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Kerr soliton microcombs in microresonators have been a prominent miniaturized coherent light source.
Here, for the first time, we demonstrate the existence of Kerr solitons in an optomechanical microresonator,
for which a nonlinear model is built by incorporating a single mechanical mode and multiple optical modes.
Interestingly, an exotic vibrational Kerr soliton state is found, which is modulated by a self-sustained
mechanical oscillation. Besides, the soliton provides extra mechanical gain through the optical spring
effect, and results in phonon lasing with a red-detuned pump. Various nonlinear dynamics is also observed,
including limit cycle, higher periodicity, and transient chaos. This work provides a guidance for not only
exploring many-body nonlinear interactions, but also promoting precision measurements by featuring
superiority of both frequency combs and optomechanics.
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Chip-integrable optical frequency combs in Kerr micro-
resonators have attracted much interest in recent years
[1,2]. In particular, dissipative Kerr soliton (DKS) micro-
combs, resulting from the double balance between
dispersion and optical Kerr nonlinearity as well as dis-
sipation and gain, provide a miniaturized coherent link
between the optical and microwave frequencies [3–5]. So
far, DKSs have been demonstrated with prominent capa-
bilities in a wide range of applications, such as optical
clocks [6,7], LiDARs [8,9], optical computations [10,11],
and high-resolution spectroscopy [12,13]. Besides, DKSs
have also been employed as an entity for investigating
nonlinear physics, accompanied with various novel phe-
nomena including breathing solitons [14–16], soliton
crystals [17,18], and soliton bursts [19,20].
Very recently, it was found that the characteristics of

temporal DKSs can be engineered by other nonlinear
effects, such as stimulated scatterings [21–23], thermo-
optic effect [24–27], and harmonic generations [28]. These
effects provide strategies for manipulating microcomb
properties, e.g., frequency extension through second har-
monic generation and noise reduction through Brillouin
scattering [26–29]. Among various cavity-enhanced non-
linear effects, optomechanical interaction is ubiquitous in
ultrahigh-Q microcavities and holds unprecedented abil-
ities in controlling macroscopic quantum states [30–34] as
well as precision measurements [35–40]. Although Kerr
microcombs have been observed preliminarily in optome-
chanical microresonators [41–45], the existence of DKSs
under the strong optomechanical coupling is still elusive.
In this Letter, we demonstrate the existence of robust

DKSs in a strongly coupled optomechanical microresona-
tor. By incorporating the interactions between a single

mechanical mode and multiple optical modes into the
nonlinear Schrödinger equation, a vibrational soliton state
is found analytically, which is modulated by the mechanical
oscillation. Moreover, it is revealed that such soliton
provides extra gain to the mechanical resonator through
the optical spring effect and leads to phonon lasing under a
red-detuned optical pump. Rich nonlinear dynamics is also
observed for the optomechanically vibrational solitons,
including limit cycle, periodic doubling, and transient
chaos. This work paves the way for exploring complex
nonlinear dynamics, as well as potential applications of
precision measurements by combining frequency combs
and optomechanics.
As shown in Fig. 1(a), a whispering gallery mode

(WGM) optomechanical microresonator is adapted for
DKS generation, where the cavity boundary vibrates due
to the enhanced light-radiation pressure [30]. Under a red-
detuned pump input, the cavity modes ψn forming the
soliton combs couple to each other through Kerr four-wave
mixing (FWM), and interact with a single mechanical
mode, as illustrated in Fig. 1(b). The evolution of this
coupled system is described by Lugiato-Lefever equation
[46] incorporated with optomechanical coupling [30],

∂ψðτ;ϕÞ
∂τ ¼ i
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where ψðτ;ϕÞ ¼ P
n ψneinϕ is the normalized intraca-

vity waveform dependent on the azimuthal angle ϕ and
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normalized evolution time τ. xðτÞ denotes the displacement
of the mechanical mode with resonance frequency ωm,
decay rate γm, and radiation pressure coefficient C. The
terms on the right-hand side of Eq. (1) describe, respec-
tively, group-velocity dispersion with the dispersion param-
eter β, mechanical back action with coefficient G, Kerr
nonlinearity, frequency detuning between the central opti-
cal mode and the pump laser Δ ¼ ω0 − ωp, cavity losses,
and external driving f on a single optical mode ψ0. The
mechanical resonant frequency ωm is larger than the optical
decay rate (the resolved-sideband regime), and it is
assumed that the optical modes share the same coupling
strengthGwith the mechanical mode. All these coefficients
are normalized to the cavity photon lifetime [47].
The steady state of this system is first analyzed by

numerically solving Eqs. (1) and (2) through split-step
Fourier transform method, where the initial condition is set
as a single pulse to excite a single soliton. In absence of the
optomechanical effects, the existence of the soliton states
depends on both the continuous wave (CW) pump intensity
f and the frequency detuning Δ. These solitons can be
classified into stationary solitons [3] and breathing solitons,
i.e., breathers, which exhibit periodic oscillations [14–16],
as shown in Fig. 1(c). Here we focus on the single-soliton
case in the main text and results with the existence of

multiple solitons are included in the Supplemental Material
[47]. With typical experimental parameters that allow the
existence of solitons, once strong optomechanical coupling
is introduced, which cannot be treated perturbatively, it is
found that single DKS still exists within a certain region, of
which all the boundaries redshift compared with the case
without optomechanical effects, as shown in Fig. 1(d). This
is because the intracavity optical field increases the
equilibrium cavity length of the mechanical resonator,
resulting in an overall red shift of the cavity modes in
turn [30]. It is also noticed that the soliton vanishes within
the shaded area in Fig. 1(d), which arises from dynamical
instability by optomechanical nonlinearity [49].
In the optomechanical microcavity, a new type of soliton

state emerges characterized by a temporal oscillation in its
intensity, which is referred to as the optomechanically
vibrational soliton (OMVS), as shown in the inset of
Fig. 1(d). Although both breathers and OMVSs possess
similar oscillatory natures, they originate from fundamen-
tally different mechanisms. To illustrate their physical
origin, the normalized detuning is adiabatically scanned
at a constant pump intensity f ¼ 3.2; thus, the system is
consecutively switched between different soliton states, as
shown in Fig. 2(a). Although oscillating comb powers are
observed in both the breathing soliton and OMVS regimes,

(a)

(c)

(b)

(d)

FIG. 1. (a) Illustration of a DKS in a WGM optomechanical
microresonator. (b) Schematic diagram of coupled optical
modes ψn interacting with a single dissipative mechanical
mode with displacement xðτÞ. FWM: four-wave mixing. (c),
(d) Numerically simulated phase diagram of the coupled system
without and with optomechanical (OM) interaction. Soliton
exists in the colored region, with breathing DKS, stationary
DKS, and OMVS. Inset: Dynamical evolution of stationary
DKS and OMVS over a normalized slow time (at Δ ¼ 10, f ¼
3 marked as the star) versus azimuthal angle ϕ over a single
round trip. Parameters: β ¼ 0.01, ωm ¼ 5.17, γm ¼ 0.0517,
G ¼ 6.18 × 1011 m−1, C ¼ 1.51 × 10−10 m.
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FIG. 2. (a) Numerical simulated trace of comb power (blue) and
the displacement of the mechanical resonator normalized by
10 pm (gray) over the laser detuning scan starting from a
stationary DKS state at f ¼ 3.2. (b) Numerical linewidth of
the mechanical oscillator under different detuning. Inset: fre-
quency spectra of mechanical resonator at Δ ¼ 8.4 (blue) and
Δ ¼ 10 (orange). (c) The frequency spectra over the laser
detuning. The blue dashed-dotted line indicates the mechanical
frequency. The gray dashed lines in (a),(c) indicate different
regions.
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the mechanical resonator vibration is much stronger in the
OMVS than in the breather. Spectrumwise, during the laser
scanning, the oscillation frequency of OMVS asymptoti-
cally approaches the mechanical frequency ωm in the entire
oscillating regime due to optical spring effect [Fig. 2(c)]
[30]. On the contrary, the breather oscillating frequency
grows linearly with detuning independent on the mechani-
cal frequency, consistent with previously reported breathers
in absence of the optomechanical interactions [16]. These
results imply that the OMVS vibrates due to the periodic
change of the parameters, which originates from the strong
interaction between the optical and mechanical modes,
whereas the breather is less affected by the optomechanical
coupling. Interestingly, approaching the onset of the
OMVS, the linewidth of the mechanical resonance narrows
down rapidly and nearly vanishes at the threshold, as shown
in Fig. 2(b). It indicates the emergence of the self-sustained
mechanical oscillation in the OMVS regime, also known as
phonon lasing.
For a direct illustration of the soliton spectral dynamics,

the evolution of the mode profiles of the breather and
OMVS with typical parameters (breather: Δ ¼ 10, f ¼ 3
and OMVS: Δ ¼ 10, f ¼ 5) are compared in Fig. 3. As for
the breather, the energy oscillates between the center and
wing comb lines, giving rise to a oscillating optical spectral
envelope that deviates from the stationary soliton state
[Fig. 3(a)]. The time averaged spectrum is characterized by
a triangular shape in the logarithmic scale, analogous to the

conventional Kuznetsov-Ma breathing solitons [14–16].
Oppositely, the whole OMVS envelope oscillates as a parti-
clelike wave packet while maintaining the sech2 shaped
envelope in both the spectral and temporal domains, as
shown in Figs. 3(b) and 3(c). The corresponding dynamics
of OMVS is further analyzed in the Supplemental Material
and shown in the Supplemental Video [47]. The different
oscillation origins can also be understood by examining the
relative phases between the center and wing comb lines. In
the breather, the center comb lines (mode number
n ¼ 1 ∼ 5) oscillate in nearly opposite phases with those
in the wings (mode number n ¼ 21 ∼ 25), thus implying
intracomb energy exchange [14,16] (Fig. 3(d), upper).
Contrarily, the energy of OMVS changes periodically with
all the comb lines oscillating in almost synchronized
phases, indicating their coherent energy transfers with
the mechanical mode (Fig. 3(d), lower). Such energy
oscillation highlights the potential advantages of OMVSs
in, e.g., sensing applications, as they are strongly coupled
to a mechanical oscillator while preserving the intrinsic
stability of solitons. Besides, the nonsinusoidal evolution of
OMVS arises from the nonlinear nature of optomechanical
interaction, where the rf spectrum features cascaded side-
bands [50].
Notably, in conventional optomechanical systems, the

self-sustained mechanical oscillation is well-known to exist
only with the blue-sideband drive, whereas in our system, it
is enabled by a drive at the red sideband [49–52]. In
absence of the DKS formation, the photons from the red-
detuned pump laser can be scattered by absorbing phonons
through the cavity-enhanced anti-Stokes process, resulting
in the cooling of the mechanical resonator (i.e., suppressed
oscillator vibration) [31,53]. Interestingly, once the DKS is
generated, the intracavity soliton pulse can shift part of the
mode resonance to the red side of the input laser, forming
an additional resonance by the Kerr effect, i.e., the S
resonance [26]. The pump laser is effectively blue-detuned
to this new resonance, which thus introduces extra gain to
the mechanical oscillator by releasing phonons through the
enhanced stokes process, as schematically illustrated in
Fig. 4(a). In this case, the total loss of the mechanical
resonator, including both the intrinsic and the optomechan-
ical loss induced by the anti-Stokes process, can be
compensated by the gain from the S resonance, enabling
the self-sustained mechanical oscillation.
Moreover, the Lagrangian method is employed for

analytically studying the emergence of OMVS, as shown
in Fig. 4(b). Through identifying the sign of the real part of
the leading eigenvalue, the threshold for the self-sustained
oscillation is obtained, which is plotted in blue in Fig. 4(b)
and agrees well with the numerical boundary of the OMVS
region. Furthermore, the different contributions of
mechanical loss or gain are extracted under large detuning
approximationΔ2 ≫ 1, and the overall loss of the mechani-
cal resonator reads,
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FIG. 3. (a),(b) Evolution of optical spectra for the breathing
solitons at Δ ¼ 10, f ¼ 5, and OMVS at Δ ¼ 10, f ¼ 3,
respectively. The black curves are the average spectrum within
a half period. (c) The corresponding temporal evolution of the
OMVS at (0, 0.1, 0.3) of a period. The scattered data are
simulation results and the colored lines are the sech2 envelope
expected for solitons. (d) The corresponding evolution of power
amplitude of the central comb lines (blue) and the lines in the
wing (orange).
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γ ¼ γm þ γcw þ γs; ð3Þ

where γm is the intrinsic loss and γcw (γs) is the contribution
through anti-Stokes (Stokes) scattering from the CW
background (soliton). Here the optomechanical damping
rate is derived from the imaginary part of the mechanical
susceptibility, which is obtained by calculating the
mechanical response to the radiation-pressure force
[30,47,53]. Note that when the DKS is generated, pump
laser is effectively blue-detuned to the S resonance,
corresponding to a negative γs, and the loss of the
mechanical oscillator is hereby reduced. For the pumping
conditions marked by the gray line in Fig. 4(c), upon the
increase of the detuning Δ, both the optomechanical loss
γcw and gain jγsj decrease with different variation rates.
When the mechanical gain exactly compensates the total
loss, the threshold of phonon lasing reaches, which agrees
well with the numerical boundary of the OMVS illustrated
by the orange shaded region. Once the gain exceeds the
loss, the net loss becomes negative, leading to an exponen-
tially amplified oscillation until saturation [30].
Finally, rich temporal dynamics can be revealed in the

evolution of OMVS states due to the strong nonlinearity. As
shown in point i of Fig. 5, a distorted limit-cycle structure is
observed with the pumping conditions marked by the red
dots in the inset in the phase space spanned by the real
and imaginary parts of the optical field of the comb line ψ1.

The corresponding frequency spectrum exhibits multiple
harmonics, attributed to the cascaded phonon scattering and
nonlinearity of the mechanical oscillation. As the pump
intensity increases at a constant detuning, a period doubling
bifurcation takes place, with a limit cycle in the phase space
with period twice as in i (point ii). This period doubling is
also confirmed by the frequency spectrum, where new
peaks present at half of the initial resonant frequencies.
Under a higher driving power (point iii), the optical field
turns into an irregular evolution before a moment τ0 with
chaotic orbits in the phase space, exhibiting a continuous
and highly noisy frequency spectrum. This transient chaos
is induced by the optomechanical nonlinearity through
switching energy between the multisidebands, and the
original state becomes unstable once the chaotic orbit
enters the attractive region of an adjacent basin [49,54].
Hence, after the critical moment τ0, the soliton exits from
the limit cycle of the OMVS and eventually collapses to the
CW-background state.
In summary, we have demonstrated the existence of DKS

in a microcavity with strong optomechanical interactions.
By building a nonlinear model incorporating a single
mechanical mode and multiple optical modes, a new form
of soliton appears with the periodic oscillations. Besides,
the soliton provides extra mechanical gain through the
optical spring effect and results in phonon lasing with a red-
detuned pump. Various nonlinear dynamical orbits of the
OMVSs are also observed, containing limit cycle, higher
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periodicity, and transient chaos. This work lays the ground-
work for operating soliton microcombs in microcavities
with strong optomechanical coupling and promotes various
applications, e.g., frequency division and random bits
generation [55,56]. Moreover, the integration of frequency
combs and optomechanics, two powerful tools for ultra-
sensitive measurements, holds great potential for deve-
lopments in precision metrology and trace detection
[6–9,35–39].
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