
Anomalous Thermal Expansion in Ising-like Puckered Sheets

Paul Z. Hanakata ,* Abigail Plummer, and David R. Nelson
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 8 June 2021; accepted 27 January 2022; published 17 February 2022)

Motivated by efforts to create thin nanoscale metamaterials and understand atomically thin binary
monolayers, we study the finite temperature statistical mechanics of arrays of bistable buckled dilations
embedded in free-standing two-dimensional crystalline membranes that are allowed to fluctuate in three
dimensions. The buckled nodes behave like discrete, but highly compressible, Ising spins, leading to a
phase transition at Tc with singularities in the staggered “magnetization,” susceptibility, and specific heat,
studied via molecular dynamics simulations. Unlike conventional Ising models, we observe a striking
divergence and sign change of the coefficient of thermal expansion near Tc caused by the coupling of
flexural phonons to the buckled spin texture. We argue that a phenomenological model coupling Ising
degrees of freedom to the flexural phonons in a thin elastic sheet can explain this unusual response.
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In recent decades, metamaterials with unique properties,
such as auxetic behavior and extreme stretchability, have
been realized at the macroscale [1,2] as well as the
nanoscale [3–7]. More recently, there has been growing
interest in designing mechanical materials with program-
mable memory, using multistable buckled materials [1,8–
12] and origami [13–16].
Buckled configurations have also been found (via either

first-principles simulations or experiments) in atomically
thin materials such as stanene, SnO, PbS, and borophane
polymorphs [17–23], as well as in graphene with topo-
logical defects or substitutional impurities [24–27]. At the
nanoscale, thermal fluctuations can strongly influence any
mechanical memories stored in the material as the energy
barriers between bistable states become comparable to the
temperature. Furthermore, thermal fluctuations also pro-
foundly change the mechanics of atomically thin materials
at long wavelengths [3,28–33]. Yet, few studies exist on the
interplay between microstructure (e.g., defects) and thermal
fluctuations in these atomically thin materials.
We study here the thermal response and phase transitions

of puckered sheets with square arrays of buckled positive
and negative dilational defects using molecular dynamics
simulations. We find that puckered membranes undergo
highly compressible Ising-like phase transitions. We also
observe an anomalous thermal expansion, where the
typically negative coefficient of thermal expansion briefly
becomes positive close to the transition, which we explain
with a theoretical model coupling spin and elastic degrees
of freedom. Creating a highly tunable coefficient of thermal
expansion, spanning both positive and negative values, is a
goal of many metamaterial design efforts, and we are not
aware of any other physically realizable 2D material
expected to have this property [34–36]. This unusual
anomaly could, for example, be leveraged to create

nanoscale device components whose dimensions are
insensitive to thermal changes at a particular operating
temperature.
The model.—Since ab initiomolecular dynamics [37] are

computationally expensive for studying phase transitions
and atomistic potentials for puckered materials are not yet
developed, we use a coarse-grained discrete membrane
model [38], tuned to approximate an isotropic elastic sheet
in the continuum limit. Nodes are connected by harmonic
springs [Fig. 1(a)] and there is an energetic cost when the
normals of neighboring planes are not aligned [Fig. 1(b)].
The total energy, adapted from Ref. [38], is given by

E ¼ k
2

X
hi;ji

ðjri − rjj − aijÞ2 þ κ̂
X
hα;βi

ð1 − nα · nβÞ; ð1Þ

where k is the spring constant, κ̂ is the microscopic bending
rigidity, and aij is the rest length between two connected
nodes, i and j. The first sum is over connected nodes and
the second sum is over neighboring triangular planes. This
model (with aij ¼ a0, nodes on a triangular lattice) has
been shown to produce mechanical [25] and thermal
properties [29,30] as well as height-height correlation
functions [39] consistent with simulation results of 2D
materials (e.g., graphene and MoS2) using atomistic poten-
tials [25,40,41] (Supplemental Material, Sec. VII) [42].
Furthermore, anticipating our observations of critical phe-
nomena, we expect aspects of the behavior of the system to
be insensitive to microscopic details due to universality.
In this Letter, the nodes are arranged on a square lattice

and the dilation sites B are embedded into a background
matrix of standard, undilated sites A. The dilations are
modeled by changing the preferred lengths of the
bonds between A and B sites [11], mimicking buckled
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monolayers (e.g., SnO and PbS [18,21]). The rest lengths
are aAA ¼ a0, āAA ¼ a0

ffiffiffi
2

p
, aAB ¼ a0ð1þ ϵÞ, and āAB ¼

a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ϵþ ϵ2=2Þ

p
, where ϵ is the fractional change in

the bond length, and ā denotes a diagonal bond. For pristine
membranes, the corresponding continuum Young’s modu-
lus is Y ¼ 4k=3 and the continuum bending rigidity is κ ¼
κ̂ [11]. The continuum size of the dilation is defined as
Ω0 ¼ 4a20ϵ [11]. We choose microscopic elastic parameters
a0 ¼ 1, k ¼ 100, κ̂ ¼ 1, and ϵ ¼ �0.1. Here we study
membranes with dilations that provide positive and neg-
ative extra area (Ω0 > 0 and Ω0 < 0, respectively) with
periodic boundary conditions in the x and y directions. See
the Supplemental Material Sec. IV [42] for details on other
parameter choices. Related tethered membrane models
have been studied before [51–54], but with quenched
random disorder rather than regular defect arrays.
Mapping buckled structures to Ising spins.—We first

describe the behavior of the model at T ¼ 0. As the cost of
stretching and/or size of the dilation increases, the system
crosses a buckling threshold, and a subset of the nodes will
prefer to buckle out of the plane. As shown in Figs. 1(c) and
1(d), the relaxed configurations of isolated buckled positive
and negative dilations differ. The positive dilations create
localized, peaked structures, and the negative dilations lead
to saddlelike deformations. This difference can be under-
stood by considering the angular deficit or surplus at the
dilation vertex in the inextensible limit—positive dilations

have a local angular deficit (discrete positive Gaussian
curvature) and negative dilations have a local angular
surplus (discrete negative Gaussian curvature).
Despite these differences, we can assign Ising spin

variables to dense, square arrays of either positive or
negative dilations. In arrays of positive dilations at
T ¼ 0, the dilations themselves buckle out of the plane
[Fig. 1(e)]. In arrays of negative dilations, the dilations
remain in a single plane at T ¼ 0, and sites on the lattice
dual to the dilation superlattice buckle [Fig. 1(f)]. We
assign a spin variable of �1 to each buckled site depending
on whether the dilation or dual site buckles up or down. At
finite temperature, we assign spins using nodes’ positions
relative to the local planes formed by their neighbors to
account for thermal fluctuations. With this mapping, the
buckled structures shown in Figs. 1(e) and 1(f) are
equivalent to checkerboard spin configurations, mechanical
analogs of a nearest-neighbor Ising antiferromagnet
(AFM). Our simulations support the conclusion that the
AFM state is the lowest energy state for the buckled
positive and negative dilation arrays that we study. See
the Supplemental Material, Secs. III and V [42] and
Ref. [11] for further discussion of the buckling threshold
and the ground states of arrays.
Finite temperature simulations.—As we are interested in

the interplay between microstructure and temperature, we
perform molecular dynamics (MD) simulations of both
pristine membranes and membranes with positive and
negative dilation defects at finite temperature using
HOOMD [55]. The membranes have LN × LN nodes with
LN ranging from 24 to 192. Systems with L2

N nodes have
NI ¼ ðL2

N=4Þ dilations. Temperatures are reported in units
of the bending energy (κ̂ ¼ 1). See the Supplemental
Material Secs. IV and V [42] for more simulation details.
Magnetic ordering and phase transitions.—The map-

ping between buckled structures and Ising spins suggests
we can observe a “magnetic” phase transition at finite
temperature in our MD simulations. We use the staggered
magnetization per spin as the order parameter mst ¼
ð1=NIÞ

P
i sið−1Þxiþyi , where si ¼ �1 is the spin on site

i, and xi, yi are the site indices on a 2D square lattice
[Figs. 3(d) and 3(e)]. Figure 2 shows hmst

2i for puckered
membranes as a function of T. We see clearly that
pronounced AFM order for T < 0.2 rapidly becomes much
smaller for T > 0.2. Snapshots of spin configurations for
several temperatures are shown in Fig. 2 and the
Supplemental Material, Sec. V [42]. Note that in our model
the bond topology remains unchanged across the temper-
ature range studied.
In studies of critical phenomena, it is typical to mea-

sure diverging quantities such as the magnetic susce-
ptibility χ and specific heat C. Following standard methods
[57–59], we calculate the staggered susceptibility as
χ0 ¼ ðNI=kBTÞðhmst

2i − hjmstji2Þ. This computationally
convenient quantity differs from the true susceptibility
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FIG. 1. (a) Square lattice model with background sites A and a
single dilation site B. (b) Schematic of normals of two neighbor-
ing triangular plaquettes α and β. (c),(d) Height profiles of
relaxed membranes with a single (c) positive and (d) negative
dilation at T ¼ 0. The color represents the height relative to the
zero plane in units of the lattice spacing a0. The dilation nodes are
indicated with a larger radius sphere. (e),(f) Top views of
membranes with a square array of positive (e) and negative
(f) dilations in a (0, 2) array at T ¼ 0. Both display a checker-
board configuration characteristic of antiferromagnetism at T ¼ 0
when spins are defined as the nodes that buckle out of plane.
Node positions are visualized using OVITO software [50].
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by a constant factor above the transition and does not affect
the susceptibility exponents [57,58]. See the Supplemental
Material, Sec. VI [42] for details. We also calculate the
specific heat per site as C ¼ ð1=NkBT2ÞðhE2i − hEi2Þ.
This measurement uses the total potential energy, so N
includes all sites.
The staggered susceptibility and specific heat of mem-

branes with positive dilations as a function of T for a wide
range of system sizes are shown in Fig. 3. We see that χ0

and C reach maxima at T ≃ 0.2 and the peaks increase with
system size, a signature of phase transitions in finite
systems. Similar results for membranes with negative
dilations appear in the Supplemental Material, Sec. VI
[42]. In finite systems, the correlation length ξ ∼ jT − Tcj−ν
cannot exceed the system size and thus the diverging
quantities will reach a maximum when ξ ≃ L. Finite size
scaling allows us to extract critical exponents [57–59].
Upon fitting the data with power law functions, we

measure γ=ν ¼ 1.741� 0.062, α=ν ¼ 0.068� 0.018 for
Ω0 > 0 and γ=ν ¼ 1.684� 0.061, α=ν ¼ 0.074� 0.016
for Ω0 < 0. The measurement of γ=ν is consistent with
the rigid 2D Ising model value, 7=4. The value of α=ν, on
the other hand, appears to be approximately four standard
deviations away from 0, the 2D Ising expectation. Although
our specific heat data cannot completely exclude a rigid
Ising model logarithmic divergence in the specific heat,
this observation suggests that the universality class is not
2D Ising. We can plausibly attribute this departure to the
long-range interaction between staggered magnetization

and Gaussian curvature that arises in the phenomeno-
logical model introduced in the following section. In the
Supplemental Material, Sec. VI [42], we extract ν and
present data for the exponents α, γ, and β.
Anomalous thermal expansion.—The order-disorder

transition has a striking effect on the thermal expansion
of the membrane as a function of temperature. We first
examine the thermal contraction of a pristine membrane (no
dilations) to establish a point of comparison. Thermalized
membranes have been studied extensively using MD and
Monte Carlo simulations [28–30,39,40,60,61], and their
negative coefficient of thermal expansion αT has been
calculated analytically [62].

αT ¼ 1

A0

dA
dT

≃ −
kB
4πκ

�
ln

�
lth
a0

�
þ 1

η
−
1

2

�
; ð2Þ

where the thermal length lth≡ðπ=qthÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16π3κ2=3YkBTÞ

p
and η is a universal scaling exponent describing flexural
phonons, η ≈ 0.8 [62]. In our simulations, we vary T from
0.100 to 0.400, which varies lth from ∼3.5a0 to 1.8a0.
Figure 4(a) shows the average projected area divided by the
area of a flat membrane as a function of T. Upon comput-
ing αT ¼ ð1=A0ÞðdA=dTÞ, we find excellent agreement
with Eq. (2) with no free parameters [red dashed line in
Fig. 4(d)], using the zero-temperature values of the bending
rigidity and Young’s modulus. The pristine membrane
model therefore reproduces the negative coefficient of
thermal expansion of materials such as graphene [63]. In
contrast, positive thermal expansion has been measured in
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FIG. 2. Squared staggered magnetization hmst
2i as a function of

temperature T for LN ¼ 120. Plots for other system sizes can be
found in the Supplemental Material, Sec. VI [42]. Error bars are
calculated with between 10 and 50 runs, as described in the
Supplemental Material, Sec. IV [42]. Jackknife method (see, e.g.,
Ref. [56]) is used to estimate statistical errors. The insets show
snapshots of spin configurations of membranes with positive
dilations (Ω0 > 0) for T ¼ 0.15, 0.19, 0.25, and 0.30. The spin
configurations for membranes with negative dilations are similar.
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FIG. 3. (a) Staggered susceptibility χ0 and (b) specific heat C as
a function of temperature T for different system sizes for
membranes with positive dilations. Plots for peaks as a function
of system size and plots for membranes with negative dilations
can be found in the Supplemental Material, Sec. VI [42].
(c) Snapshot of a fluctuating puckered surface close to Tc.
(d) Top view of up(down) buckled sites [red(blue)] and (e) the
corresponding staggered spin configuration for the surface
pictured in (c).
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relatively thick free-standing transition metal dichalcoge-
nides, possibly due to a higher bending rigidity suppressing
flexural phonons [41,64–66].
In contrast, hAi=A0 (and hence αT) for puckered mem-

branes shows nonmonotonic behavior. Here, the constant
factor A0 is the projected area of the lowest energy state at
T ¼ 0, a buckled checkerboard as described above. We
observe that, while there is shrinkage for T < Tc as for a
pristine membrane, the value of αT is less strongly negative.
For T ≪ Tc, α

puckered
T =αpristineT ∼ 0.5, suggesting that mem-

branes with ordered puckers stiffen. This observation is
consistent with a theoretical argument based on Ref. [67],
treating the buckled dilation texture as a frozen background
metric (Supplemental Material [42], Sec. II). The calcu-
lation predicts the existence of an increased bending
rigidity at T ¼ 0, κR ≈ κ½1þ ð3Yh20=32κÞ�, where h0 is
the amplitude of the buckled membrane. Close to the
transition, however, αT increases rapidly and eventually
reaches a positive value. Evidently, the swelling due to
disordered up and down puckers on all length scales near

Tc dominates the entropic shrinkage present in pristine
sheets [62–64].
Phenomenological model.—To better understand the

observed differences between the thermal expansion of
pristine membranes and membranes with dilations, we
introduce a “flexural Ising model,” with an effective free
energy that couples an Ising order parameter to a thin
elastic sheet that is allowed to fluctuate both in and out of
the plane. We assume coarse-graining such that the short
wavelength, impurity-scale phonons are accounted for by a
staggered pucker order parameter mst, which interacts with
a long wavelength nonlinear strain matrix, uij.

F ¼
Z

d2x

�
κ

2
ð∇2fÞ2 þ μu2ij þ

λ

2
u2kk þ

K
2
ð∇mstÞ2

þ r
2
m2

st þ um4
st þ gm2

stukk

�
; ð3Þ

where uij is related to in-plane displacements uj and
out-of-plane displacements f by uij ¼ ð1=2Þ½ð∂ui=∂xjÞ þ
ð∂uj=∂xiÞ þ ð∂f=∂xiÞð∂f=∂xjÞ� [68]. The term propor-
tional to g is the lowest order contribution allowed by
symmetry coupling the phonon and order parameter fields.
Similar free energies have been used to study flat com-
pressible 2D Ising models in the limit f ¼ 0 [69,70]. We
also note similarities to free energies used to model
electron-phonon interactions in graphene [71–74].
Upon tracing out the in-plane phonons according to

standard methods [69,70,75], Eq. (3) becomes

Feff ¼
g2

2A0

�
1

2μþ λ
−

1

μþ λ

��Z
d2xm2

st

�
2

þ
Z 0

d2x

�
Y
8
ðPT

ij∂if∂jfÞ2 þ
gμ

2μþ λ
ðm2

stPT
ij∂if∂jfÞ

�

þ
Z

d2x

�
κ

2
ð∇2fÞ2 þK

2
ð∇mstÞ2 þ

r
2
m2

st

þ
�
u−

g2

2ð2μþ λÞ
�
m4

st

�
; ð4Þ

where PT
ij is the transverse projection operator and the

primed integral omits q ¼ 0 modes. Equation (4) has three
terms that are not present for either pristine membranes or
the Ising model. The first and final terms, proportional to g2,
also appear for flat compressible 2D Ising models [69,76].
The term proportional to g, however, is unique to the flexural
Ising model. Since the Laplacian of − 1

2
PT
ij∂if∂jf is the

Gaussian curvature SðxÞ in the Monge representation [77],
this term represents a long-range interaction between the
squared staggeredmagnetization and theGaussian curvature
of the form ð1=2πÞ R d2x

R
d2x0mst

2ðxÞSðx0Þ lnðjx − x0jÞ.
A power counting argument suggests that the coefficient
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FIG. 4. Top row: Normalized area hAi=A0 as a function of T for
(a) pristine membranes, (b) membranes with positive dilations,
and (c) membranes with negative dilations for LN ¼ 120. hAi=A0

decreases with increasing T for pristine membranes whereas
hAi=A0 for puckered membranes shows non-monotonic behavior.
Bottom row: The coefficient of thermal expansion αT as a
function of T for (d) pristine membranes and (e) membranes
with dilations. The theoretical prediction of αT for pristine
membranes with no adjustable fitting parameters matches very
well with simulations (red dashed line). Far below Tc, αT for
membranes with dilations is negative, as for pristine membranes.
Close to Tc, αT increases rapidly and reaches a positive value,
decreasing again to a negative value for T well above Tc.
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w≡ ½gμ=ð2μþ λÞ� is a strongly relevant operator. We plan
to examine the behavior of w in more detail in future work.
We can calculate the coefficient of thermal expansion αT

by adding an in-plane pressure, and compare to the
simulation data in Fig. 4. As shown in Sec. I of the
Supplemental Material, we find the average change in area

hδAi ¼ −
gA0hm2

sti
μþ λ

−
A0

2

��∂f
∂xi

�
2
�
; ð5Þ

and coefficient of thermal expansion

αT ¼ 1

A0

dA
dT

¼ −
d
dT

�
ghm2

sti
μþ λ

�
−

d
dT

�
1

2

�∂f
∂xi

�
2
�
: ð6Þ

We expect that the microscopic couplings g and μþ λ
depend only weakly on temperature over the temperature
range of interest, provided we are far below the high
temperature crumpling transition. Therefore, the contribu-
tion from the first term is sharply peaked around Tc, given
the results in Fig. 2. We expect g > 0, as the antiferro-
magnetic state has a smaller projected area than the
ferromagnetic state at T ¼ 0, consistent with the positive
peak in αT at Tc observed in Fig. 4(e). The second term is
the usual entropic thermal shrinkage, also present for a
pristine membrane [62].
Conclusion.—We observe a phase transition in the

staggered magnetization of a puckered membrane, which
provides a mechanical analog of a highly compressible
antiferromagnetic Ising model. Furthermore, we find that
the order-disorder transition produces an anomalous ther-
mal response for puckered membranes. These observations
suggest a strong coupling between flexural phonons and the
ordering of the spins (buckled sites). We introduce a
phenomenological “flexural Ising model” that anticipates
a competing effect between entropic shrinkage due to out-
of-plane deformations and swelling due to pucker disorder
at the phase transition.
Our findings suggest that bistable buckled structures

change the thermal response of 2D materials, leading to a
tunable coefficient of thermal expansion. The ability to tune
thermal expansion is important for combining different
materials, as mismatched thermal expansion can affect the
longevity of integrated materials [78]. Materials with
tunable thermal expansion are rare and often require precise
engineering [34].
Since the phase transition temperature in our model

depends on the elastic constants of the host lattice and the
separation between dilations, one could imagine construct-
ing a nanocantilever or nanoactuator out of a puckered
membrane designed to be insensitive to thermal expansion
or shrinkage at the temperature at which it must work
(αT ¼ 0 at two temperatures, one above and one below Tc).
Additionally, the mechanism of an inefficient packing of
buckled structures resulting in a global expansion can be

applied to macroscale materials with multistable units
[10,12,35]. Moreover, our work suggests the possibility
of studying novel universality classes in 2D materials with
a coupling between spin and both in-plane and out-of-plane
displacements, generalizing past work on compressible
Ising models to include flexural phonons.
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