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We consider a typical class of systems with delayed nonlinearity, which we show to exhibit chaotic
diffusion. It is demonstrated that a periodic modulation of the time lag can lead to an enhancement of the
diffusion constant by several orders of magnitude. This effect is the largest if the circle map defined by
the modulation shows mode locking and, more specifically, fulfills the conditions for laminar chaos.
Thus, we establish for the first time a connection between Arnold tongue structures in parameter space
and diffusive properties of a system. Counterintuitively, the enhancement of diffusion is accompanied by
a strong reduction of the effective dimensionality of the system.
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Chaotic diffusion is a well-known deterministic phenome-
non in nonlinear dynamical systems, where the state variable
shows normal or anomalous diffusive motion. Research
in this field started decades ago for low-dimensional
Hamiltonian systems [1–4]. A fundamental understanding
of the mechanisms leading to diffusion was achieved for
systems with strong dissipation, where the dynamics can be
modeled by one-dimensional iterated maps [5–8]. Recently,
the inequivalence of ensemble and time averages became a
major topic in diffusion related research in deterministic
systems and in statistical models of the latter [9–14],
meaning that chaotic diffusion in low-dimensional systems
is nowadays well understood. The opposite is true for
deterministic diffusion in systems with infinite-dimensional
evolution equations: Only recently, diffusion in nonrandom
systems, where the dynamics is governed by partial differ-
ential equations, was observed and analyzed [15–18]. In this
context, the diffusing objects are exploding solitons. Because
of the general relation between partial differential equations
and time-delayed systems [19–23], such solitons can also be
found in the latter [24–29], but no deterministic diffusion
was observed so far. For time-delay systems, chaotic
diffusion was hardly investigated, except for a very specific
system in [30–34] and recent work [35,36] on an integrated
version of the Ikeda equation [37]. This is surprising in view
of the highly developed mathematical theory of time-delay
systems [38–40] and their broad applicability covering all
branches of science [41–44] and engineering [43,45,46].
In this Letter, we will show that, for a large class of delay

systems with linear instantaneous and nonlinear delayed
terms, deterministic chaotic diffusion is possible, and that,
for instance, a simple modulation of the delay can increase
the diffusion constant by several orders of magnitude. We
study these unexpected phenomena for systems with scalar
evolution equations of the form

1

Θ
dxðtÞ
dt

¼ −xðtÞ þ f(x½RðtÞ�); ð1Þ

where RðtÞ ¼ t − τðtÞ is the retarded argument and τðtÞ is a
time-varying delay. In the following, we use as a repre-
sentative variation

RðtÞ ¼ t − τ0 −
A
2π

sinð2πtÞ; ð2Þ

which for A ¼ 0 includes the case of constant delay τ0.
Well-known prototype systems are obtained for specific
choices of f in Eq. (1), such as the Mackey-Glass equation,
a model for blood cell production [47], or the Ikeda
equation, describing the phase dynamics in an optical ring
cavity [37]. Various other nonlinearities fðxÞ have been
considered in the literature [44].
While most investigations considered constant delay [48–

55], recently some progress was made also for such systems
with periodic delay A ≠ 0 theoretically [56,57] and exper-
imentally [58–61]. Equation (1) describes a feedback loop,
where a signal is delayed, frequency modulated by a time-
varying delay τðtÞ, and transformed by a nonlinearity f. The
resulting signal is then low-pass filtered with cutoff fre-
quency Θ before the next round-trip inside the feedback
loop. For Θ ≫ 1, one obtains the well-studied (singular)
limit of large delays [49–55,62–68], visible from the time-
scale transformation t0 ¼ Θt. In this limit, the low-pass filter
approaches the identity, and the chaotic dynamics of Eq. (1)
is governed by the competition of two 1D maps x0 ¼ fðxÞ
and t0 ¼ RðtÞ and their Lyapunov exponents λf and λR.
Given that x0 ¼ fðxÞ shows chaotic dynamics, λf > 0, and
the so-called “access map” t0 ¼ RðtÞ is monotonically
increasing, Eq. (1) basically exhibits two types of chaos
[56,57]. By stretching and folding, the map x0 ¼ fðxÞ causes
chaotic high-frequency oscillations that are frequency
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modulated by the time-varying delay. For λR < 0, the access
map shows mode locking [69]. This means that there is a
resonance between the periodic frequency modulation by the
delay variation and the round-trip time inside the feedback
loop given by the delay itself, leading to low-dimensional
“generalized laminar chaos” [57]. It is characterized by
low-frequency phases with a periodic duration, where the
high-frequency oscillations caused by x0 ¼ fðxÞ are miti-
gated. For λf þ λR < 0, one observes “laminar chaos” [56],
where the low-frequency phases degenerate to almost con-
stant plateaus, whose levels follow the chaotic dynamics of
x0 ¼ fðxÞ. Lacking such resonance, as for constant delay, the
access map almost surely shows quasiperiodic dynamics
[69] with λR ¼ 0, implying that chaotic high-frequency
oscillations persist, which characterize high-dimensional
“turbulent chaos” [37].
We will show that this distinction has drastic conse-

quences also for delay systems showing chaotic diffusion,
which are obtained for nonlinearities such as

fðxÞ ¼ xþ μ sinð2πxÞ ð3Þ

or, more generally, for unbounded functions fðxÞ with
symmetry properties fð−xÞ ¼ −fðxÞ and fðxþ 1Þ ¼
fðxÞ þ 1. This type of nonlinearity is motivated as in
well-known studies of chaotic diffusion in one-dimensional
iterated maps xnþ1 ¼ fðxnÞ [5–7], which capture essential
features of driven pendula, Josephson junctions, or phase-
locked loops [70,71]. Our resulting infinite-dimensional
delay-differential equation (DDE), Eq. (1) with Eq. (3), is
an Ikeda-like equation, which, in principle, can be realized
experimentally by low-pass optoelectronic oscillators
[58,72,73], phase-locked loops similar to [30,31], electronic
circuits [60,74,75], or microwave oscillators [34]. As in [37],
xðtÞ can be regarded as a phase variable, which can naturally
assume arbitrary large values. The parameters of the system
are τ0 and A determining the delay variation, the strength μ
of the nonlinearity, and Θ, which sets the overall timescale.
Note that our system, Eqs. (1)–(3), for μ → ∞, Θ → 0, such
that μΘ ¼ κ is a constant, results in dxðtÞ=dt ¼
κ sinf2πx½RðtÞ�g, which for constant delay RðtÞ ¼ t − 1
is exactly the case studied in [30–32]. The appearance of
chaotic diffusion in this system [32,33] suggests that our
system, which contains an additional delayed feedback term,
is able to generate deterministic diffusion as well. We will
see, first, that this is indeed the case, second, that funda-
mentally different mechanisms exist, and third, that the
properties of the delay variation in Eq. (2) determine the
mechanism at work.
The existence of chaotic diffusion and different generating

mechanisms can be anticipated already from Fig. 1. All
trajectories were generated using the same parameters,
except for the modulation amplitude, which is zero for
Figs. 1(a) and 1(b), but nonzero for Figs. 1(c) and 1(d). We
see an irregular spreading of the ensemble of trajectories

typical for diffusive motion, but the width of the spread for
constant delay is by far smaller than for the modulated delay.
In addition, we see characteristic differences of the trajecto-
ries on a microscopic timescale, Figs. 1(b) and 1(d). The
spreading is quantified by the diffusion constant D, which
we determined from ensemble-averaged squared displace-
ments h½xðtÞ − xð0Þ�2i ≃Dt [76]. For the case A ¼ 0 of
Fig. 1, we obtain D ≈ 0.0004, whereas for A ¼ 0.9, we get
D ≈ 0.2558; i.e., a modulation of the delay leads to a giant
enhancement of the diffusion constant by almost 3 orders of
magnitude.
Such a strong variation of D is found in large parts of the

accessible τ0-A plane, 0 ≤ A < 1, τ0 > A=ð2πÞ. As exam-
ples, we plot in Fig. 2(a) the diffusion constant Dðτ0; AÞ in
the interval 1 ≤ τ0 ≤ 2, for A ¼ 0.98 and A ¼ 0.90, respec-
tively. One finds a strongly structured τ0 dependence, where
D takes large values up to D ≈ 0.25 in the peak regions, but
drops to small, near-zero values (D ≈ 0.0001) in certain
intervals. To understand these structures, we plot in Fig. 2(b)
the corresponding Lyapunov chart λRðτ0; AÞ, i.e., the contour
plot visualizing the Lyapunov exponent λR as function of its
parameters τ0 and A. Comparing the τ0 dependence of
λRðτ0; 0.98Þ and λRðτ0; 0.90Þ with the corresponding varia-
tion of the diffusion constants Dðτ0; 0.98Þ and Dðτ0; 0.90Þ,
respectively, one sees that the τ0 intervals of near zero D
occur when the associated Lyapunov exponents λR are zero,
and the peaks in D occur when λR < 0. In other words, the
DDE (1), shows strong diffusion when the corresponding
access map t0 ¼ RðtÞ shows mode locking, whereas the
diffusion almost vanishes when the dynamics of the access
map is quasiperiodic. Thus, we established a hitherto
unknown connection between the deterministic diffusive
dynamics of a DDE (1) and the Arnold tongue structure of
the map defined via the retarded argument, Eq. (2).
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FIG. 1. Trajectories obtained numerically from Eqs. (1)–(3)
reflect chaotic diffusion, but with characteristic differences, when
the modulation amplitude of the delay is increased from A ¼ 0 in
(a),(b) to A ¼ 0.9 in (c),(d), while keeping all other parameters
constant (Θ ¼ 50, τ0 ¼ 1, and μ ¼ 0.9).
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A deeper understanding of the strong diffusion part of
this phenomenon follows from the observation that, in
parameter regions with λR < 0, the theory of laminar or
generalized laminar chaos [56,57] applies also to our
system. The most pronounced effect occurs when laminar
chaos prevails, i.e., if the condition λf þ λR < 0 with λf >
0 is fulfilled. In Fig. 2(a), it is fulfilled in the intervals
derived from Fig. 2(b). Under this condition, the solution
xðtÞ of Eq. (1) consists essentially of a sequence of
plateaus, which can start to diffuse if the 1D map x0 ¼
fðxÞ produces chaotic diffusion, which is the case for
Eq. (3) if μ > μc ¼ 0.732… [5,78]. That this picture
applies can be seen from the trajectory of Fig. 1(d) with
its plateaulike structure. We expect that the diffusion
constant becomes related to that of the climbing sine
map in the limit Θ ≫ 1 since then the theory for laminar

chaos is valid. Figure 3(a) confirms this expectation: for
Θ ≥ 25, the diffusion constant already takes its asymptotic,
nonzero value, which near τ0 ¼ 1 is directly Dμ, the one
given by the climbing sine map.
For a quantitative understanding of the structures in

Fig. 2(a), we recall that the solution of DDEs can be
generated iteratively by the method of steps [80], where
solution segments xnðtÞwith t ∈ ðtn−1; tn� and tn−1 ¼ RðtnÞ
are generated from the preceding segment xn−1ðtÞ starting
with an initial function x0ðtÞ with t ∈ ðt−1; t0�. For Eq. (1),
in the singular limit Θ ¼ ∞, this function mapping can be
written as

xnþ1ðtÞ ¼ f(xn½RðtÞ�); ð4Þ

where the low-pass filter of the feedback loop is neglected.
Although one usually observes the diffusive behavior of the
scalar xðtÞ in continuous time, it is rather the function xn, an
infinite-dimensional object, that diffuses in discrete time n.
For our purposes, it is sufficient to observe the dynamics of
one “component” of xn, e.g., xnðtÞ at the end point t ¼ tn. If
the condition for laminar chaos is fulfilled, R shows mode
locking with a rational rotation number ρ ¼ p=q, which is
the average number of delay periods covered per round-trip
inside the feedback loop. Then xn consists of p plateaus
whose levels are mapped forward by f from Eq. (3), i.e.,
xnþ1;i ¼ fðxn;iÞ, where xn;i denotes the ith plateau of xn.
Therefore, if iterations x0 ¼ fðxÞ display chaotic diffusion
with diffusion constant Dμ, the plateaus show the same
chaotic diffusion in discrete time n. To obtain the diffusion
constantD for Eq. (1) in continuous time t, we observe that
the average length htn − tn−1i of the solution segments is
given by the rotation number ρ resulting inD ¼ Dμ=ρ. This
can be observed in Fig. 2(a): in the left τ0 interval near
τ0 ¼ 1, we have mode locking with ρ ¼ 1 and, therefore,
D ¼ Dμ ≈ 0.254, whereas near τ0 ¼ 2, we have ρ ¼ 2with
D ¼ Dμ=2, and in the middle region near τ0 ¼ 3=2, we get
D ¼ 2Dμ=3 because R shows mode locking with ρ ¼ 3=2.
The picture of independently diffusing plateaus is strictly
true only in the limit Θ → ∞. For large but finite Θ, the
plateaus are coupled through the finite relaxation rate of the
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FIG. 2. (a) A strong, sensitive dependence of the diffusion
constant D (thick blue lines) in comparison with the Kaplan-
Yorke dimension dKY (thin black lines) on the delay τ0 is
observed [A ¼ 0.98 (solid lines), A ¼ 0.90 (dashed lines)], which
can be related to (b) the Arnold tongue structure visible in the
Lyapunov chart λRðτ0; AÞ of the access map. The full, dashed, and
dotted contour lines separate areas of generalized laminar chaos
of order K − 1 ¼ 0, 1, 2 (from darkest to brightest), respectively.
Circles and squares mark the boundaries in τ0 of laminar chaotic
diffusion (K ¼ 1) for A ¼ 0.9 and A ¼ 0.98, respectively. Cor-
responding marks in (a) are placed at heights predicted by theory.
(c) The variation of D is plotted for two values τ0 ¼ 1 and τ0 ¼
1.05 (upper and lower curve, respectively) as the modulation
amplitude increases from A ¼ 0 to A ¼ 1. The logarithmic scale
shows that the near-zero values [observed also in (a)] are of order
Oð10−4Þ, implying a variation of D of more than 3 orders of
magnitude while passing through regimes of generalized laminar
chaotic diffusion of order K − 1 ¼ 0, 1, 2, and higher (purple,
blue, green, red, from right to left). Laminar chaotic diffusion
K ¼ 1 is special because D hardly varies within the correspond-
ing Arnold tongue area while changing A in (c) or τ0 in
(a) (Θ ¼ 200 and μ ¼ 0.9).
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FIG. 3. (a) For variable delay and laminar chaotic diffusion
(τ0 ¼ 1 and τ0 ¼ 2) the diffusion constant DðΘ ≫ 1Þ seems to
coincide with the expected constant valueD ¼ Dμ=ρ, and also for
generalized laminar chaos of order 1 (τ0 ¼ 3=2), a constant value
is reached. (b) In contrast, for constant delay, D decays
asymptotically as Θ−1 (μ ¼ 0.9).
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low-pass filter, but this does not affect the diffusion
constant D, as shown in Fig. 3(a) for cases with one
(ρ ¼ 1) or two (ρ ¼ 2) plateaus per state interval. This
behavior implies that for “laminar chaotic diffusion,” the
Kaplan-Yorke dimension of the DDE dynamics [consid-
ering xðtÞ mod 1] is relatively small [see Fig. 2(a) [81] ] as
in nondiffusive cases [56].
In general, in the mode-locked region of the access map,

i.e., for λR < 0, one can always find a finite integer K such
that λf þ kλR < 0 for k ≥ K. Given that λf > 0, this is, for
K ≥ 2, the condition for generalized laminar chaos of order
K − 1 [57], thus generalizing the above laminar chaotic
case K ¼ 1. For K ≥ 2, the role of the plateaus seen for
K ¼ 1 is taken by polynomials of order K − 1, and the
effective dimensions are of order OðKÞ, i.e., still small if K
is small. Also for generalized laminar chaos, where we
currently have no good quantitative theory for the diffusion
constants, we find numerically that, for Θ → ∞, the
diffusion constant converges to finite, nonzero values, as
seen in Fig. 3(a) for generalized laminar chaos of order 1.
These finite values can also be inferred from Fig. 2(a) by
changing τ0 from the center of an Arnold tongue, where
laminar chaotic diffusion is prevailing, toward its boundary,
where, due to decreasing jλRj, one passes through all orders
of “generalized laminar chaotic diffusion.” This is better
seen for fixed τ0 by varying the modulation amplitude as in
Fig. 2(c), i.e., by traversing the primary Arnold tongue
vertically. Probably, this is a well-suited scenario for
experimentally observing the giant enhancement of the
diffusion constant.
These scenarios for λR < 0 should be contrasted with the

other extreme of near-zero diffusion, which in Fig. 2(b)
occurs when the Lyapunov exponent of the access map,
Eq. (2), vanishes, λR ¼ 0. In Fig. 3(b), we show the
corresponding typical Θ dependence of the diffusion con-
stantD. We observe that, in contrast to (generalized) laminar
chaotic diffusion, D decays to zero as D ∼ Θ−1 for large Θ.
To understand this law, we first observe that λR ¼ 0 means
that the dynamics of the access map t0 ¼ RðtÞ is (almost
surely) quasiperiodic. Therefore, the DDE of Eq. (1) can be
transformed to constant delay [82,83]. So it is sufficient to
understand the origin of chaotic diffusion from Eq. (1) for
constant delay RðtÞ ¼ t − τ0 with τ0 ¼ 1.
We know that, due to the low-pass filter with cutoff

frequency Θ, solutions xðtÞ of Eq. (1) show (random)
oscillations on a timescale 1=Θ. This suggests that the term
sin½2πxðt − 1Þ� can be replaced by a noise term ξΘðtÞ
with zero mean and exponentially decaying correlations
with correlation length 1=Θ, i.e., hξΘðtÞξΘðt0Þi ¼
1=2 expð−Θjt − t0jÞ. This approximation turns our DDE
into a stochastic DDE of the form

dyðtÞ
dt

¼ −ΘyðtÞ þ Θyðt − 1Þ þ μΘξΘðtÞ; ð5Þ

where the approximate solution is denoted as yðtÞ.
Assuming Gaussianity of ξΘðtÞ, Eq. (5) can be considered
as that of an Ornstein-Uhlenbeck process (with colored
noise) extended by the delay termΘyðt − 1Þ or, alternatively,
as delayed feedback control Θ½yðt − 1Þ − yðtÞ� [84], which
is applied to a (generalized) Wiener process [85]. Such
systems have been studied previously for white noise
[86,87], but also for colored noise [88]. According to the
general theory of linear equations, such as Eq. (5), the
behavior of the mean-squared displacement [assuming
hyð0Þi ¼ hyðtÞi ¼ 0] can be expressed as [88] hy2ðtÞi ¼
ðμΘÞ2 R t

0

R
t
0 y0ðt − t0ÞhξΘðt0ÞξΘðt00Þiy0ðt − t00Þdt0dt00, where

y0ðtÞ is the Green’s function or the fundamental solution
of the deterministic part of Eq. (5). For large values of t, the
latter becomes constant limt→∞y0ðtÞ ¼ 1=ð1þ ΘÞ [86], so
that, for large t, we have hy2ðtÞi ∼ ðμΘÞ2=ð1þ ΘÞ2R
t
0

R
t
0 hξΘðt0ÞξΘðt00Þidt0dt00, and in the same limit the double

integral evaluates to t=Θ resulting in hy2ðtÞi ∼Dt with
D ¼ μ2Θ=ð1þ ΘÞ2. The same result is obtained if in Eq. (5)
one replaces Θ1=2ξΘðtÞ by its large-Θ limit, which is
Gaussian white noise ξðtÞ with hξðt0Þξðt00Þi ¼ δðt0 − t00Þ,
as treated in [86,87].
This confirms the numerically observed behavior

of the diffusion constant for “turbulent chaotic diffusion”
shown in Fig. 3(b) [89]. This is a counterintuitive
result because diffusion becomes progressively weaker
the more turbulent the system behaves as measured by its
effective dimensions [see Fig. 2(a)]. Note also that, for
constant delay, individual components xnðtÞ of the sol-
ution segments show vanishing diffusion for Θ → ∞,
whereas for Θ ¼ ∞, they diffuse chaotically with D ¼
Dμ [see Eq. (4)].
The Θ−1 law implies that a delay modulation can, in

principle, cause an increase in the diffusion constant by
arbitrary many orders of magnitude. The only limitations
are the experimentally accessible Θ regime and the
influence of additional noise from the experimental
environment.
In summary, we found in a typical class of delay systems

new mechanisms for deterministic chaotic diffusion with
vastly different diffusion constants, namely, turbulent and
laminar chaotic diffusion, which are obtained by changing,
e.g., the modulation amplitude of the delay. Since our main
results are very general, because they do not depend on the
detailed form of the periodic delay modulation or the
periodic part of the delayed nonlinearity, we expect that
they can be found experimentally in especially designed
electro-optical devices or in purely electronic realizations,
but presumably also in a much wider class of systems
including, e.g., Josephson junctions if a modulated delay
can be introduced.
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