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The spin-glass transition in a field in finite dimension is analyzed directly at zero temperature using a
perturbative loop expansion around the Bethe lattice solution. The loop expansion is generated by the
M-layer construction whose first diagrams are evaluated numerically and analytically. The generalized
Ginzburg criterion reveals that the upper critical dimension below which mean-field theory fails is DU ≥ 8,
at variance with the classical result DU ¼ 6 yielded by finite-temperature replica field theory. Our
expansion around the Bethe lattice has two crucial differences with respect to the classical one. The finite
connectivity z of the lattice is directly included from the beginning in the Bethe lattice, while in the classical
computation the finite connectivity is obtained through an expansion in 1=z. Moreover, if one is interested
in the zero temperature (T ¼ 0) transition, one can directly expand around the T ¼ 0 Bethe transition. The
expansion directly at T ¼ 0 is not possible in the classical framework because the fully connected spin
glass does not have a transition at T ¼ 0, being in the broken phase for any value of the external field.
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Spin glasses (SG) are the prototype of disordered
models. The fully connected (FC) mean-field (MF) version,
introduced by Sherrington and Kirkpatrick (SK) in [1], was
solved forty years ago [2]. The SK model in a field h
undergoes a phase transition from a paramagnetic to a SG
phase along the de Almeida-Thouless (dAT) line hcðTÞ [3],
that diverges for T → 0. At T ¼ 0 the SK model is in the
SG phase, no matter how strong the external field is.
The solution to the SKmodel requires the introduction of

replicas [2]. To identify the dAT line one can compute the
fluctuations around the paramagnetic solution, via the study
of the spectrum of the Hessian of the replicated free energy
[3]. One can identify three sectors of Hessian eigenvectors,
that are called replicon, longitudinal, and anomalous [4,5].
On the dAT line, the replicon eigenvalue becomes critical
and stays critical in the whole SG phase, which is thus
marginally stable. Below the dAT line the replica symmetry
is spontaneously broken and the SK model has an expo-
nential number of pure states, organized in an ultrametric
structure. This highly nontrivial solution has been proved to
be rigorously exact [6,7].
Beyond MF, things are much less clear. In particular, it is

not known whether the finite-dimensional model with
external field has a transition to a SG phase. Numerical
simulations suggest a positive answer forD ¼ 4 [8], but for
D ¼ 3 the results are inconclusive due to huge finite-size
effects and very large equilibration times [9,10]: at the state

of the art, it is impossible to decide if a transition exists just
based on numerical results.
Usually, in statistical mechanics, the finite-dimensional

behavior of models can be deduced using the powerful
method of renormalization group (RG) [11]. One can set up
a field theory for the order parameter associated with the
desired transition, constructing a Lagrangian that is the
most general one compatible with the symmetries of
the problem. The basic approximation gives the so-called
Landau-Ginzburg (LG) theory. It corresponds to the
assumption that there are no fluctuations in the field and
it is exact for the MF FC model. The next step is to see how
the fluctuations, associated with the short-range inter-
actions, modify the MF picture. Performing this task
perturbatively leads to a loop-expansion around the LG
solution. Looking at when the one-loop correction becomes
important, one identifies the upper critical dimension DU at
which the MF theory does not predict the correct critical
behavior anymore: this is the so-called generalized
Ginzburg criterium. At this point, a perturbative expansion
around the MF solution can be constructed, with a small
parameter ϵ ¼ DU −D, to see how the MF transitions are
modified at dimension D below DU.
Unfortunately, this program cannot be carried out so

simply for SG models in a field. The MF theory in the high-
temperature phase and the first-order perturbative expan-
sion around it were analyzed in different papers [12–17].

PHYSICAL REVIEW LETTERS 128, 075702 (2022)
Editors' Suggestion

0031-9007=22=128(7)=075702(6) 075702-1 © 2022 American Physical Society

https://orcid.org/0000-0002-6277-359X
https://orcid.org/0000-0003-0837-9783
https://orcid.org/0000-0001-6500-5222
https://orcid.org/0000-0001-9749-5991
https://orcid.org/0000-0003-4970-7376
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.075702&domain=pdf&date_stamp=2022-02-18
https://doi.org/10.1103/PhysRevLett.128.075702
https://doi.org/10.1103/PhysRevLett.128.075702
https://doi.org/10.1103/PhysRevLett.128.075702
https://doi.org/10.1103/PhysRevLett.128.075702


Let us stress that the Lagrangian is very complicated: three
bare masses, associated with the three sectors, and eight
cubic vertices involving the replica fields. Forty years of
work were not enough to understand the fate of the SG
transition in finite dimension. For D > DFC

U ¼ 6, the MF
FC Fixed Point (FP) is stable, however, its basin of
attraction shrinks to zero approaching DFC

U from above.
The main problem is the absence of a perturbative stable FP
below D ¼ 6 [12,14]: this lack is not a proof of nonexist-
ence of SG phase in low dimensions and many scenarios
have been put forward. Some authors have tried to extract
information from the perturbative analysis nonetheless
[16,17], possibly including quartic interactions [18] that
are known to have a nontrivial role [19]. It could also be
possible that a nonperturbative FP exists [20]. Recently, the
perturbative expansion was computed up to the second-
order [21,22], finding a strong-coupling FP that could in
principle be stable at any dimension, even above DFC

U . This
new FP is in a way “nonperturbative” as it cannot be
reached continuously from the MF FC one just lowering the
dimension. However, the perturbative analysis in the
strong-coupling regime is uncontrolled: thus the existence
and relevance of this new FP cannot be stated just with the
methods of Refs. [21,22].
Alternatively, the use of real-space RG methods is the

natural choice if we are looking for nonperturbative FP in
finite dimensions. The ensemble RG (ERG)[23] and the
Migdal-Kadanoff (MK) RG [24] were applied to the SG in
a field: for high enough dimensions (D≳ 8) a critical FP at
T ¼ 0 was found, different from the MF FC one. We keep
in mind that in the FC SK model there is no transition at
T ¼ 0 due to the diverging connectivity, an unrealistic
feature that is not present in finite-dimensional models.
However, the MK and the ERG flows are obtained after
some crude approximations, as usually done when using
nonperturbative RG, that are not exact. Thus they can
provide useful indications, but cannot offer a definite
answer to the problem.
Recently, a new loop expansion around the MF Bethe

solution has been proposed in [25]. SG models in a field
can be solved on the Bethe lattice (BL) and the finite
connectivity allows for local fluctuations of the order
parameter. This is an important feature shared with
finite-dimensional systems. The loop expansion around
the Bethe solution is obtained via the M-layer construction
[25]. One introduces M copies of the original finite-
dimensional lattice and generates a new lattice through a
local random rewiring of the links. For largeM the resulting
M-layer lattice looks locally like a BL (and thus all
observables tend to their MF BL values with small 1=M
corrections), while at large distances the lattice retains its
finite-dimensional character. This has important conse-
quences for critical behavior: close to the MF critical point
the system displays MF critical behavior until the corre-
lation length reaches a size where the finite-dimensional

nature of the model is dominant and the correct non-MF
exponents are observed due to universality. The 1=M
expansion (for M ¼ 1 one recovers the original model)
takes the form of a diagrammatic loops expansion with
appropriate rules [25] and it is very useful to study critical
phenomena. Similarly to field-theoretical loops expansion,
one can apply the Ginzburg criterion and identify the
upper critical dimension DU where the corrections alter the
MF behavior. For D < DU the expansion can then be
used to obtain the critical exponents through standard RG
treatments.
The expansion around the BL solution has the same

advantages as standard field-theoretical loop expansions,
but has a larger range of applicability, as it can be used for
any problem that displays a continuous phase transition on
the BL. Moreover, while in the classical expansion finite
connectivity z is obtained as a result of a 1=z expansion
around infinite connectivity, in the expansion around Bethe
lattice z is finite and fixed from the beginning, introducing
fewer artifacts. Recent applications of the BL expansion
include the random field Ising model (RFIM) at zero
temperature [26], the bootstrap percolation [27], and the
glass crossover [28]. It has also been applied to the SG in a
field in the limit of high connectivity for T > 0 [29],
showing that in such a limit the expansion is completely
equivalent to the standard expansion around the MF FC
solution [12,14]. This is in agreement with the fact
discussed in Ref. [25] that the 1=M expansion and the
standard field theoretical expansion are completely equiv-
alent if the physics of the model on the BL is like the one on
the FC lattice.
In this Letter, we study the M-layer BL expansion of the

SG in a field directly at T ¼ 0 from both the paramagnetic
and the SG phase. We are particularly interested in doing
the computation directly at T ¼ 0 because we know that, in
this particular situation, degeneracy of eigenvalues can lead
to different physics with respect to finite temperature, as
happens, for example, for the RFIM. However, the classical
expansion cannot be used directly at T ¼ 0, because there
is no transition in the SK model at T ¼ 0: the system is in
the broken phase for any value of the field. Things are
different in the Bethe lattice, for which the dAT line ends at
a finite critical field hc at T ¼ 0. Direct expansion around
this point is thus possible. We show that finite connectivity
and zero temperature lead to a critical behavior different
from the one of the replicated field theory expansion at
finite temperature. In particular, the generalized Ginzburg
criterion leads to an upper critical dimension DU ≥ 8.
To be concrete, we consider the model Hamiltonian

H ¼ −
X
ðijÞ∈E

Jijσiσj − h
X
i

σi; ð1Þ

where the spins take the values σi ¼ �1, h is a constant
external field [30], and the quenched couplings Jij have a
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Gaussian distribution with J̄ ¼ 0, J2 ¼ ð1=z − 1Þ, z being
the (fixed) connectivity of the model. The first sum is over
the set of edges E of a D-dimensional lattice.
Approaching the transition from the paramagnetic side

the order parameter is zero and we analyze, as usual, the
behavior of spin correlations. Following Ref. [25], a
generic correlation or response function GðxÞ between
two points at distance x on the original lattice is given
at leading order in 1=M by

GðxÞ ¼ 1

M

X∞
L¼1

N ðx; LÞGBLðLÞ; ð2Þ

where N ðx; LÞ is the number of nonbacktracking paths of
length L connecting the two points at distance x on the
original lattice (M ¼ 1) and GBLðLÞ is the analyzed
correlation function between two spins at distance L
on a BL with connectivity z ¼ 2D. While N ðx; LÞ is
known [25]

N ðx; LÞ ∝ ð2D − 1ÞL exp ½−x2=ð4LÞ�L−D=2; ð3Þ

the crucial model-dependent quantity to be computed is
GBLðLÞ. Working at T ¼ 0 it is worth focusing on the
response function Rij defined for the spin-glass model via
the following procedure: being σ⋆ the ground state (GS)
configuration; compute the new GS under the constraint
σi ¼ −σ⋆i ; if also σj flips, then Rij ¼ 1, otherwise Rij ¼ 0.
One can show [31] that the average response function on
the BL can be computed exactly by applying L times an
integral operator. Consequently, its behavior at large L is
given by

RBLðLÞ ∝ λL; ð4Þ

where λ is the largest eigenvalue of the integral operator
[more details on λ can be found in Supplemental Material
(SM) [31] ]. It goes to λc ¼ ð1=2D − 1Þ at the critical point
of the BL, such that the total response diverges and the
paramagnetic solution is no longer stable [35]. Inserting
Eqs. (4) and (3) into Eq. (2), we obtain for the Fourier
transform of the response function in the small momentum
region:

RðpÞ ∝ 1

M

X
L¼1;∞

½λð2D − 1Þ�L expð−Lp2Þ

≃
1

M

Z
∞

0

dL exp ½−Lðp2 þ τÞ� ¼ 1

M
1

p2 þ τ
; ð5Þ

with τ≡ − log½λð2D − 1Þ�. Note that τ → 0 when λ → λc:
at leading order the response has the form of the bare
propagator in a field theory and becomes critical at the BL
critical point.

Let us now look at the 1=M2 correction to the bare
propagator. According to Ref. [25], this is given by the sum
of the contributions coming from all the paths that connect
the two points on the original lattice containing just one
topological loop. The contribution of a specific topological
diagram in Fourier space is

G̃loopðpÞ ¼
1

M2

X
L⃗

N ðp; L⃗ÞGBL
loopðL⃗Þ; ð6Þ

where L⃗ is a vector containing the lengths of each line in the
topological diagram and the factor N ðp; L⃗Þ accounts for
the number of such topological diagrams on the original
regular lattice with M ¼ 1. The term GBL

loopðL⃗Þ is again the
only term depending on the model: it is the so-called line-
connected value [25] that the observable takes on a BL in
which the analyzed topological loop has been manually
inserted. The term “line connected” means that one should
add the value of the observable evaluated on each of the
subgraphs that are obtained from the original structure by
sequentially removing its lines times a factor −1 for each
line removed.
Let us point out two crucial differences between this

expansion and the standard expansion around LG theory:
(i) the latter has just cubic vertices, while in the BL
expansion vertices of all degrees can be present; (ii) the
diagrams of the BL expansion have a clear physical
meaning while the Feynman diagrams of the standard
expansion are just a smart way to compute the desired
corrections.
At one loop we consider the two diagrams shown in

Fig. 1. The left one has a quartic vertex, for this reason it is
not included in the standard cubic theory. We compute
GBL

loopðL⃗Þ on this diagram with the same tools as for the
0-loop term (all the details in the SM). The resulting
contribution to the response function coming from this

quartic loop is RBL
4−loopðL⃗Þ ∝ LAλ

ΣðL⃗Þ, where ΣðL⃗Þ is the

sum of all L’s, i.e., ΣðL⃗Þ ¼ LA þ LI þ LO in this diagram,

LB

LA

LO

LI

LA

LO

LI

FIG. 1. One loop topological diagrams relevant for the first
order correction around the BL: the “quartic loop” on the left has
a vertex with four lines, while the “cubic loop” on the right has
only vertices with three lines.
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and λ is the same eigenvalue on the BL as in the previous
discussion. The cubic loop (on the right in Fig. 1) has cubic
vertices and is already present in the LG theory. Its behavior
should be analyzed when LA and LB are large, because we
checked that when one of the two internal legs is short, the
diagram reduces to the quartic loop. For large LA and

LB, we obtain RBL
3−loopðL⃗Þ ∝ ðLALB=LA þ LBÞλΣðL⃗Þ, with

ΣðL⃗Þ ¼ LA þ LB þ LI þ LO.
The termN ðp; L⃗Þ has already been computed [26] and it

reads, respectively, for the quartic and cubic loops

N ðp; L⃗Þ ∝ ð2D − 1ÞΣðL⃗Þ
LA

D=2 e−ðLIþLOÞp2

; ð7Þ

N ðp; L⃗Þ ∝ ð2D − 1ÞΣðL⃗Þ
ðLA þ LBÞD=2 e

−ðLIþLOþ LALB
LAþLB

Þp2

: ð8Þ

Inserting the above expression and RBL
3−loopðL⃗Þ in Eq. (6),

we obtain the correction to the response given by the cubic
loop. In order to apply the Ginzburg criterion, it is more
convenient to consider the inverse susceptibility

½MRðpÞ�−1 ¼ τ þ p2

þ c
M

X
LA;LB

LALB

ðLA þ LBÞD=2þ1
e−LAτ−LBτ−

LALB
LAþLB

p2

;

that can be rewritten as

½MRðpÞ�−1 ¼ Aðτ − τcÞ þ Bp2 þOðp4Þ; with

τc ¼
c
M

X
LA;LB

LALB

ðLA þ LBÞD=2þ1
; ð9Þ

A ¼ 1 −
c
M

X
LA;LB

LALB

ðLA þ LBÞD=2 ; ð10Þ

B ¼ 1 −
c
M

X
LA;LB

L2
AL

2
B

ðLA þ LBÞD=2þ2
: ð11Þ

We see that for large but finiteM, theM-layer lattice has the
same critical behavior of the BL (M ¼ ∞), with small
Oð1=MÞ shifts of the critical temperature and of the
constants A and B. However, the above sums over LA
and LB are divergent, respectively, for D ≤ 6, D ≤ 8 and
D ≤ 8 and thus the Ginzburg criterion tells us that the
critical exponents cannot be those of the Gaussian theory
below D ¼ 8. The same argument applied to the quartic
loop would give a critical dimension equal to 6 (the
diagram indeed appears in the computation of the con-
nected correlation of the RFIM [26]) and allows to neglect
the quartic loop with respect to the cubic one. We also
checked that the generalized Ginzburg criterion coming
from the replica symmetry breaking (RSB) phase predicts

an upper critical dimension DU ≥ 8, in perfect agreement
with the computation in the symmetric phase [37].
To go below the upper critical dimension we rescale

lengths as L ¼ x=τ and momenta as p2 ¼ k2τ, obtaining

½MRðpÞ�−1=τ ¼ 1þ k2 þ cτD=2−4

M

×
Z

∞

τ=Λ
dxA

Z
∞

τ=Λ
dxB

xAxBe
−xA−xB−

xAxB
xAþxB

k2

ðxA þ xBÞD=2þ1
:

ð12Þ

The above expression shows that loop corrections are not
negligible for D < 8 when τ → 0. Indeed, for D < 8 the
integral would be divergent at short distances if not for the
lattice cutoff Λ. One should check if, by standard mass,
field, and coupling constant renormalization, the above
1-loop diagrams and higher-order diagrams as well can be
made finite in the limit Λ → ∞. Then the critical exponents
can be computed by standard methods [38–40] provided an
OðϵÞ nontrivial FP of the β function can be identified (at
variance with the T > 0 case [12]): this program is
currently under way. An interesting question is if this
putative zero-temperature FP describes also the T > 0
physics, i.e., if the temperature is an irrelevant operator
in the Wilson RG sense. We already mentioned that the
expansion around the BL was applied to the SG in a field
for T > 0 and in the limit of large z in Ref. [29]. Even if we
take the limit T → 0 of that expansion, the 1-loop correc-
tion results to be of the standard form (the detailed
computation is in the SM). Finite connectivity is thus a
crucial ingredient in the computation, and the limits z → ∞
and T → 0 cannot be exchanged. This is a clear indication
that for SG models the expansion around the FC model
cannot describe the behavior of finite-dimensional systems.
We emphasize that the FP we have found in this work by

expanding around the BL is different from the finite
temperature MF FC one even for D > 8. Indeed when
T > 0 one can demonstrate that the critical behavior of all
the possible correlation functions is the same (mainly
because they all receive a critical contribution by the only
critical eigenvalue, the replicon [29,41]). However, if the
relevant FP is a T ¼ 0 one, different correlation functions
could decay differently (this effect is linked to the degen-
eracy of the three eigenvalues that become all critical when
T → 0), so one should look at them all. This is what
happens in the RFIM, whose physics is governed by a T ¼
0 FP and whose correlation function associated with
disorder fluctuations decays more slowly than the one
associated with thermal fluctuations [41]. The same behav-
ior is predicted by the MK RG of Ref. [24] for the SG in a
field. We leave the analysis of the disorder correlation
function to future work.
We just looked to the first order correction in the BL

expansion. Going beyond this computation is really hard:
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the second-order terms are already much involved in the
standard expansion (see Ref. [21]), in the BL expansion one
should consider in addition also diagrams with quartic
vertices. A simple evaluation of the diagrams with power
counting method is not possible because exact cancellation
could happen and a quantitative computation is needed.
The possibility that two-loop diagrams (or even higher
order diagrams) diverge at a dimension D > 8 cannot be
excluded, even if it would be quite unexpected, having
never been observed in any known model. For this reason
the best that we could say is thatDU ≥ 8. The identification
of simple rules for the computation of Feynman diagrams is
one of our planned next steps.
A final remark on the value DU ¼ 8: in Ref. [24] the

upper critical dimension was found to be D ≃ 8 with the
MK RG method, while for D < 8 no stable SG phase was
found. It is thus important to numerically address the
problem of the identification of DU. Unfortunately,
numerical simulations cannot be performed directly on
hypercubic lattices of such high D. For this reason the
perfect candidates are the one-dimensional long-range
(LR) models. There exist two versions of these. (i) The
first is a fully connected version, where the variance of the
couplings between any two spins decays with their mutual
distance r as a power law r−σ [42–46]. When σ → 0, one
recovers the MF SK model. (ii) The second is a diluted
version, introduced to reduce the simulation time, where
all couplings are Oð1Þ and present with a probability
decaying as r−σ [47–50]. When σ → 0, one recovers the
BL model.
These models are proxies for short range (SR) models in

higher dimensions: in both cases changing σ is equivalent
to change the dimension d of the corresponding SR model.
Relations that link σ and d have been studied in detail
[51,52]. The numerical investigation of LR models was
focused on the existence of a transition for the SG in
external field below DU, for effective SR dimensions
d ≃ 3, 4, 5 [48,49,51], while only data in d ≃ 10, 20 were
collected in the assumed MF region [48,49,53]. One should
then check which is DU with and without field: Is there a
signature in the LR models that DU changes from 6 to 8
when an external field is added? One could look at the
critical exponent ν as a function of d that should have a kink
exactly atDU in LR models [23]. Moreover, one could look
at which kind of finite size scaling (MF or non-MF) leads to
a better collapse of numerical data at different sizes,
depending on d [53]. We expect that DU is different for
the FC and the diluted version of the LR models. In the
past, the given explanation for their equivalence was based
on standard field theoretical analysis [42]. However, if the
BL expansion gives different prediction with respect to the
FC standard expansion, FC and the diluted version of LR
models should display differences, because of their differ-
ent limits when σ → 0.
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Parisi généralisée, Comptes Rendus Math. 337, 111 (2003).

[7] D. Panchenko, The Sherrington-Kirkpatrick Model
(Springer Science & Business Media, New York, 2013).

[8] R. A. Baños et al. (Janus Collaboration), Thermodynamic
glass transition in a spin glass without time-reversal sym-
metry, Proc. Natl. Acad. Sci. U.S.A. 109, 6452 (2012).

[9] M. Baity-Jesi et al. (Janus Collaboration), The three-dimen-
sional Ising spin glass in an external magnetic field: the role
of the silent majority, J. Stat. Mech. (2014) P05014.

[10] M. Baity-Jesi, R. A. Banos, A. Cruz, L. A. Fernandez, and
J. M. Gil-Narvion (Janus Collaboration), Dynamical tran-
sition in the D ¼ 3 Edwards-Anderson spin glass in an
external magnetic field, Phys. Rev. E 89, 032140 (2014).

[11] D. J. Amit and V. Martin-Mayor, Field Theory, the
Renormalization Group, and Critical Phenomena: Graphs
to Computers (World Scientific Publishing Company,
Singapore, 2005).

[12] A. Bray and S. Roberts, Renormalisation-group approach to
the spin glass transition in finite magnetic fields, J. Phys. C
13, 5405 (1980).

[13] T. Temesvári, C. De Dominicis, and I. Pimentel, Generic
replica symmetric field-theory for short range Ising spin
glasses, Eur. Phys. J. B 25, 361 (2002).

[14] I. R. Pimentel, T. Temesvári, and C. De Dominicis, Spin-
glass transition in a magnetic field: A renormalization group
study, Phys. Rev. B 65, 224420 (2002).

[15] M. A. Moore and A. J. Bray, Disappearance of the de
Almeida-Thouless line in six dimensions, Phys. Rev. B
83, 224408 (2011).

[16] G. Parisi and T. Temesvári, Replica symmetry breaking in
and around six dimensions, Nucl. Phys. B858, 293 (2012).

[17] T. Temesvári, Physical observables of the Ising spin glass in
6 − ε dimensions: Asymptotical behavior around the critical
fixed point, Phys. Rev. B 96, 024411 (2017).

[18] J. Höller and N. Read, One-step replica-symmetry-breaking
phase below the de Almeida–Thouless line in low-
dimensional spin glasses, Phys. Rev. E 101, 042114 (2020).

PHYSICAL REVIEW LETTERS 128, 075702 (2022)

075702-5

https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1088/0305-4470/13/4/009
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1103/PhysRevLett.41.1068
https://doi.org/10.1088/0022-3719/12/1/020
https://doi.org/10.1016/S1631-073X(03)00268-1
https://doi.org/10.1073/pnas.1203295109
https://doi.org/10.1088/1742-5468/2014/05/P05014
https://doi.org/10.1103/PhysRevE.89.032140
https://doi.org/10.1088/0022-3719/13/29/019
https://doi.org/10.1088/0022-3719/13/29/019
https://doi.org/10.1140/epjb/e20020041
https://doi.org/10.1103/PhysRevB.65.224420
https://doi.org/10.1103/PhysRevB.83.224408
https://doi.org/10.1103/PhysRevB.83.224408
https://doi.org/10.1016/j.nuclphysb.2012.01.014
https://doi.org/10.1103/PhysRevB.96.024411
https://doi.org/10.1103/PhysRevE.101.042114


[19] D. S. Fisher and H. Sompolinsky, Scaling in Spin-Glasses,
Phys. Rev. Lett. 54, 1063 (1985).

[20] In principle, a nonperturbative FP could be important also
for D > DFC

U because of the finite basin of attraction of the
Gaussian FP.

[21] P. Charbonneau and S. Yaida, Nontrivial Critical Fixed
Point for Replica-Symmetry-Breaking Transitions, Phys.
Rev. Lett. 118, 215701 (2017).

[22] P. Charbonneau, Y. Hu, A. Raju, J. P. Sethna, and S. Yaida,
Morphology of renormalization-group flow for the de
Almeida–Thouless–Gardner universality class, Phys. Rev.
E 99, 022132 (2019).

[23] M. C. Angelini, G. Parisi, and F. Ricci-Tersenghi, Ensemble
renormalization group for disordered systems, Phys. Rev. B
87, 134201 (2013).

[24] M. C. Angelini and G. Biroli, Spin Glass in a Field: A New
Zero-Temperature Fixed Point in Finite Dimensions, Phys.
Rev. Lett. 114, 095701 (2015).

[25] A. Altieri, M. C. Angelini, C. Lucibello, G. Parisi, F.
Ricci-Tersenghi, and T. Rizzo, Loop expansion around
the Bethe approximation through the M-layer construction,
J. Stat. Mech. (2017) 113303.

[26] M. C. Angelini, C. Lucibello, G. Parisi, F. Ricci-Tersenghi,
and T. Rizzo, Loop expansion around the Bethe solution for
the random magnetic field Ising ferromagnets at zero
temperature, Proc. Natl. Acad. Sci. U.S.A. 117, 2268
(2020).

[27] T. Rizzo, Fate of the Hybrid Transition of Bootstrap
Percolation in Physical Dimension, Phys. Rev. Lett. 122,
108301 (2019).

[28] T. Rizzo and T. Voigtmann, Solvable Models of Super-
cooled Liquids in Three Dimensions, Phys. Rev. Lett. 124,
195501 (2020).

[29] M. C. Angelini, G. Parisi, and F. Ricci-Tersenghi, One-loop
topological expansion for spin glasses in the large con-
nectivity limit, Europhys. Lett. 121, 27001 (2018).

[30] The physics of the model does not change if the external
field is replaced by a random field.

[31] For more details, see Supplemental Material at http://link
.aps.org/supplemental/10.1103/PhysRevLett.128.075702,
which includes Refs. [32–34].

[32] E. Brezin, J. Zinn-Justin, and J. C. Le Guillou, Phase
Transitions and Critical Phenomena, edited by C. Domb
and M. S. Green (Academic Press, New York, 1976), Vol. 6.

[33] P. O. Vontobel, Counting in graph covers: A combinatorial
characterization of the bethe entropy function, IEEE Trans.
Inf. Theory 59, 6018 (2013).

[34] M. C. Angelini and G. Biroli, Real space Migdal–Kadanoff
renormalisation of glassy systems: Recent results and a
critical assessment, J. Stat. Phys. 167, 476 (2017).

[35] The integral operator is the one in Eq. (26) of Ref. [36]. The
connection with Rij follows from the fact that spin σj flips
after a flip of σi only if an infinitesimal change of the field
acting on site i propagates to site j and this condition is
exactly enforced by the integral operator.

[36] G. Parisi, F. Ricci-Tersenghi, and T. Rizzo, Diluted mean-
field spin-glass models at criticality, J. Stat. Mech. (2014)
P04013.

[37] G. Perrupato et al. (to be published).
[38] G. Parisi, Statistical Field Theory (Addison-Wesley,

Reading, MA, 1988).
[39] J. Zinn-Justin, Quantum Field Theory and Critical

Phenomena (Clarendon Press, Oxford, 2002), Vol. 113.
[40] M. Le Bellac, Quantum and Statistical Field Theory

(Clarendon Press, Oxford, 1991).
[41] C. De Dominicis and I. Giardina, Random Fields and Spin

Glasses: A Field Theory Approach (Cambridge University
Press, Cambridge, England, 2006).

[42] G. Kotliar, P. W. Anderson, and D. L. Stein, One-
dimensional spin-glass model with long-range random
interactions, Phys. Rev. B 27, 602 (1983).

[43] H. G. Katzgraber and A. P. Young, Monte Carlo studies of
the one-dimensional Ising spin glass with power-law inter-
actions, Phys. Rev. B 67, 134410 (2003).

[44] H. G. Katzgraber and A. P. Young, Geometry of large-scale
low-energy excitations in the one-dimensional Ising spin
glass with power-law interactions, Phys. Rev. B 68, 224408
(2003).

[45] H. G. Katzgraber and A. P. Young, Probing the Almeida-
Thouless line away from the mean-field model, Phys. Rev. B
72, 184416 (2005).

[46] H. G. Katzgraber, in Journal of Physics: Conference Series
(IOP Publishing, 2008), Vol. 95, p. 012004.

[47] L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J. J.
Ruiz-Lorenzo, Dilute One-Dimensional Spin Glasses with
Power Law Decaying Interactions, Phys. Rev. Lett. 101,
107203 (2008).

[48] H. G. Katzgraber, D. Larson, and A. P. Young, Study of the
de Almeida–Thouless Line Using Power-Law Diluted One-
Dimensional Ising Spin Glasses, Phys. Rev. Lett. 102,
177205 (2009).

[49] L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J. J.
Ruiz-Lorenzo, Ising Spin-Glass Transition in a Magnetic
Field Outside the Limit of Validity of Mean-Field Theory,
Phys. Rev. Lett. 103, 267201 (2009).

[50] D. Larson, H. G. Katzgraber, M. A. Moore, and A. P. Young,
Spin glasses in a field: Three and four dimensions as
seen from one space dimension, Phys. Rev. B 87,
024414 (2013).

[51] R. A. Banos, L. A. Fernandez, V. Martin-Mayor, and A. P.
Young, Correspondence between long-range and short-
range spin glasses, Phys. Rev. B 86, 134416 (2012).

[52] M. C. Angelini, G. Parisi, and F. Ricci-Tersenghi, Relations
between short-range and long-range Ising model, Phys. Rev.
E 89, 062120 (2014).

[53] T. Aspelmeier, H. G. Katzgraber, D. Larson, M. A. Moore,
M. Wittmann, and J. Yeo, Finite-size critical scaling in Ising
spin glasses in the mean-field regime, Phys. Rev. E 93,
032123 (2016).

PHYSICAL REVIEW LETTERS 128, 075702 (2022)

075702-6

https://doi.org/10.1103/PhysRevLett.54.1063
https://doi.org/10.1103/PhysRevLett.118.215701
https://doi.org/10.1103/PhysRevLett.118.215701
https://doi.org/10.1103/PhysRevE.99.022132
https://doi.org/10.1103/PhysRevE.99.022132
https://doi.org/10.1103/PhysRevB.87.134201
https://doi.org/10.1103/PhysRevB.87.134201
https://doi.org/10.1103/PhysRevLett.114.095701
https://doi.org/10.1103/PhysRevLett.114.095701
https://doi.org/10.1088/1742-5468/aa8c3c
https://doi.org/10.1073/pnas.1909872117
https://doi.org/10.1073/pnas.1909872117
https://doi.org/10.1103/PhysRevLett.122.108301
https://doi.org/10.1103/PhysRevLett.122.108301
https://doi.org/10.1103/PhysRevLett.124.195501
https://doi.org/10.1103/PhysRevLett.124.195501
https://doi.org/10.1209/0295-5075/121/27001
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.075702
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.075702
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.075702
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.075702
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.075702
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.075702
https://doi.org/10.1109/TIT.2013.2264715
https://doi.org/10.1109/TIT.2013.2264715
https://doi.org/10.1007/s10955-017-1748-4
https://doi.org/10.1088/1742-5468/2014/04/P04013
https://doi.org/10.1088/1742-5468/2014/04/P04013
https://doi.org/10.1103/PhysRevB.27.602
https://doi.org/10.1103/PhysRevB.67.134410
https://doi.org/10.1103/PhysRevB.68.224408
https://doi.org/10.1103/PhysRevB.68.224408
https://doi.org/10.1103/PhysRevB.72.184416
https://doi.org/10.1103/PhysRevB.72.184416
https://doi.org/10.1103/PhysRevLett.101.107203
https://doi.org/10.1103/PhysRevLett.101.107203
https://doi.org/10.1103/PhysRevLett.102.177205
https://doi.org/10.1103/PhysRevLett.102.177205
https://doi.org/10.1103/PhysRevLett.103.267201
https://doi.org/10.1103/PhysRevB.87.024414
https://doi.org/10.1103/PhysRevB.87.024414
https://doi.org/10.1103/PhysRevB.86.134416
https://doi.org/10.1103/PhysRevE.89.062120
https://doi.org/10.1103/PhysRevE.89.062120
https://doi.org/10.1103/PhysRevE.93.032123
https://doi.org/10.1103/PhysRevE.93.032123

