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We present a simple, quantitative, and thermodynamically self-consistent method of capturing density
and pressure variation in continuum phase-change models. The formalism shows how the local state of
homogenous dilation may be entirely given by species concentration in an Eulerian formulation.
A hyperelastic contribution to the thermodynamic potential generalizes the lattice constraint while
permitting composition, temperature, and phase-dependent specific volumes. We compare the results of
models implementing this paradigm to those with the lattice constraint by examining the composition and
size-dependent equilibrium of a Ni-Cu nanoparticle in its melt and free dendritic growth.
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Phase transitions play a critical role across a multitude of
disciplines in the physical sciences from phase transitions
in the early Universe [1,2], terrestrial climate models [3], to
those of proteins and cell membranes in biological systems
[4,5]. Numerical tools such as phase-field and moving
boundary models have proven their power and versatility in
the study of phase transitions, amplified by their ability to
incorporate equilibrium thermodynamics [6,7]. In materials
science and physics these tools robustly capture complex
interface morphologies and perturbation of bulk thermo-
dynamics by interfacial excess energy which is particularly
relevant to the engineering of advanced functional materials
through controlled phase segregation, e.g., in nanoparticles
[8–12]. Further, they readily fit with multiphysics treat-
ments including heat and mass transport [13,14], elasticity
[15], and electrostatics [16] within a framework that
permits a departure from equilibrium thermodynamics by
kinetic effects during, e.g., rapid solidification [17–19].
Despite their importance, these models often ignore

density variations between coexisting phases and assume
all species have equivalent specific volumes [20–25]. This
approximation is useful to simplify the model and its
solution but is ultimately troubling since density variations
during phase transition directly affect the evolution of the
system. In particular at the nanoscale where the emergence
of capillary pressure and elastic dilation, leading to a
departure from bulk thermodynamic equilibrium, is a
key phenomenon.
The purpose of this Letter is to put forth a simple

formulation that accurately and quantitatively accounts for
density variations and pressure changes during phase
transitions in a thermodynamically self-consistent fashion.
We capture density variations by relaxing the lattice
constraint, the assumption of a fixed density of species,
which is assumed in most descriptions, and formulating our

model in an Eulerian frame. Species concentrations
expressed in the Eulerian frame are weighted by their
state-dependent specific volumes, the sum of which is
shown to correspond to the local state of elastic dilation and
compression. The strain incurs a pressure response which
effectively generalizes the lattice constraint and permits
variations in density. The impact of this formulation is
highlighted through comparison with other models for a
Ni-Cu nanoparticle in equilibrium with its melt and free
dendritic growth. A more detailed account will be provided
in a companion article [26].
The Gibbs free energy of a phase, Gðni; PÞ, is the

thermodynamic potential commonly employed when dis-
cussing phase transitions, and is expressed as a function of
the abundance of species i, ni, and pressure P. Commonly,
the pressure is taken as a reference pressure P ¼ P0, and its
functional dependence is ignored. For the remainder
of this work, quantities that assume a fixed pressure and
neglect the pressure dependence are denoted by a prime,
e.g., G0 ¼ Gðni; P ¼ P0Þ.
When considering systems with homogenous elastic

deformation, the Helmholtz energy of a phase, Aðni; VÞ,
is relevant and is normally related to G by a Legendre
transform. However, since the pressure dependence of G is
neglected, this transformation is incomplete. Pragmatically,
one may consider G0 to describe the chemical contribution
to the energy and add a homogenous elastic strain energy
function Aelðni; VÞ,

Aðni; VÞ ¼ G0ðni; P0Þ þ Aelðni; VÞ; ð1Þ

where V is the volume of the system. The system is then
discretized in an Eulerian frame of reference with volume
element V0. The Helmholtz energy density aðci;ΔÞ ¼
ðA=V0Þ is then defined in terms of the concentration,
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ci ¼ ðni=V0Þ, and dilation, Δ ¼ ðV=V0Þ, with respect to
the Eulerian frame of reference.
To understand how dilation is captured in the current

work, we consider the deformation of the material as a
sequence of transformations from the reference to the real
configuration as depicted in Fig. 1 [27]. In this figure, the
material (Lagrangian) frame is represented as an array of
points while the Eulerian frame is represented by a grid
with a volume element V0. The stress-free configuration is
included for generality and includes dilations that do not
incur elastic strains, such as thermal expansion or piezo-
electric effects but exclude, phase change.
Following multiplicative decomposition, the dilation

from the reference to real configuration Δ can be decom-
posed into that of the reference to stress-free configuration
Δsf and the stress-free to the real configuration Δel as
Δ ¼ ΔsfΔel.
The shaded region deforms from the reference configu-

ration V0 via a stress-free configuration Vsf to the real
configuration V, and lends itself most readily to standard
thermodynamic formulations in which the abundance and
volume are separate state variables. The specific volumes
are defined as vi ¼ ð∂V=∂niÞ, such that V ¼ P

i nivi.
Likewise, the stress-free volume Vsf ¼ P

i niv
sf
i , and the

reference volume V0 ¼ P
i niv

0
i with specific volumes vsfi

and v0i defined similarly.

The same deformation transforms the hatched volume
in Fig. 1 from Vref via V̄sf to V0. Examining the real
configuration, the hatched region contains ci particles
such that the reference volume may be approximated as
Vref ¼ P

i civ
0
i V

0.
Finally, if we assume that length scale of variation of the

dilations to be small compared to the volume V0, they can
be approximated as

Δ ¼ V
V0

¼ VP
i niv

0
i
≈

V0

Vref ¼
1P
i civ

0
i
; ð2Þ

Δel ¼ V
Vsf ≈

V0

V̄sf ¼
1P

i civ
sf
i
: ð3Þ

Equations (2) and (3) show how the dilation depends on the
system volume and abundance in the Lagrangian frame,
which is easily incorporated into typical thermodynamic
treatments, but the instantaneous values may be approxi-
mated in terms of the local concentration (defined with
respect to the Eulerian frame) and the specific volumes.
With this representation of dilation, a number of hypere-

lastic functions may be used. For the sake of discussion, we
assume a neo-Hookean strain energy function expressed in
the stress-free configuration Ael ¼ ðVsf=2Þκ ln2Δel, and the
corresponding density

ael ¼ 1

Δel

κ

2
ln2Δel; ð4Þ

where κ is the isothermal bulk modulus. The pressure is

P≡− ∂A
∂V ¼ −∂Ael

∂V ¼ − 1

Δel κ ln Δel: ð5Þ

The chemical potential follows from Eq. (1),

μi≡ ∂A
∂ni¼

∂G0

∂ni þ
∂Ael

∂ni ¼ μ0iþPΔelvsfi

�
1−1

2
lnΔel

�
; ð6Þ

where μ0i ¼ ð∂G0=∂niÞ is the chemical potential without
pressure dependence.
From Eq. (1), we then have a ¼ g0ðciÞ þ aelðci;ΔelÞ ¼P
i ciμi − ΔP or explicitly in terms of prime quantities,

a ¼
X
i

ciμ0i þ
1

Δel

κ

2
ln2Δel: ð7Þ

Equation (7), along with Δel in Eq. (3) shows that the free
energy density in the Eulerian frame is a function only of
the concentrations in the same frame, i.e., aðci;ΔÞ → aðciÞ
since the dilation is entirely determined by the concen-
trations. While it may appear that this formulation involves
a loss of information, the interpretation is that in the
Eulerian frame movement of mass across adjacent elements

FIG. 1. The total dilation from the reference to real configu-
rations via an intermediate stress-free configuration. The shaded
region dilates from a reference volume V0 to the final volume V
while the hatched region undergoes approximately the same
dilation from Vref to V0. The abundance of particles in V0, which
is the concentration with respect to the Eulerian frame of
reference, is related to the total dilation via their specific volumes.
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or through the boundary of the domain is a consequence of
dilation rather than a change in volume in the material
frame.
The grand potential density ψðμi;ΔÞ may be defined as

the Legendre transform of a,

ψ ¼ a −X
i

ciμi; ð8Þ

¼ − PΔ: ð9Þ
Variation of the grand potential between phases naturally

encapsulates the driving force for the phase transformation
as well as excess quantities when considering equilibrium
conditions. In the current model, Eq. (9) is readily
evaluated from Eq. (5). Models employing the lattice
constraint calculate the pressure from Eq. (8) as discussed
below. However, without consideration of a volume-
pressure term, Eq. (8) would normally yield zero via the
Gibbs-Duhem relation if not for quadratic approximations
or the imposition of the lattice constraint, and therefore its
use may be errant as discussed further in [26].
We now demonstrate this formulation for a quintessential

mesoscale phase-change problem of solidification where
we consider the equilibrium of a nanoparticle with radius r
in equilibrium with its melt. Equilibrium is described by the
Young-Laplace relation, Ps

r − Pl ¼ ð2σ=rÞ, where σ is the
interfacial energy, such that as r → ∞ the flat interface bulk
equilibrium is approached with Ps

r→∞ ¼ Pl.
If we consider fixed composition in the solid phase,

such as a stoichiometric solid, Thomson’s equation
μi;r − μi;∞ ≈ við2σ=rÞ [28] is readily recovered from
Eq. (6) via the reasonable assumption that vi ≈ Δelvsfi
and assuming infinitesimal elastic dilation, Δel → 1. The
term ½1 − 1

2
ln Δel�, therefore modifies this relationship in

the general case of compressible materials.
To aid in the comparison of models, dilation is assumed

infinitesimal, all specific volumes are equal, and mass
transport is assumed to be quasistatic. Simulations assume
spherical symmetry and are in 1D. This scenario is
contrived to correspond to the discussion found in
Chap. 6.6 of [29].
The importance of the current formulation is demon-

strated in comparison with models derived using the lattice
constraint through a sharp interface model with dynamic
variables ci and three phase-field grand potential imple-
mentations with dynamic variable(s) μi: (i) Model A - A
sharp interface model with the current formulation was
solved with the aid of a Lagrange multiplier to constrain the
chemical equilibrium. (ii) Model B - A phase-field model
with quadraticized potential of the current work and two
explicit components. (iii) Model C - A phase-field model
with quadraticized grand potential with one component and
using the lattice constraint. (iv) Model D - A phase-field
model with an analytical grand potential using the lattice
constraint.

Details of the implementations are provided in [26], in
which it is noted that this work is a generalization of the
Stefan sharp interface model based on the thermodynamic
driving force.
Unlike conventional formulations, the current formu-

lation allows the individual chemical potentials and the
phase-specific pressures to be calculated directly. As a
result, it is possible to specify the liquid pressure in models
A and B, whereas modelsC andD only allow differences in
pressure to be considered.
We choose the Ni-Cu system at 1400 K with the Gibbs

free energies densities for the liquid and solid defined as

g0;sðcNi; cCuÞ ¼ xNig0Ni þ xsCug
0
Cu

þ RT
vm

½xNi ln xNi þ xCu ln xCu�; ð10Þ

g0;lðcNi; cCuÞ ¼
RT
vm

½xNi ln xNi þ xCu ln xCu�; ð11Þ

where the mole fractions xNi ¼ ½cNi=ðcNi þ cCuÞ� and
xCu ¼ ½cCu=ðcNi þ cCuÞ�, and g0Ni ¼ LNi½ðT − Tm

NiÞ=Tm
Ni�,

and g0Cu ¼ LCu½ðT − Tm
CuÞ=Tm

Cu�. The Helmholtz energy
densities follow from Eq. (7) with (3). The material
properties are defined in Table 1. For this demonstration,
all vπi ¼ vm, an average specific volume constant between
phases useful for comparison with lattice-constraint mod-
els. For the subsequent dendrite example below, the listed
vπi will be used.
For model A, the interface is placed in a domain with a

shared boundary at the position zint. This shared boundary
is constrained by equal flux conditions Jsi ¼ Jli and
local equilibrium conditions through the expression of
equal chemical potentials enforced through a Lagrange
multiplier. The velocity of zint is determined by the rate
equations,

TABLE I. Parameters for the Ni-Cu system demonstrative
model from [20,30,31] at 1400 K. Bulk moduli are representative.
vm is an average specific volume useful for comparison between
models.

Symbol Value Unit

g0Ni −446.06 J cm−3
g0Cu 54.06 J cm−3
σ 1 J cm−2
κs 100 GPa
κl 1 GPa
vm 7.42 cm3 mol−1
vsCu 7.72 cm3 mol−1
vlCu 8.11 cm3 mol−1
vsNi 6.99 cm3 mol−1
vlNi 7.29 cm3 mol−1
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∂zint
∂t ¼ Mϕ

�
ψ1 − ψ s 2σ

r

�
; ð12Þ

0 ¼ ∇ · ∇μi ; ð13Þ

where ψπ is calculated with Eq. (5). Additionally, Pl ¼ 0 is
imposed as a Dirichlet boundary condition.
The equations for the grand potential phase-field

models are

∂ϕ
∂t ¼ σ

�
6d∇2ϕ − 3

d
∂ϕ2½1 − ϕ�2

∂ϕ
�
− ½ψ s − ψ1� ∂p∂ϕ ; ð14Þ

∂ci
∂ϕ

∂ϕ
∂t ¼ ∇ · ∇μi; ð15Þ

whered is the interfacewidth andp ¼ ϕ3ð10− 15ϕ − 6ϕ2Þ.
The differences in phase-field implementations emerge

from the definitions and expressions for ψ. Model B uses a
quadraticized version of the formulation presented here
and takes the form ψπ − ψ� ¼ −κπ Pið∂cπi =∂μjÞ½μj − μ�j �,
where the asterisk signifies the expansion point and π ¼ s,
l. Model C utilizes a generalized grand potential in two
components and is quadraticized such that ψπ − ψ� ¼
− 1

2

P
i½μi − μ�i �½cπi þ cπ�i �. Model D corresponds to the

lattice constrained formulation with c≡ cNi ¼ 1 − cCu
and ψπ ¼ g0Cu þ lnf1 − (1=½1þ expðg0Ni − g0Cu − μiÞ�)g.
The shift in solubility may be calculated analytically

through the lowest common tangent construction. Since all
species are assumed to have the same specific volume,
pressurization of the solid results in the verticle displace-
ment of gs by Ps [29]. The maximal pressure difference
is calculated as ΔPmax ¼ gsðxNi → 1Þ − glðxNi → 1Þ ¼
g0Cu ¼ 0.446 GPa, which corresponds to a nanoparticle
of radius 4.484 nm.
The solidus and liquidus lines for Ni are plotted as a

function of ΔP ¼ Ps − Pl, along with the interdiffusion
potential, Δμ ¼ μNi − μCu, in Fig. 2 from the analytical and
simulation results.
Figure 2 shows that models A and D are in agreement

with the analytical model including the logarithmic behav-
ior of the chemical potential with mole fraction. Models B
and C show roughly linear trends for all quantities
following a slight curvature in model B at small ΔP
Furthermore, whereas model C follows Δμ over a large
range of pressures but underpredicts the solubility curves,
model B brackets the solubility curves but deviates from
Δμ. Neither B nor C predicts the upturn in Δμ at higher ΔP
as this is due to the asymptotic logarithmic behavior which
both quadraticized potentials neglect.
In all simulations, the dependence of ΔP on particle

radius (not shown), reproduces the Young Laplace equation
within numerical accuracy. Models A and B however, also
permit imposing the liquid absolute pressure Pl ¼ 0.

Meanwhile, the pressurized solid compresses as shown
in Fig. 3 as total concentration in the solid phase exceeds
unity, reflecting elastic compression in accordance with
Eq. (5).
Models C and D determine the pressure to be the grand

potential per Eq. (8) and leads to a correct prediction for
ΔP, without the ability to control the pressure in either
phase explicitly. This explains the wide use of the lattice
constrained model in cases where the absolute pressure is
not important and where specific volumes are all equal.
We now explore the impact of composition and phase-

dependent specific volumes using model B with vπi in
Table I. We simulate dendritic growth for three different
supersaturations, Ω ¼ ½ðcavgi − cl

�
i Þ=ðcs�i − cl

�
i Þ�, initialized

with a circular seed of radius r ¼ 200 nm with the liquid
beginning at ∼cavgi . As is standard, the model is made
anisotropic by including an order parameter dependence in
the surface energy gradient term [32]. We consider only a
quarter of the growing system due to the fourfold symmetry
of the growing crystal in 2D and restrict our data analysis to

FIG. 2. Comparison of simulation results of solidus and
liquidus (above) and interdiffusion potential (below) at the
interface, plotted along with the analytical solution with models
identified in the text.

FIG. 3. Solid-phase concentrations with Ps predicted from
models A and B based on the current work showing the total
concentration in the solid phase exceeds 1, reflecting elastic
compression linearly related to the pressure described by Eq. (5).
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the portion of the simulation during the initialization
and free growth steady-state regime. Further details are
presented in [26].
Two measures of the growth rate, the change in solid

fraction and the dendrite tip velocity, are shown in Fig. 4 for
different supersaturations. The solid fraction is plotted in
Fig. 4(a), and while larger supersaturations, i.e., larger
driving forces, would intuitively lead to faster growth rates,
we also observe faster growth rates in the case of variable
specific volumes. This is a combination of the variable
specific volumes amplifying the driving force and causing a
shape-change in the growing crystal which allows it to
realize faster growth rates.
The dendrite tip velocity is shown in Fig. 4(b).

Consistent with the results of the solid fraction data above,
we observe larger steady-state velocities during free growth
in the cases of variable specific volume. Moreover, we
observe that increasing supersaturation leads to a greater
increase in the tip velocity when variable specific volumes
are considered. Taken with the solid fraction growth in
Fig. 4(a), it is likely that the shape of the dendrite is being
affected by the inclusion of specific volumes as is expected
considering the Young-Laplace and Thomson equations
above. Presentation of the dendrite shape evolution and
microsegregation [33] is presented in [26].
In summary, it is shown that through a proper description

of Helmholtz potential and considering all species compo-
sitions in an Eulerian frame of reference, one may capture
densification and homogenous elastic stresses in con-
tinuum-scale phase-change models robustly. Furthermore,
composition and phase-dependent specific volumes are
included naturally. Comparison of the current work with
formulations that rely on the lattice constraint demonstrates

that while both formulations predict the interdiffusion
potential and variation in pressure in accordance with
classical theory, the current work additionally directly
determines the individual quantities and provides a means
for user imposed controls, e.g., the direct control of the
pressure of a surrounding phase. Although derived for
isothermal systems, extension to temperature dependence is
straightforward, facilitated by the stress-free configuration.
The emergence of homogenous dilation and pressure,
which employs techniques from Finite Strain theory,
may form a natural point of intersection with elastic and
viscoplastic treatments and predict, e.g., strain and shear
driven transformations and capture the structural effects
of phase change, e.g., in laser-heated experiments on
nuclear materials [34] and melt-processed additive manu-
facturing [35–37].

The research was funded by Atomic Energy of Canada
Limited, under the auspices of the Federal Nuclear Science
and Technology Program.

*Michael.Welland@cnl.ca
[1] D. Boyanovsky, H. j. de Vega, and D. j. Schwarz, Phase

transitions in the early and present universe, Annu. Rev.
Nucl. Part. Sci. 56, 441 (2006).

[2] K. R. Dienes, J. Kost, and B. Thomas, A tale of two
timescales: Mixing, mass generation, and phase transitions
in the early universe, Phys. Rev. D 93, 043540 (2016).

[3] L. I. Rubinstein, The Stefan Problem (American Mathemati-
cal Society, Providence, Rhode Island, 1971).

[4] G. R. Lázaro, I. Pagonabarraga, and A. Hernández-Machado,
Phase-field theories for mathematical modeling of biological
membranes, Chem. Phys. Lipids 185, 46 (2015).

[5] P. Mohammadi, A. S. Aranko, L. Lemetti, Z. Cenev, Q.
Zhou, S. Virtanen, C. P. Landowski, M. Penttilä, W. J.
Fischer, W. Wagermaier, and M. B. Linder, Phase transitions
as intermediate steps in the formation of molecularly
engineered protein fibers, Commun. Biol. 1, 86 (2018).

[6] M. J. Welland, Introduction to the phase-field modelling
technique: A primer on the Allen-Cahn and Cahn-Hilliard
models, in OECD NEA: State-of-the-Art Report on Multi-
Scale Modelling Methods (Organization for Ecomonic Co-
operattion and Development, Boulogne-Billancourt, 2020),
pp. 128–142, https://www.oecd-nea.org/jcms/pl_46415/
state-of-the-art-report-on-multi-scale-modelling-methods.

[7] M. J. Welland, B. J. Lewis, and W. T. Thompson, A com-
parison of Stefan and phase field modeling techniques for
the simulation of melting nuclear fuel, J. Nucl. Mater. 376,
229 (2008).

[8] M. J. Welland, D. Karpeyev, D. T. O’Connor, and O.
Heinonen, Miscibility gap closure, interface morphology,
and phase microstructure of 3D Lix FePO4 nanoparticles
from surface wetting and coherency strain, ACS Nano 9,
9757 (2015).

[9] A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim,
R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You,
P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson,

(a)

(b)

FIG. 4. Comparison of (a) solidification fraction and (b) den-
drite tip velocity for three supersaturations vs dimensionless time.
Data series are truncated when the tip velocity departs from the
steady-state regime. Filled and empty symbols correspond to a
constant vπi ¼ vm and variation between phase and species listed
in Table I, respectively.

PHYSICAL REVIEW LETTERS 128, 075701 (2022)

075701-5

https://doi.org/10.1146/annurev.nucl.56.080805.140539
https://doi.org/10.1146/annurev.nucl.56.080805.140539
https://doi.org/10.1103/PhysRevD.93.043540
https://doi.org/10.1016/j.chemphyslip.2014.08.001
https://doi.org/10.1038/s42003-018-0090-y
https://www.oecd-nea.org/jcms/pl_46415/state-of-the-art-report-on-multi-scale-modelling-methods
https://www.oecd-nea.org/jcms/pl_46415/state-of-the-art-report-on-multi-scale-modelling-methods
https://www.oecd-nea.org/jcms/pl_46415/state-of-the-art-report-on-multi-scale-modelling-methods
https://www.oecd-nea.org/jcms/pl_46415/state-of-the-art-report-on-multi-scale-modelling-methods
https://doi.org/10.1016/j.jnucmat.2008.03.003
https://doi.org/10.1016/j.jnucmat.2008.03.003
https://doi.org/10.1021/acsnano.5b02555
https://doi.org/10.1021/acsnano.5b02555


Three-dimensional imaging of dislocation dynamics during
the hydriding phase transformation, Nat. Mater. 16, 565
(2017).

[10] A. Ulvestad, M. J. Welland, S. S. E. Collins, R. Harder, E.
Maxey, J. Wingert, A. Singer, S. Hy, P. Mulvaney, P. Zapol,
and O. G. Shpyrko, Avalanching strain dynamics during the
hydriding phase transformation in individual palladium
nanoparticles, Nat. Commun. 6, 10092 (2015).

[11] I. Steinbach, Phase-field model for microstructure evolution
at the mesoscopic scale, Annu. Rev. Mater. Res. 43, 89
(2013).

[12] B. Nestler, H. Garcke, and B. Stinner, Multicomponent alloy
solidification: Phase-field modeling and simulations, Phys.
Rev. E 71, 041609 (2005).

[13] M. J. Welland, E. Tenuta, and A. A. Prudil, Linearization-
based method for solving a multicomponent diffusion
phase-field model with arbitrary solution thermodynamics,
Phys. Rev. E 95, 063312 (2017).

[14] M. J. Welland, W. T. Thompson, B. J. Lewis, and D.
Manara, Computer simulations of non-congruent melting
of hyperstoichiometric uranium dioxide, J. Nucl. Mater.
385, 358 (2009).

[15] M. J. Welland and S. M. Hanlon, Prediction of the zirco-
nium hydride precipitation barrier with an anisotropic 3D
phase-field model incorporating bulk thermodynamics and
elasticity, Comput. Mater. Sci. 171, 109266 (2020).

[16] J. Guyer, W. Boettinger, J. Warren, and G. McFadden,
Model of electrochemical “double layer” using the phase
field method, Phys. Rev. E 69, 021603 (2004).

[17] P. K. Galenko and D. A. Danilov, Model for free dendritic
alloy growth under interfacial and bulk phase nonequili-
brium conditions, J. Cryst. Growth 197, 992 (1999).

[18] A. A. Wheeler, W. J. Boettinger, and G. B. McFadden,
Phase-field model of solute trapping during solidification,
Phys. Rev. E 47, 1893 (1993).

[19] M. J. Welland, D. Wolf, and J. E. Guyer, Multicomponent
phase-field model for extremely large partition coefficients,
Phys. Rev. E 89, 012409 (2014).

[20] J. A. Warren and W. J. Boettinger, Prediction of dendritic
growth and microsegregation patterns in a binary alloy using
the phase-field method, Acta Metall. Mater. 43, 689 (1995).

[21] M. Plapp, Unified derivation of phase-field models for alloy
solidification from a grand-potential functional, Phys. Rev. E
84, 031601 (2011).

[22] A. Karma, Phase-Field Formulation for Quantitative
Modeling of Alloy Solidification, Phys. Rev. Lett. 87,
115701 (2001).

[23] B. Echebarria, R. Folch, A. Karma, and M. Plapp, Quanti-
tative phase-field model of alloy solidification, Phys. Rev. E
70, 061604 (2004).

[24] S. G. Kim, A phase-field model with antitrapping current for
multicomponent alloys with arbitrary thermodynamic prop-
erties, Acta Mater. 55, 4391 (2007).

[25] C. Tong, M. Greenwood, and N. Provatas, Quantitative
phase-field modeling of solidification in binary alloys with
nonlinear phase coexistence curves, Phys. Rev. B 77,
064112 (2008).

[26] M. J. Welland and N. Ofori-Opoku, Introducing density
variation and pressure in thermodynamically self-consistent
continuum phase-change models including phase-field,
Phys. Rev. Mater. (to be published).

[27] V. A. Lubarda, Constitutive theories based on the multipli-
cative decomposition of deformation gradient: Thermo-
elasticity, elastoplasticity, and biomechanics, Appl. Mech.
Rev. 57, 95 (2004).

[28] C. H. P. Lupis, Chemical Thermodynamics of Materials
(North-Holland, New York, 1983).

[29] M. Hillert, Phase Equilibria, Phase Diagrams and Phase
Transformations: Their Thermodynamic Basis, 2nd ed.
(Cambridge University Press, Cambridge, 2007).

[30] R. N. Abdullaev, Yu. M. Kozlovskii, R. A. Khairulin, and
S. V. Stankus, Density and thermal expansion of high purity
nickel over the temperature range from 150 K to 2030 K,
Int. J. Thermophys. 36, 603 (2015).

[31] M.M. Demin, O. N. Koroleva, A. A. Aleksashkina, and V. I.
Mazhukin, Molecular-dynamic modeling of thermophysical
properties of phonon subsystem of copper in wide temper-
ature range, Math. Mon. 47, 137 (2020).

[32] N. Ofori-Opoku and N. Provatas, A quantitative multi-phase
field model of polycrystalline alloy solidification, Acta
Mater. 58, 2155 (2010).

[33] D. A. Kessler, J. Koplik, and H. Levine, Pattern selection in
fingered growth phenomena, Adv. Phys. 37, 255 (1988).

[34] M. J. Welland, The effect of structural mechanics on the
simluation of melting nuclear fuel, International Youth in
Nuclear Generation Bulletin (2011), pp. 53–64, https://
issuu.com/iync/docs/iync_buletin_spring11_n1.

[35] S. Ghosh, L. Ma, N. Ofori-Opoku, and J. E. Guyer, On the
primary spacing and microsegregation of cellular dendrites
in laser deposited Ni-Nb alloys, Model. Simul. Mater. Sci.
Eng. 25, 065002 (2017).

[36] S. Ghosh, N. Ofori-Opoku, and J. E. Guyer, Simulation and
analysis of γ-Ni cellular growth during laser powder
deposition of Ni-based superalloys, Comput. Mater. Sci.
144, 256 (2018).

[37] H. Azizi, A. Ebrahimi, N. Ofori-Opoku, M. Greenwood,
N. Provatas, and M. Mohammadi, Characterizing the micro-
structural effect of build direction during solidification
of laser-powder bed fusion of Al-Si alloys in the dilute limit:
A phase-field study, Acta Mater. 214, 116983 (2021).

PHYSICAL REVIEW LETTERS 128, 075701 (2022)

075701-6

https://doi.org/10.1038/nmat4842
https://doi.org/10.1038/nmat4842
https://doi.org/10.1038/ncomms10092
https://doi.org/10.1146/annurev-matsci-071312-121703
https://doi.org/10.1146/annurev-matsci-071312-121703
https://doi.org/10.1103/PhysRevE.71.041609
https://doi.org/10.1103/PhysRevE.71.041609
https://doi.org/10.1103/PhysRevE.95.063312
https://doi.org/10.1016/j.jnucmat.2008.12.023
https://doi.org/10.1016/j.jnucmat.2008.12.023
https://doi.org/10.1016/j.commatsci.2019.109266
https://doi.org/10.1103/PhysRevE.69.021603
https://doi.org/10.1016/S0022-0248(98)00977-4
https://doi.org/10.1103/PhysRevE.47.1893
https://doi.org/10.1103/PhysRevE.89.012409
https://doi.org/10.1016/0956-7151(94)00285-P
https://doi.org/10.1103/PhysRevE.84.031601
https://doi.org/10.1103/PhysRevE.84.031601
https://doi.org/10.1103/PhysRevLett.87.115701
https://doi.org/10.1103/PhysRevLett.87.115701
https://doi.org/10.1103/PhysRevE.70.061604
https://doi.org/10.1103/PhysRevE.70.061604
https://doi.org/10.1016/j.actamat.2007.04.004
https://doi.org/10.1103/PhysRevB.77.064112
https://doi.org/10.1103/PhysRevB.77.064112
https://doi.org/10.1115/1.1591000
https://doi.org/10.1115/1.1591000
https://doi.org/10.1007/s10765-015-1839-x
https://doi.org/10.20948/mathmontis-2020-47-12
https://doi.org/10.1016/j.actamat.2009.12.001
https://doi.org/10.1016/j.actamat.2009.12.001
https://doi.org/10.1080/00018738800101379
https://issuu.com/iync/docs/iync_buletin_spring11_n1
https://issuu.com/iync/docs/iync_buletin_spring11_n1
https://issuu.com/iync/docs/iync_buletin_spring11_n1
https://doi.org/10.1088/1361-651X/aa7369
https://doi.org/10.1088/1361-651X/aa7369
https://doi.org/10.1016/j.commatsci.2017.12.037
https://doi.org/10.1016/j.commatsci.2017.12.037
https://doi.org/10.1016/j.actamat.2021.116983

