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In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a
complete understanding of the degradation in the purity of squeezed light is demanded. By implementing
machine-learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise
quantum state tomography for continuous variables, through the experimentally measured data generated
from the balanced homodyne detectors. Compared with the maximum likelihood estimation method, which
suffers from time-consuming and overfitting problems, a well-trained machine fed with squeezed vacuum
and squeezed thermal states can complete the task of reconstruction of the density matrix in less than one
second. Moreover, the resulting fidelity remains as high as 0.99 even when the antisqueezing level is higher
than 20 dB. Compared with the phase noise and loss mechanisms coupled from the environment and
surrounding vacuum, experimentally, the degradation information is unveiled with machine learning for
low and high noisy scenarios, i.e., with the antisqueezing levels at 12 dB and 18 dB, respectively. Our
neural network enhanced quantum state tomography provides the metrics to give physical descriptions of
every feature observed in the quantum state with a single scan measurement just by varying the local
oscillator phase from 0 to 2z and paves a way of exploring large-scale quantum systems in real time.

DOI: 10.1103/PhysRevLett.128.073604

Introduction.—With the intrinsic nature of multimode,
continuous variable states have provided a powerful plat-
form for generating large entangled networks [1-6]. In the
family of continuous variables, “squeezed states,” even
with the fundamental limit on the quantum fluctuations set
by Heisenberg’s uncertainty relation, remarkably exhibit
completely different characteristics from discrete variables
in the quantum world [7-9]. Now, as true applications,
squeezed states have been used in quantum metrology
[10-13], advanced gravitational wave detectors [14-20],
the generation of macroscopical states with a large photon
number [21-23], and quantum information manipulation
using continuous variables [24,25].

Even though up to 15 dB squeezing has been demon-
strated as the state-of-the-art technology, any quantum
system is unavoidably subject to a number of dissipative
processes, resulting in 18-24 dB antisqueezing accompa-
nied [26]. Instead of dealing with pure states, the degra-
dations in squeezing from loss and phase noise fluctuations
limit the practical applications, resulting in tackling mixed
states. The imperfection in purity is not only the obstacle
for any quantum metrology with squeezed states, but also
the restriction in generating larger-size Schrodinger’s cat
states. To access the nonclassical power for quantum
technologies, we need to have the ability to fully and
precisely characterize the quantum features in a large
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Hilbert space. Using multiple phase-sensitive measure-
ments through homodyne detectors, quantum state tomog-
raphy (QST) enables us to extract the complete information
about the state of the system statistically [27,28].
Nowadays, QST has been implemented in a variety of
quantum systems, including quantum optics [29,30], ultra-
cold atoms [31,32], ions [33,34], and superconducting
circuit-QED devices [35].

One of the most popular methods to implement QST is
the maximum likelihood estimation (MLE) method, by
estimating the closest probability distribution to the data for
any arbitrary quantum states [36]. However, the required
amount of measurements to reconstruct the quantum state
in multiple bases increases exponentially with the number
of involved modes. Albeit dealing with Gaussian quantum
states, the MLE algorithm becomes computationally too
heavy and intractable when the squeezing level increases.
Moreover, MLE also suffers from the overfitting problem
when the number of bases grows. To make QST more
accessible, several alternative algorithms are proposed by
assuming some physical restrictions imposed upon the state
in question, such as the permutationally invariant tomog-
raphy [37], quantum compressed sensing [38], tensor
networks [39,40], and generative models [41]. Instead,
with the capability to find the best fit to arbitrarily compli-
cated data patterns with a limited number of parameters
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available, machine-learning approaches are widely applied
in many subfields in physics, from black hole detec-
tion, topological codes, and phase transition to quantum
physics [42,43]. For QST, the restricted Boltzmann
machine has been applied to reduce the overfitting problem
in MLE [44].

In dealing with Gaussian states, methodologies based on
covariance matrix or nullifiers are well-developed [45—47].
For the covariance method based on the homodyne
measurements, at least three measurements must be per-
formed at a fixed (but different) local oscillator (LO)
phase, in order to estimate the variances. Moreover, the
assumption of pure squeezed part in the generated squeezed
state is only valid for low squeezing levels. Nevertheless,
information in different LO phases is missing due to the
selected measurements only at three LO phases. When the
squeezing level is higher than 5 dB, more and more
nonpure squeezed parts become dominant, making these
known methodologies inaccurate. Nowadays, higher than
10 dB squeezing levels are in the schedule for the advanced
gravitational wave detectors [48,49]. Even though for the
nonideal case, one can also apply the nullifiers to represent
the actual noises in the operations by additional feed-
forward operations. A single scan measurement to extract
the degradation in quantum states is still missing.

Machine-learning QST.—Along this direction, based on
the machine-learning protocol, in particular with the con-
volutional neural network (CNN), we experimentally
implement the quantum homodyne tomography for con-
tinuous variables and illustrate a fast, robust, and precise
QST for squeezed states. As the time sequence data
obtained in the optical homodyne measurements share
the similarity to the voice (sound) pattern recognition, it
motivates us to apply the CNN architecture. With the aim of
realizing a fast QST, such a supervised CNN trained by the
prior knowledge in squeezed states enables us to build a
specific machine learning for certain kinds of problems.
More than 2 x 10° datasets are fed into our machine with a
variety of squeezed and thermal states in different squeez-
ing levels, quadrature angles, and reservoir temperatures.
When well-trained (typically in less than one hour), the
execution time for our machine-learning enhanced QST
takes the average cost time 38.1 milliseconds (by averaging
100 times) in a standard GPU server. Compared with the
time-consuming MLE method, demonstrations on the
reconstruction of the Wigner function and the correspond-
ing density matrix are illustrated for squeezed vacuum
states in less than one second (as 1 Hz scanning frequency
is applied in a single scan), keeping the fidelity up to 0.99
even taking 20 dB antisqueezing level into consideration.
Experimentally, the purity in squeezed vacuum states is
evaluated directly for high squeezing levels (close to 10 dB
squeezing level), but with low noisy and high noisy
conditions, i.e., with the antisqueezing levels at 12 dB
and 18 dB, respectively. By extracting the purity of
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FIG. 1. Degradation in squeezed states. Ideally, the squeezing

and antisqueezing levels should locate along the blue dashed line.
However, as shown with the typical experimental data, marked in
black dots, there exists a discrepancy between the measured
squeezing and antisqueezing levels. By taking the loss and phase
noise into account, based on Egs. (1) and (2), the optimal fitting
curve is depicted in green, with the corresponding standard
deviation shown by the shadowed region.

quantum states with the help of machine learning, a full
understanding of the degradation in the state decoherence
can also be unveiled in a single scan measurement, paving
the road toward a real-time QST to give physical descrip-
tions of every feature observed in the quantum noise.
Experiments.—First of all, in Fig. 1, we show the
degradation curve in typical squeezed state experiments,
illustrated with the measured squeezing and antisqueezing
levels in the unit of decibels (dB). Here, our squeezed
vacuum states are generated through a bow-tie optical
parametric oscillator cavity with a periodically poled
KTiOPO, (PPKTP) inside, operated below the threshold
at the wavelength 1064 nm [50]. By injecting the ac signal
of our homemade balanced homodyne detection, with the
common-mode rejection ratio more than 80 dB, the
spectrum analyzer records the squeezing and antisqueezing
levels by scanning the phase of the local oscillator. It is
remarked that the value of the common-mode rejection
ratio not only tells how well the balanced signals from the
two photodiodes can be suppressed, but also calibrates the
measured values in squeezing levels [51]. Here, our
measurements are collected by the spectrum analyzer at
zero span mode. The phase of LO is scanned with a 1 Hz
triangle wave function. Specifically, at 2.5 MHz, four
experimental data are marked with the measured (squeez-
ing:antisqueezing) levels in dB: A (3.76:3.89) at the pump
power 5 mW, B (7.39:12.16) at 55 mW, C (7.91:18.56) at
77 mW, and D (9.38:19.69) at 80 mW, respectively.
Ideally, without any degradation, the squeezing and
antisqueezing levels should be the same, located along
the blue dashed line in Fig. 1. However, the phase noise and
loss mechanisms coupled from the environment and sur-
rounding vacuum set the limit on the measured squeezing
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level. These selected data represent nearly ideal squeezing
(marker A), high squeezing level but with low degradation
(marker B) and with high degradation (marker C); along
with the highest squeezing level achieved (marker D with
9.38 dB in squeezing level).

By taking the optical loss (denoted as L) and phase noise
(denoted as ) into account, the measured squeezing V39
and antisqueezing V* levels can be modeled as

Vs = (1 —L)[Vi] x cos?0 + V¥ xsin®9] + L, (1)

Ve = (1 = L)[VH x cos’0 + Vi xsin’0] + L,  (2)
where Vi] and V& are the squeezing and antisqueezing
levels in the ideal case. In Fig. 1, we also show the optimal
fitting curve obtained by the orthogonal distance regression
in green, with the corresponding standard deviation (one-
sigma variance) shown by the shadowed region.

Benchmarking of CNN-QST.—Even though by fitting
several measured squeezing and antisqueezing data one can
estimate the degradation in squeezing empirically, the full
information about the density matrix and the purity of
quantum states needs to be reconstructed precisely and fast.
To generate QST for continuous variables, keeping the
fidelity high and avoiding nonphysical states are the critical
issues in training our neural network enhanced tomography
scheme. In training the reconstruction model, we use a
“uniform distribution” to sample the value of LO angle,
with 2048 sampling points fed from the experimental
datasets (5 000 000 data points). As shown in Fig. 2, details
about our machine-learning architecture (including the
hyperparameters) and the reconstruction of the Wigner
function, as well as the corresponding density matrix, are
given in the Supplemental Material [52].

To illustrate that our neural network enhanced QST
indeed keeps the fidelity in the predicted density matrix, in
Fig. 3, the average fidelity obtained by MLE and CNN are

compared as a function of (a) the number of quadrature
sequence data points and (b) the squeezing levels (dB).
Here, the fidelity is defined as |tr(y/\/poy/p)|*, with the
given simulated input data p and the predicted density
matrix ¢ obtained by MLE and CNN, respectively. The
average is done with 5000 simulated datasets. As one can
see in Fig. 3(a), when the number of quadrature points
increases from 256 to 2048, the resulting average fidelity
increases even when we consider higher squeezing levels,
i.e., 8 to 14 dB. Nevertheless, with only a small number of
data points such as 256, the output fidelity obtained by
CNN can be much higher than 0.95, compared to only 0.7
by MLE. Moreover, even when the data points increase to
2048, MLE only gives the average fidelity up to 0.91,
which is still much lower than 0.99 obtained by CNN.
On the other hand, when the data points are fixed to
2048, the superiority in CNN over MLE can also be clearly
seen in Fig. 3(b), in particular at a higher squeezing level.
Now, as the squeezing level increases, the dimension in the
reconstructed Hilbert space exponentially grows. As a
result, the average fidelity obtained by MLE decreases
very quickly from 0.99 at a low (1 dB) squeezing level to
0.94 at a high (10 dB) squeezing level. On the contrary, our
well-trained machine learning can keep the output fidelity
as high as 0.99 even when 10 dB squeezing is tested.
Extracting the degradation information.—In addition to
the reconstructed Wigner function and the corresponding
density matrix, the degradation information in squeezing
can be extracted directly from the predicted density matrix
by calculating the purity of quantum state, i.e., p = tr(p?).
The performance of our machine-learning QST is com-
pared with the one obtained by the covariance matrix,
denoted as the “Exp-fitting” curve in Fig. 4, as well as the
one obtained by MLE, on the purity of squeezed states
through the predicted density matrix. In addition to
exhibiting the same trend in the degradation of purity, as
one can see, at high squeezing levels, MLE overestimates
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FIG. 2. Schematic of our precise and robust neural network enhanced quantum state tomography. The noisy data of quadrature
sequence obtained by quantum homodyne tomography in a single scan of LO phase from 0 to 2z, are fed to the convolutional layers,
with the shortcut and average pooling in the architecture. Then, after flattening and normalization, the predicted matrices are inverted to

reconstruct the density matrices in truncation.
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FIG. 3. Comparison of the average fidelity for the predicted
density matrix obtained by maximum likelihood estimation
(MLE) and convolution neural network (CNN) as a function
of (a) the number of quadrature data points, and (b) the squeezing
level. Here, 5000 simulated datasets are prepared for the
comparison, but in (a) with different squeezing levels from 8
to 14 dB; while in (b), the number of data points in the quadrature
sequence from 0 to 2z for the LO phase is fixed to 2048. The
shadow regions represent the standard deviation in the average
fidelity.

the purity of quantum states due to the overfitting problem.
On the contrary, the empirical formula underestimates the
purity due to the lack of thermal reservoir information.
Furthermore, we can directly apply the singular value
decomposition to the predicted density matrix and extract
the dominant terms, i.e., p*P = ¢1p*1 + 6,,,p"°", Where
CponP™" = ic,-pfﬁ,- + > i dipy.; denotes the summation
of all the contributed squeezed thermal states py!, and
nonsqueezed thermal states py,;, with the corresponding
singular values ¢; and d;, respectively [53-55]. Here, the
experimentally reconstructed density matrix p®*P is a mixed
state but can be decomposed to the incoherent sum of pure
squeezed state p*9, squeezed thermal states pgl,, and
thermal states py, ;. Note that there are many terms from
the squeezed thermal states and thermal states. For the
four selected experimental data, we have o) = 0.9764,
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FIG. 4. The purity of squeezed states is plotted as a function of
the measured antisqueezing level. The experimental data marked
in Fig. 1 are analyzed with MLE and CNN, plotted in red and
blue, respectively. The fitting results based on Eqs. (1) and (2) are
depicted by the green curve, with the corresponding standard
deviation shown in the shadow region. Here, at high squeezing
levels, MLE overestimates the purity of the quantum states in
QST, while the empirical formula underestimates the purity.

Onon = 0.0236 for the nearly ideal squeezing (marker A);
o1 = 0.8568, o,,, =0.1432, and o, =0.7109, o, =
0.289 for the high squeezing level but with low (marker
B) and high (marker C) degradations, respectively. As
for the highest squeezing level (markers D), we have
o1 =0.5142, 6,,, = 0.4858.

To precisely identify the pure squeezed and noisy parts,
in Fig. 5, with the help of machine learning, we can directly
extract the three largest singular values corresponding to
the coefficients in ideal (pure) squeezed state, the squeezed
thermal state, and thermal state, i.e., p™P = op*i+
c1py + dipg. Now, as shown in Fig. 5, it clearly illustrates
that in addition to the pure squeezed states with the
coefficient o, there are two dominant terms in the
degradation: from the contributions of thermal and
squeezed thermal states. As expected, the thermal part,
described by the coefficient d; in blue, remains almost
constant. It manifests the lossy effect due to the environ-
ment. It is a common belief that as long as the system is
stable, the loss and phase noises can be measured by
injecting classical laser light and be estimated. On the
contrary, when the pump power increases, many additional
effects, such as the heating in crystals, shift of resonance
frequency, and/or other nonlinear mechanisms occur,
resulting in the increment in loss (see the blue curve in
our Fig. 5). Moreover, the other degradation effect from the
squeezed thermal states, described by the coefficient ¢; in
green, increases as the (anti-) squeezing increases. It is this
unexpected squeezed thermal state that causes severe
degradation at higher squeezing levels [56,57], which
demonstrates the advantages of applying machine learning
to QST. We want to remark that it is still unclear how to link
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FIG. 5. With the help of machine learning, we can directly

extract the degradation information from the obtained density
matrix. Here, the three most significant singular values
correspond to the coefficients in ideal (pure) squeezed state,
the squeezed thermal state, and thermal state, ie., p =
61p% + ¢1py + dipy,, respectively.

the thermal states and/or squeezed thermal states to phase
noise in a quantitative way. However, with this identifica-
tion, one should be able to suppress and/or control the
degradation at higher squeezing levels, which should be
immediately applied to the applications for the gravitational
wave detectors and quantum photonic computing.
Conclusion.—In conclusion, a neural network enhanced
quantum state tomography is implemented experimentally
for continuous variables. In particular, our well-trained
machine fed with squeezed vacuum and squeezed thermal
states not only completes the task of the reconstruction of
the Wigner function in less than one second, but also keeps
the high fidelity in the predict density matrix. Compared to
the overestimation by MLE and underestimation by empir-
ically fitting at high squeezing levels, the purity of
squeezed states at a squeezing level close to 10 dB is
demonstrated experimentally, along with low and high
antisqueezing levels. Such a fast, robust, and precise
quantum state tomography enables us to extract the
degradation information in squeezing with only a single
scan measurement. Our experimental implementations also
act as the crucial diagnostic toolbox for the applications
with squeezed states, including the advanced gravitational
wave detectors, quantum metrology, macroscopic quantum
state generation, and quantum information process.
Recently, taking advantages of this machine learning—
based QST, not only the (static) Wigner distribution, but
also the associated (dynamic) Wigner current are recon-
structed experimentally [58]. In addition to the squeezed
states illustrated here, similar concepts demonstrated in our
well-trained machine can be readily applied to a specific
family of continuous variables, such as non-Gaussian

states. Of course, different training (learning) processes
should be applied in dealing with single-photon states,
Schrodinger’s cat states, and Gottesman-Kitaev-Preskill
states. As illustrated in this work, a supervised machine
learning, such as the CNN used here, provides a good
starting point for implementing QST with machine learn-
ing. In addition to CNN, with a better kernel developed in
machine learning, it is possible to use less training data with
a variety of machine-learning architectures. For example,
by applying the reinforce learning [59] or generative
adversarial network [60], quantum machine learning is
expected to provide an efficient and robust way to explore
the quantum world.
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