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We investigate the effects of nonlinear stochastic interactions on hydrodynamic response functions. The
interactions are parametrized by “stochastic transport coefficients” that are invisible in the classical
constitutive relations, but nonetheless affect the late time hydrodynamic correlations. We present a
classification scheme for such coefficients that applies beyond the naive stochastic hydrodynamics. Our
results indicate that conventional transport coefficients do not provide a universal characterization of long-
distance late time behavior of nonequilibrium thermal systems.
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Hydrodynamics is often referred to as the universal low-
energy effective description of many-body systems near
thermal equilibrium. It is argued that if one waits long
enough for all the high-energy “fast” modes to thermalize,
the spectrum can effectively be captured by the remaining
“slow”modes associated with conserved quantities (such as
energy, momentum, and particle number). A hydrodynamic
system is characterized by its conservation equations,
expressed in terms of conserved densities and their deriv-
atives, known as constitutive relations, with transport
coefficients such as viscosities and conductivities entering
as free parameters.
It is known that this classical picture of hydrodynamics is

incomplete. Hydrodynamic equations can be used to obtain
the physically observable retarded correlation functions;
see [1]. However, these results can potentially be contami-
nated by interactions between the slow hydrodynamic
modes and a background of fast modes [2,3]. A more
complete picture is offered by the formalism of stochastic
hydrodynamics, wherein the collective excitations of fast
modes are modeled by random small-scale noise [2–6]. The
short-ranged stochastic interactions are fine-tuned to repro-
duce the classical hydrodynamic results at tree level.
However, consistently including fluctuation corrections,
one finds that, for instance, the two-point correlation
function of fluid velocity has long time tails that are not
predicted by classical hydrodynamics [7].
This formalism, however, is not exhaustive, as the

requirement to reproduce classical hydrodynamics does
not uniquely fix the structure of stochastic interactions.
Importantly, assuming these random interactions to be

Gaussian, as is typically done, still leaves room for
ambiguities. Physically, these ambiguities correspond to
some high-energy “fast physics,”which has been ignored at
the classical level, leaking into the low-energy correlation
functions via interactions. This would mean that, contrary
to what is typically believed, the hydrodynamic transport
coefficients do not universally characterize the low-energy
spectrum of thermal systems.
This stochastic contamination can also be motivated

from the fluctuation-dissipation theorems (FDTs) in ther-
mal field theory. All the information in two- and three-point
thermal correlation functions in a system can be captured
by the respective retarded functions. However, for four- or
higher-point correlations, retarded functions are no longer
enough [8]. Classical hydrodynamics is only sensitive to
retarded correlations of conserved densities and is, con-
sequently, blind to any information that might be contained
in nonretarded higher-point correlation functions. These
can nonetheless affect the classically observable retarded
functions through stochastic interactions. The point of this
Letter is to make the above qualitative arguments precise
and to explore the limitations of hydrodynamics in describ-
ing macroscopic real-time correlations.
To probe these questions effectively, one needs a

systematic prescription to include stochastic noise into
the hydrodynamic framework. While classically, hydro-
dynamics is posed as a system of conservation equations,
there now exists a complete effective field theory (EFT)
framework for hydrodynamics [9–12]; see [13] for a
review. The framework ensures that the FDT requirements
are nonlinearly realized in the presence of interactions and
can be used to investigate stochastic signatures in hydro-
dynamic response functions.
The EFT methods allow one to systematically evaluate

the hydrodynamic correlation functions at low frequency
and wave vector. As in any effective theory, the information
about the microscopics is encoded in a few parameters,
in this case, thermodynamic and transport coefficients.
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In particular, there is no need to assume the validity of
Boltzmann equation or to make detailed assumptions about
the microscopic dynamics. The main assumptions of the
EFT are the existence of thermal equilibrium and the
finiteness of the correlation length at nonzero temperature.
We argue that the effective action for hydrodynamics

admits a set of new stochastic transport coefficients
pertaining to the structure of stochastic interactions, which
are left unfixed by the classical constitutive relations. These
coefficients, nonetheless, show up as corrections to the
hydrodynamic response functions. Notably, these new
effects are typically suppressed by a factor of kdþ2, where
d is the number of spatial dimensions, compared to the
already known stochastic corrections due to classical
transport coefficients. We present a classification scheme
for stochastic coefficients based on the effective field
theory framework that generically applies beyond naive
stochastic hydrodynamics. This suggests that nonuniversal
(in the classical sense) stochastic interactions discussed in
this Letter are of physical relevance for virtually any
macroscopic system to which the notion of local thermo-
dynamic equilibrium is relevant.
Stochastic interactions in simple diffusion.—For a con-

crete realization of these ideas, consider single conserved
density Jt ¼ nðμÞ, where μ is the associated chemical
potential. Classical evolution of n is governed by the
diffusion equation ∂μJμ ¼ 0, with Ji ¼ −σðμÞ∂iμ at lead-
ing order in derivatives, with diffusion constant given by
D ¼ σðμÞ=n0ðμÞ. The conductivity σðμÞ is a non-negative
classical transport coefficient.
The EFT for diffusion is described by a phase fieldφr and

an associated stochastic noise fieldφa [10]; see also [14].We
introduce backgroundgauge fieldsϕr;a ¼ ðAr;aμÞ coupled to
the noise and physical current operators Oa;r ¼ ðJμa;rÞ,
respectively. The effective action S of the theory is con-
structed out of the background gauge-invariant building
blocks Φr;a ¼ ðBr;aμ ¼ Ar;aμ þ ∂μφr;aÞ. Connected corre-
lation functions ofOr;a are computed via a path integral over
the dynamical fields ψ ¼ ðφr;aÞ, i.e., [15],

Gα… ¼ ina
�
−iδ
δϕᾱ

…

�
W; W ¼ ln

Z
Dψ expðiSÞ; ð1Þ

whereα ¼ r,a and ᾱ ¼ a, r,whilena is thenumberofa-type
fields on the left. Gra;…;a computes the retarded function,
while Grr;…;r computes the symmetric one, with all the
remaining combinations in between [16]. The theory is
required to satisfy a set of Schwinger-Keldysh (SK) con-
straints

S½Φr;Φa¼0;β�¼0; S½Φr;−Φa;β�¼−S�½Φr;Φa;β�; ð2aÞ

Im S½Φr;Φa; β� ≥ 0; ð2bÞ

S½Φr;Φa; β� ¼ S½ΘΦr;ΘΦa þ iΘ£βΦr;Θβ�: ð2cÞ

Here £β denotes a Lie derivative along the thermal vector
βμ ¼ 1=T0δ

μ
t ,withT0 being the constant global temperature,

and Θ ¼ PT represents a discrete spacetime parity trans-
formation. In particular, (2b) implements the inequality in
the second law of thermodynamics, while the Kubo-Martin-
Schwinger (KMS) symmetry (2c) implements FDTs [17].
The theory also has a local phase shift symmetry

φrðxÞ → φrðxÞ − λðxÞ; such that βμ∂μλðxÞ ¼ 0: ð3Þ

Given these requirements, at leading order in derivatives,
we find the effective Lagrangian [10]

L1 ¼ nðμÞBat þ iT0σðμÞBaiðBi
a þ i£βBi

rÞ; ð4aÞ

where μ ¼ Brt ¼ ∂tφr þ Art. Given that σ is non-negative,
conditions (2a) and (2b) are trivially satisfied. The second
term maps to itself under (2c), while the first term merely
generates an additional total derivative term ∂tpðμÞ such
that p0ðμÞ ¼ nðμÞ. The classical diffusion equation can be
recovered upon varying the action with respect to φa,
restricting to configurations with φa ¼ 0 and setting the
background to Arμ ¼ μ0δ

t
μ; Aaμ ¼ 0.

While the action (4a) is sufficient to reproduce classical
evolution, the formalism does allow for extra terms that are
at least quadratic in noise fields and hence leave the
classical dynamics untouched. For instance,

L2 ¼ iT2
0ϑ1ðμÞBaiBajð£βBi

r£βB
j
r − δij£βBk

r£βBrkÞ
þ iT2

0ϑ2ðμÞBi
aBaiðBj

a þ i£βB
j
rÞðBaj þ i£βBrjÞ; ð4bÞ

where ϑ1;2ðμÞ are arbitrary stochastic coefficients. These
are the most generic such terms that appear at the lowest
order in derivatives. Each term here involves at least four
fields, so the stochastic coefficients only contribute to four-
and higher-point non-fully-retarded correlation function at
tree level. For example, denoting “r”-type fields by solid
and a type by wavy lines, the partially retarded function
Grraa of n receives a tree-level stochastic contribution due
to interactions in (4b) (see Supplemental Material [18]),

ð5aÞ

for p1 ¼ ðω; k; 0; 0Þ and p2 ¼ ðω; k cos θ; k sin θ; 0Þ. Here
D ¼ σ=χ is the diffusion constant and χ ¼ ∂n=∂μ is the
susceptibility. Ellipsis denote further nonstochastic correc-
tions due to terms in Eq. (4a). One can use the retarded
functions Graaa; Graa, and Gra to cancel these terms and
obtain a Kubo formula for ϑ1, ϑ2 using (5a).

PHYSICAL REVIEW LETTERS 128, 071601 (2022)

071601-2



Although stochastic coefficients do not contribute to
fully retarded correlation functions at tree level, they do
show up in the loop corrections, such as

Here p ¼ ðω; k; 0; 0Þ. Stochastic vertices from (4b) are
denoted in bold. We find that the retarded two-point
function of n behaves in k2 ≪ ω=D limit as (see
Supplemental Material [18])

ω

k2
ImGra ¼ χDþ χ2λ2T0

32πD3=2 ω
1=2k2 þ � � �

−
λ2T0ð23 ϑ1 þ ϑ2Þ

1024π2D4
ω2k4 þ � � � : ð5bÞ

Here λ ¼ ∂D=∂n. The leading correction toGra dictated by
the constitutive relations goes as ω1=2k2 [14], while the
leading correction due to stochastic coefficients goes as
ω2k4. The retarded three-point function, on the other hand,
receives a nonanalytic stochastic correction

−
2ω2

k4
ReGraa¼ χ2Dλ̃þ���þλð2

3
ϑ1þϑ2Þ

32πD5=2 ω5=2þ��� : ð5cÞ

Here λ̃ ¼ ∂D=∂nþD=χ∂χ=∂n. The middle ellipsis in (5)
denote subleading terms coming from (4a), while the final
ellipsis denote terms higher order in k2. Detailed calcu-
lations for finite k2 are given in the Supplemental Material
[18]. These results illustrate that the hydrodynamic corre-
lation functions start to receive higher-derivative correc-
tions that are not fixed by the constitutive relations.
We note that the ϑ1 contribution to the effective action

(4b) is quadratic in the noise field. Gaussian noise can be
captured by the conventional stochastic model, wherein one
introduces a random microscopic term ri in the flux
Ji ¼ −σðμÞ∂iμþ ri. Correlation functions are obtained
by path integrating over ri weighted by a Gaussian factor
expð−1=4 R d4xrirjλijðμÞÞ [19]. Imposing FDT constrains
the form of the coefficient λij in terms of hydrodynamic
transport coefficients. At leading order in derivatives, FDT
uniquely fixes λij ¼ δij=(T0σðμÞ). However, this unique-
ness is violated by higher-derivative corrections pertaining
to stochastic coefficients, such as ϑ1;2, that are not fixed by
FDTs. For example, the ϑ1-term from (4b) appears
as λij ∼ −ϑ1ðμÞ=(T0σðμÞ)2ð∂iμ∂jμ − δij∂kμ∂kμÞ.
Stochastic interactions in hydrodynamics.—The discus-

sion of stochastic interactions can be extended to full
relativistic hydrodynamics. In addition to the phase pair
φr;φa associated with density fluctuations, the theory also

contains the Lagrangian coordinates σA¼0;…;3 of the fluid
elements and respective noise Xμ

a as fundamental fields
associated with energy-momentum fluctuations [10,20].
We take σ0 to define the local rest frame associated with
the global thermal state. The thermal vector βμ is no longer
a constant, but is given by βμ ¼ 1=T0∂xμ(σðxÞ)=∂σ0ðxÞ.
Introducing background fields ϕr;a ¼ ðgr;aμν; Ar;aμÞ cou-
pled to noise and physical conserved operators Oa;r ¼
ðTμν

a;r; J
μ
a;rÞ, respectively, the correlation functions can be

computed by (1), with the path integral over ψ ¼
ðφr;a; σA; X

μ
aÞ. The building blocks for the respective

effective action S, besides βμ, are (see [13])

Brμ ¼ Arμ þ ∂μφr; Baμ ¼ Aaμ þ ∂μφa þ £Xa
Arμ;

Grμν ¼ grμν; Gaμν ¼ gaμν þ £Xa
grμν: ð6Þ

Denoting Φr;a ¼ ðGr;aμν; Br;aμÞ, the SK constraints and
phase shift symmetry are still given by (2) and (3).
Expressing S ¼ R

d4x
ffiffiffiffiffiffiffiffi−gr

p
L, up to leading order in

derivatives, the effective action for relativistic hydro-
dynamics satisfying these requirements is given as

L1 ¼
1

2
ðϵuμuν þ pΔμνÞGaμν þ nuμBaμ

þ iT
4

�
2ηΔμρΔνσ þ

�
ζ −

2

d
η

�
ΔμνΔρσ

�

× GaμνðGaμν þ i£βGrμνÞ
þ iTσΔμνBaμðBaν þ i£βBrνÞ; ð7aÞ

where Δμν ¼ gμνr þ uμuν. Velocity uμ (with uμuμ ¼ −1),
temperature T, and chemical potential μ are defined via
uμ=T ¼ βμ and μ=T ¼ βμBrμ. Energy density ϵ, pressure p,
number density n, viscosities η and ζ, and conductivity σ
are functions of T and μ. They satisfy dp ¼ sdT þ ndμ and
ϵþ p ¼ Tsþ μn for entropy density s. Condition (2b)
requires η, ζ, and σ to be non-negative. Classical con-
servation equations of hydrodynamics are obtained by
varying the action with respect to Xμ

a;φa in a configura-
tion with Xμ

a ¼ φa ¼ 0 and setting the background to
grμν ¼ ημν; Arμ ¼ μ0δ

t
μ; gaμν ¼ Aaμ ¼ 0.

Similar to (4b), the full hydrodynamic action can also be
modified with arbitrary stochastic terms based on the
symmetries of the theory. For instance, we have

L2 ¼ iT2ϑ1ðΔμρΔνσ − ΔμνΔρσÞ£βBrρ£βBrσBaμBaν

þ iT2ϑ2ΔμνΔρσBaμBaνðBaρ þ i£βBrρÞðBaσ þ i£βBrσÞ
þ iT2ϑ3ðΔμμ0Δνν0Δρρ0Δσσ0 − ΔμρΔνσΔμ0ρ0Δν0σ0 Þ
×GaμνGaρσ£βGrμ0ν0£βGrρ0σ0

þ iT2ϑ4ΔμνΔμ0ν0ΔρσΔρ0σ0GaμνGaμ0ν0

× ðGaρσ þ i£βGrρσÞðGaρ0σ0 þ i£βGrρ0σ0 Þ þ � � � ; ð7bÞ
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with ϑi being a few stochastic coefficients; we do not
perform the exhaustive counting exercise here.
Contributions from stochastic interactions in (7b) to

hydrodynamic response functions can be computed similar
to (5). We note, however, that nonstochastic interactions in
the simplified diffusion model only set in at one-derivative
order as opposed to full nonlinear hydrodynamics where
momentum or velocity fluctuations in (7a) lead to ideal-
order interactions; see [19]. Since part of the derivative
suppression of stochastic signatures in (5b) and (5b) arises
from nonstochastic vertices, we expect this suppression to
be relaxed in full hydrodynamics. Note, however, that their
relative suppression compared to diagrams with only
nonstochastic vertices will remain unchanged.
The stochastic coefficients ϑi also arise in the context of

nonrelativistic (Galilean) hydrodynamics, in complete
analogy with its relativistic counterpart. The quantitative
details can be worked out along the lines of [21].
KMS blocks.—The effective Lagrangian for a generic

thermal system can be organized into “KMS blocks.” The
nth KMS block Ln contains the most generic terms
involving n number of a fields allowed by symmetries,
plus specific terms with higher number of a fields required
to satisfy KMS-FDT requirements. Classical dynamics of
the system, and tree-level fully retarded correlation func-
tions Gra;…;a, are completely characterized by L1. Higher
KMS blocks Ln>1 contain stochastic interactions that
contribute to tree-level non-fully-retarded correlators
Gr;…;ra;…;a involving at least n instances of r-type
operators.
This decomposition is not unique; we can always

redefine a KMS block with terms from higher KMS blocks.
Such ambiguity in L1 is precisely the nonuniversality of
classical hydrodynamics.
Condition (2a) implies that the L can be arranged in a

power series in Φa starting from the linear term. We start
with a parametrization (see Supplemental Material [18])

L ¼ D1ðΦaÞ þ i
X∞
n¼1

D2nðΦa;…|fflffl{zfflffl}
×n

;Φa þ i£βΦr;…|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
×n

Þ

þ
X∞
n¼1

D2nþ1

�
Φa þ

i
2
£βΦr;Φa;…|fflffl{zfflffl}

×n

;Φa þ i£βΦr;…|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
×n

�
:

ð8Þ

Here Dm are a set of totally symmetric real multilinear
differential operators, allowing m arguments, made out of
Φr and βμ. Here ×n denotes n identical arguments.
Note that only D1;2;3 from (8) can contribute to the classi-
cal constitutive relations. For instance, the diffusive
Lagrangian (4) corresponds to the choice

D1ðXÞ ¼ nðμÞXt;

D2ðX; YÞ ¼ T0σðμÞXiYi þ T2
0

�
ϑ1ðμÞ þ

2

3
ϑ2ðμÞ

�

× ð£βBi
r£βB

j
r − δij£βBk

r£βBrkÞXiYj;

D4ðW;X; Y; ZÞ ¼ T2
0ϑ2ðμÞδðijδklÞWiXjYkZl; ð9Þ

for arbitrary vectors Wμ, Xμ, Yμ, and Zμ. Recall that
μ ¼ Brt and Φr;a ¼ ðBr;aμÞ. Requiring (8) to respect (2b)
and (2c) (up to a total derivative), we find

D1ð£βΦrÞ¼∇μN
μ
0; Dm areΘ even; D2j0-der≥0; ð10Þ

for some vector N μ
0. Note that £βΦr is Θ odd, therefore the

contribution of Dm to L is generically not Θ even.
Generically, Dn contain all structures allowed by sym-

metries at a given derivative order. We call the contribution
of each such structure to L a KMS group, as it is
independently invariant under the KMS transformation.
The nth KMS block can be defined as the set of all KMS
groups wherein the least nonzero power of Φa fields is n.
We say “at least” because there can be groups in Dn that
identically vanish (up to a total derivative) when one or
more of their arguments are £βΦr, e.g., ϑ1;2 contribution
in D2 in (9), and are pushed to higher KMS blocks.
To account for this subtlety, we can decompose Dn ¼P

n
m¼0Dn;m, where Dn;m is the component of Dn with m of

its arguments projected transverse to £βΦr.
Plugging this decomposition into (8), we can work out

the first KMS block explicitly as

L1 ¼ D1;1 þ iD2;1 þ iD2;0 þD3;0; ð11Þ

which completely characterizes classical hydrodynamics.
The arguments of Dn;m here are the same as Dn in (8).
The former two terms correspond to Θ-even and Θ-odd
“adiabatic” transport, while the latter two correspond to
Θ-odd and Θ-even “dissipative” transport. From our
examples in (4b) and (7b), ϵ;p;n∈D1;1 and η;ζ;σ∈D2;0;
other contributions show up at higher order in derivatives.
The first nontrivial stochastic corrections to classical

hydrodynamics come from the second KMS block

L2 ¼ iD2;2 þD3;1 þ iD4;0 þD3;2 þ iD4;1 þD5;0: ð12Þ

At this point, we are unable to ascertain any physical
distinction between various contributions. In our examples,
ðϑ1 þ 2

3
ϑ2Þ;ϑ3 ∈ D2;2, while ϑ2; ϑ4 ∈ D4;0. The details are

in the Supplemental Material [18]. Higher KMS blocks can
be worked out in a similar manner.
To count derivative ordering in hydrodynamics, we use

the canonical scheme from [10], where Φr ∼Oð∂0Þ and
Φa; £βΦr ∼Oð∂1Þ. The contribution of Dn;m to L, and to
the hydrodynamic observables, is typically suppressed with
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Oð∂nþm−1Þ compared to the ideal-order thermodynamic
terms in D1;1. Consequently, effects of stochastic KMS
blocks Ln>1 are suppressed withOð∂2n−1Þ compared to L1,
in addition to any loop suppression. Therefore, the first
nonuniversal stochastic signatures creep into hydrodynam-
ics at third derivative order. To account for loop suppres-
sion, using dimensional analysis (see Supplemental
Material [18]), one can argue that δBΦr;Φa ∼ kd=2þ1 in
momentum space. Consequently, statistical interactions
terms in Ln are typically suppressed by kðdþ2Þðn−1Þ com-
pared to kinetic terms in L1.
Outlook.—Hydrodynamics is an effective theory and an

immensely successful one at that. However, like any
effective theory, it has a limited scope of applicability.
It posits that the low-energy dynamics of a many-body
thermal system can be effectively captured by the long-
range transport properties of its conserved charges. While it
is certainly true to a leading approximation, short-range
stochastic interactions must be included in the framework
to consistently describe interactions between hydrody-
namic modes. In this Letter, we investigated the sensitivity
of hydrodynamics to the choice of stochastic interactions.
We used the EFT framework of hydrodynamics devel-

oped recently [10] and identified new stochastic transport
coefficients characterizing short-range information. These
coefficients do not enter the classical constitutive relations,
but nonetheless affect retarded correlation functions in the
hydrodynamic regime at subleading orders in derivatives
through loop interactions. We explicitly derived the sto-
chastic signatures in two- and three-point retarded func-
tions for diffusive fluctuations in (3þ 1) dimensions. In
particular, we found the stochastic correction to three-point
function to be nonanalytic in frequency at one-loop order.
It is worth noting that these results are distinct from the
usual “long time tails,” as the effects we are describing
are characterized by entirely new transport coefficients
that are invisible in classical constitutive relations. Finally,
we classified the general structure of stochastic inter-
actions through KMS blocks. Classical physics is com-
pletely characterized by the first KMS block, while the
higher KMS blocks characterize a plethora of stochastic
coefficients.
We conclude that the sensitivity of hydrodynamic

observables to short-range stochastic information signifies
a breakdown of the celebrated universality of hydrody-
namics in describing long-range correlations. More gen-
erally, these nonuniversal stochastic effects will arise as
subleading corrections in any macroscopic system out of
thermal equilibrium. It would be interesting to find physical
systems where the signatures of stochastic coefficients are
enhanced enough to overcome the loop suppression. As we
already discussed in the Letter, part of this could be

achieved by revisiting the computation in the presence
of momentum modes in relativistic or nonrelati-
vistic hydrodynamics. The stochastic signatures are also
enhanced in lower spatial dimensions. Careful consider-
ation of stochastic signatures can also serve as precision
tests for the effective action formalism of hydrodynamics
itself, that it indeed describes the late time physics of
thermalizing systems. We plan to return to these questions
in the future.
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