (red).
We now study the T dependence of the ABS in the

presence of dissipation. Figure 3(a) shows the ABS from
Fig. 2(d) at B ¼ 0.3 T, measured at base T and at higher
Ts. Figure 3(b) shows a near-zero energy ABS line cut from
Fig. 3(a) measured at different Ts (only four shown for
clarity). The solid lines are theory simulations using the
formula GðV; TÞ ¼ Rþ∞

−∞ Gðϵ; 0Þf½∂fðeV − ϵ; TÞ�=∂ϵgdϵ,
where fðE; TÞ ¼ ½1=ðeE=kBT þ 1Þ� is the Fermi distribution
function. Note the unit eV in GðV; TÞ is converted to ϵ in
Gðϵ; 0Þ for convenience. We replace Gðϵ; 0Þ with the
measured curve GðV; T ¼ 20 mKÞ to obtain GðV; TÞ.
This assumption should be valid for T much larger than
20 mK in interaction-free systems. This “thermal broad-
ening” simulation shows significant deviations from the
experimental data, suggesting that thermal averaging alone

(a) (d)
(g)

(b)

(c) (f) (i)

(e)
(h)

FIG. 2. (a)–(f) For Device A. (a) VTG scan of a singlet ABS at
B ¼ 0 T. (b),(c) B scans of the ABS from (a) (VTG labeled).
(d) VTG scan of another ABS at B ¼ 0 T with singlet (S) and
doublet (D) regions labeled. (e),(f) B scans of the singlet and
doublet ABSs. (g),(h) Gate and B scans of an ABS in Device X
(without dissipation). (i) Black and red curves are line cuts from
(b)–(e) and (g),(h), respectively (see corresponding arrows). B is
aligned with the nanowire axis. T ∼ 20 mK.
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cannot explain the T dependence of the near zero-energy
ABS. The measured G being larger than the simulated one
also suggests the lifting of ECB suppression at higher Ts.
We further plot the zero-bias G for all Ts in Fig. 3(c)

(black dots), and find a power law in T with an exponent
of ð1.7� 0.1Þr, assuming r ¼ 0.22� 0.01. At other gate
voltages where the ABS has finite energies, we also find
similar power-law-like behavior over an intermediate T
range (from ∼60 to ∼300 mK); see the brown and orange
dots with exponents of ð4.2� 0.2Þr and ð7.7� 0.3Þr.
Figure 3(a) (lower panel) shows all the extracted exponents
(for the left- and right-most regions, we cannot find
reasonable power-law-like fits). For more T dependence,
see Fig. S10 in Ref. [43].
Recently [49], we have theoretically studied dissipative

tunneling mediated by Andreev reflection and showed that
the power-law exponent can be 8r or 4r, corresponding to
coherent or incoherent processes. Other exponent values
between 8r, 4r, and 2r (normal tunneling) could also be
achieved depending on their mixing. Our observation here
shows some consistency with the theory but still requires
further systematic study. For example, we note the power
law T range in Fig. 3(c) is not large (only half a decade).
For T < 60 mK, the deviation between the data and the
power law is possibly due to the saturation of electron T.
For T > 300 mK, the deviation is probably due to gap

softening or quasiparticle poisoning where incoherent
Andreev reflection or normal tunneling contributes.
Nevertheless, optimizations are needed for better power-
law fits to fully understand “dissipative Andreev tunneling.”
In Fig. 3(d), we replot the black dots from Fig. 3(c),

deviating significantly from the thermal simulation
(the black line). By contrast, T dependence of ZBPs in
the control Device X shows reasonable agreement with the
simulation for both zero bias (Fig. 3(d), red) and finite bias
[Fig. 3(e)], suggesting that thermal averaging is indeed the
dominating effect in the T evolution of zero-energy ABS in
Device X. This sharp contrast between Figs. 3(b) and 3(e)
confirms the Fermi liquid T dependence in Device X
(without dissipation) and suggests the non-Fermi liquid
T dependence in Device A (with dissipation). The gap
softening at higher Ts, not included in the simulation, could
cause small deviations between data and simulation in
Device X, especially for nonzero energy ABSs (see Fig. S9
in Ref. [43]). Therefore, we restrict our thermal simulation
to only zero or near-zero energy ABSs.
We have shown several expected ZBPs being suppressed

by dissipation in Fig. 2. In fact, almost all ZBPs in Device
A are suppressed within the explored parameter space.
Figure 4(a) shows the zero-bias G over a large gate scan at
1 T where ZBPs are otherwise likely to occur [26]. The
dense diagonal lines suggest possible formations of quan-
tum dots and ABSs. Further bias scan [Fig. 4(b)], however,
resolves no ZBPs [see Fig. 4(c)]. We have also checked
many other regions in the parameter space of Device A, and
did not find clear ZBPs (see Fig. S11 in Ref. [43]). This
absence of ZBP is dramatically different from our previous
experience where ZBPs can be easily and routinely found

(a) (b)

(c) (d) (e)

FIG. 3. (a) Upper, gate scan of an ABS at 0.3 T. T ∼ 20 mK.
Lower, extracted power-law exponents from T dependence in
units of r. (b) T dependence (colored dots) of a line cut in (a). The
solid lines are theory simulations. (c) T dependence of the zero-
bias G from (a) at three VTGs, labeled in the lower panel (a).
Dashed lines are the power-law fits. (d) T dependence of the
normalized zero-bias G from (b) for Device A (black dots) and
Device X (red dots), together with thermal simulations (solid
lines). (e) T dependence of a ZBP [from Fig. 2(g)] in Device X
(dots) and thermal simulations (lines).

(a)

(b)

(c)

FIG. 4. (a) Zero-bias G at 1 T (aligned with the nanowire)
versus VBG and VTG. (b) G versus VTG and V. Lower panel zero-
bias line cut, corresponding to the orange dashed line in (a).
(c) Vertical line cuts from (b); see colored dashed lines, resolving
no ZBPs. T ∼ 20 mK.
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in dissipation-free devices [26,48]. Very rarely, faint and
small ZBP-like features can be barely visible; see
Fig. S11 in Ref. [43] for the only such case found in
Device A. For Devices B and C, we did not find any ZBP
(see Fig. S5 in Ref. [43]). We note that this observation is
consistent with our expectation since in regular devices:
(1) nonquantized ZBPs are ubiquitous in every device
[50]; (2) large (nearly quantized) ZBPs are rare and not in
every device [25,26].
We finally remark that the dissipation strength r is a

crucial parameter. If r is too strong (larger than 1=2), theory
[16] predicts that all ZBPs (including Majoranas) will be
suppressed. If r is less than 1=2, (quasi-) Majorana ZBPs
could survive while trivial ZBPs will be suppressed (the
latter demonstrated in this Letter). But r cannot be arbitrarily
small. For example, if r is approaching zero (Device X),
apparently trivial ZBPs will revive. We identify r ≥ 0.22 as
the strong dissipative regime based on the observation that
most of ABS-induced ZBPs are suppressed.
To summarize, we have implemented a strongly dissipa-

tive lead in InAs-Al hybrid nanowire devices. The dissipative
environment, confirmed by the observation of ECB with
power laws and non-Fermi liquid T dependence, can
significantly suppress the ABS-induced ZBPs, which
ubiquitously exist and disturb Majorana detections. Our
result could serve as a possible filter to narrow down the ZBP
phase diagram in future Majorana searches [16,49,51–54].
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