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We perform numerical-relativity simulations of high-energy head-on collisions of charged black holes
with the same charge-to-mass ratio λ. We find that electromagnetic interactions have subdominant effects
already at low Lorentz factors γ, supporting the conjecture that the details of the properties of black holes
(e.g., their spin or charge) play a secondary role in these phenomena. Using this result and conservation of
energy, we argue these events cannot violate cosmic censorship.
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Introduction.—High-energy collisions of black holes are
excellent laboratories to probe general relativity and to
study the theory under extreme conditions (for reviews, see
relevant sections in [1,2]). Because of its highly dynamical
nature, the problem is best approached with numerical
calculations, as the ones that opened this line of research in
2008 [3,4]. Since then, studies have explored most of the
possible variables (mass, impact parameter, spin [3–13]),
with the noticeable exclusion of charge [electric, or
associated to a generic U(1) field]. In this Letter, we tackle
this long overdue problem and present general-relativistic
simulations of head-on collisions of black holes with the
same charge.
One of our main objectives is to test whether “matter

matters” in the ultrarelativistic regime [14–16]. According
to this idea, the details of the properties of bodies (e.g., their
spin, or composition) are irrelevant in collisions with high
center-of-mass energy. The conjecture originates from
considering that ultrarelativistic mergers are dominated
by the kinetic energy, so the details of the interaction
are unimportant. This has been verified numerically for
spinning [8,17] and nonspinning black holes [3,4,7], as
well as for boson fields [18], perfect fluids [19,20], and
plane waves [21]. The problem has also been studied in
higher dimensions [11–13,22,23], where, in case of AdS5,
it is relevant for gauge-gravity dualities. This conjecture is
also at the basis of Monte Carlo event generators [24–26]
for microscopic black holes in particle accelerator. Here, we
test this hypothesis for black holes with charge, a parameter
that has not been considered so far.
Our second goal is to check if it is possible to form naked

singularities with ultrarelativistic collisions, verifying
whether the cosmic censorship conjecture holds. Testing
this has been a recurring theme in this line of research (e.g.,
[3,5,13,23]), but no violation has been found so far in four-
dimensional spacetimes. High-energy collisions of charged
black holes are a particularly interesting setting to inves-
tigate this idea because charge is another way, together with
spin, to reach black-hole extremality. Kerr-Newman

spacetimes with too much charge and/or spin compared
to their mass do not have horizons [27], so overcharging or
overspinning a black hole would be a way to form a naked
singularity. Because of the emission of energy, ultrarelativ-
istic collisions might lead to conditions in which the remnant
would be “overextremal,” and create a naked singularity. In
the case of spinning black holes, this is avoided by radiating
away the excess angular momentum. However, charge is
conserved and cannot be radiated away, constituting a
significant difference compared to spin. Moreover, if charge
does not matter, the colliding black holes will always merge
and will not repel due to electrostatic interaction. So, if the
formation of naked singularities is avoided, it is interesting to
understand how this is achieved.
This Letter focuses on testing whether charge is impor-

tant in the context of high-energy collisions and whether
naked singularities can form in this environment. Our goal
is not to perform a high-precision study, which would
require extreme numerical resolution and sophisticated
initial data (see, e.g., [6,28]), but we aim to describe the
general features of the phenomenon. Our main conclusion
is that we find evidence that, even at a low value of the
boost factor γ, important gauge-independent quantities do
not depend on the charge, supporting the idea that charge
does not matter in ultrarelativistic collisions. Having found
no evidence that all the kinetic energy in the system can be
radiated away, we argue that ultrarelativistic collisions of
black holes with the same charge do not form naked
singularities. These conclusions are robust despite the
overall accuracy of our simulations of order 10%. In
general, our full general relativistic calculations show that
the problem can be well understood with simple semi-
classical arguments, which we present below.
The Letter is structured as follows. First, we describe our

theoretical and numerical setup. Then, we report the results
and our interpretation, and finally, we give some concluding
remarks. We use Gaussian units with G ¼ c ¼ 4πϵ0 ¼ 1,
and we report results in terms of M ¼ M1 þM2, where M1

and M2 are the individual Christodoulou masses [29,30].
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Setup.—We solve the Einstein-Maxwell equations in the
3þ 1 decomposition of the spacetime [31,32] (see also
[33–35]) for head-on collision of equal-mass, equal-charge
black holes with charge-to-mass-ratio λ ∈ f0; 0.2; 0.4; 0.6;
0.8g and initial linear momentum P=M ∈ f0.2; 0.4; 0.6g.
We use the EINSTEIN TOOLKIT [36,37] for the numerical
integration and KUIBIT [38] for the analysis. We adopt the
same setup as in [39], where we provide a more in-depth
discussion. Note that, with the exception of KUIBIT and
TWOCHARGEDPUNCTURES (see below), we use the same
computational tools that are extensively employed in this
line of research (e.g., [3,5–8,10,11,17,40,41]).
We generate constraint-satisfying initial data with

TWOCHARGEDPUNCTURES [30] for two black holes with
masses [29,30]M1 ¼ M2 ¼ 0.5M and charge-to-mass ratio
λ1 ¼ λ2 ¼ λ. The two punctures are aligned along the z axis
with an initial separation of 150M. In the limit of infinite
separation of in the case of isolated black holes,
TWOCHARGEDPUNCTURES [30] reduced to Reissner-
Nordström in isotropic coordinates. The boost factor is
controlled by the Bowen-York momentum P, an input
parameter in TWOCHARGEDPUNCTURES, which is equal
to the Arnowitt-Deser-Misner (ADM) [31,32] linear
momentum for a case of a single black hole [30] and
corresponds to a Lorentz factor of γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4P2=M2

p
.

TWOCHARGEDPUNCTURES employs the conformal-
traceless-traverse approach [30,42–44], extending what is
done by the well-known TWOPUNCTURES [45] pseudospec-
tral solver for the uncharged case. In particular, the code
assumes conformal flatness and Reissner-Nordström
electromagnetic fields. This leads to “junk” radiation,
especially in the electromagnetic sector, that can be up
to a few percent of the total energy. The initial separation is
large enough that we can isolate the real signal from the
spurious one (see also Supplemental Material [46]).
We evolve the spacetime and electromagnetic fields with

the LEAN and PROCAEVOLVE codes [47–49]. LEAN imple-
ments the Baumgarte-Shapiro-Shibata-Nakamura formu-
lation of Einstein’s equation [50,51] and the moving
puncture approach, while PROCAEVOLVE evolves the
electromagnetic vector potential to maintain the magnetic
field divergenceless and has a constraint-damping scheme
for the Gauss constraint. We use the Lorenz gauge for the
electromagnetic potential, the 1þ log and Γ-freezing
slicing conditions for the lapse function and shift vector
[52–54].
The simulations are on CARPET [55] Cartesian grids with

octant symmetry, with two centers of refinement (one
tracking the puncture, and the other fixed in the center)
and 13 levels. The outer boundary is placed at least at 600M,
where it is not in causal contact with the inner part of the grid
throughout the duration of the simulations. We use the
continuous Kreiss-Oliger dissipation introduced in [39].
Since the size of the horizons depends on the charge-to-

mass ratio λ, we change the resolution to ensure that

the black holes are always resolved with at least 80 points.
We estimate the initial horizon radius as if it was a
Reissner-Nordström black hole in isotropic coordinates
[30] and set the finest grid spacing to Δxfinest ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
=

320M. (In isotropic coordinates, the horizon radius for a
Reissner-Nordström black hole with mass M1 ¼ 0.5M
and charge Q1 ¼ λM1 is

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
=4M.) Depending on

the charge, this can lead to resolutions up to M=550.
We find that our simple prescription for the grid reso-

lution is effective in properly resolving the black holes. We
locate apparent horizons with AHFINDERDIRECT [56], and
compute their properties with QUASILOCALMEASURESEM

[30], an extension of QUASILOCALMEASURES [57] for full
Einstein-Maxwell theory [58–60]. At the level of the initial
data, we find that the horizons are coordinate ellipsoids
covered by at least 40 points along the semiminor axis.
Then, the horizons expand and for most of the simulation
our grid resolves the semiminor axis with at least 120 points.
The merger remnant is resolved even better. As a result, the
quasilocal properties are well behaved in all our simulations
(e.g., charge is conserved at better than 0.6%).
We extract radiation with the Newman-Penrose formal-

ism [22,49,61] at finite extraction radii ranging from 80M
to 200M. We note that, while the properties of the horizons
are remarkably stable, interpolation across several refine-
ment boundaries and the truncation error in the wave zone
lead to noisy electromagnetic waves (see Supplemental
Material [46]).
Results.—The main conclusion from our simulations

of high-energy head-on collisions of black holes is that
charge does not matter for a number of gauge-independent
quantities. Before we present our results in detail, we define
quantitatively what we mean by “charge does not matter.”
In Newtonian physics, the problem of two charged point
masses is mathematically equivalent to the purely gravita-
tional one upon rescaling of G by a factor ð1 − λ2Þ.
This simple scaling is surprisingly effective in predicting
results of fully general-relativistic calculations [39–41,62].
Therefore, if charge mattered, we would expect most results
(e.g., amplitude of Ψ4) to vary with factors ð1 − λ2Þ for
varying λ and fixed P. Conversely, if charge did not matter,
all the results should become approximately the same
within our error (see Supplemental Material [46]).
We demonstrate that charge has negligible influence in

the dynamics of high-speed mergers by discussing some
key properties of the gravitational waves and of the
horizons. In Fig. 1, we present the real part of the dominant
mode of the Newman-Penrose scalar Ψ4 (l ¼ 2, m ¼ 0) for
simulations with fixed Bowen-York momentum P ¼ 0.4M
and varying charge-to-mass ratios λ. We do not apply any
time shift or any other transformation to align the signals.
The good alignment indicates that charge does not have a
strong impact in the event (compare this with Fig. 5 in [40],
where signals had to be scaled by the factor 1 − λ2; see also
Supplemental Material [46] for a more detailed
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comparison). We find the same properties as in the
uncharged case [3]: there is a precursor signal, a main
burst after the formation of the apparent horizon, and the
ringdown. The time of formation of the common apparent
horizon (vertical dashed line) is nearly independent of the
charge and the peak of the signal occurs always approx-
imately 15M after this time. The total energy lost by
gravitational and electromagnetic waves is reported in
Fig. 2. Collisions from zero initial momenta were studied
in [40], where it was found that there is a significant
contribution from electromagnetic fields to the energy
radiated (up to 25%). Instead, we never find large amounts
of electromagnetic waves in our simulations, and almost all
the energy is lost through gravitational waves. Figure 2
shows how all our simulations at fixed P radiate the same
amount of energy irrespective of λ (within our error, see
Supplemental Material). In Fig. 2, we also plot the estimate
of the energy lost in ultrarelativistic collisions obtained in
the zero-frequency limit (ZFL) [63], which has been shown
to be a good approximation to the fractional energy lost
EGW=MADM for collisions in the absence of charge [3,6].
According to this formalism, EGW=MADM scales as

EGW

MADM
¼E∞

�
1þ2γ2

2γ2
þð1−4γ2Þlnðγþ

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p
Þ

2γ3
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p
�
; ð1Þ

where E∞ is the energy lost for infinitely boosted black
holes, which has numerically been calibrated to be approx-
imately 0.13. Our simulations also find a good level of
agreement with the ZFL estimate.
Finally, we consider the remnant properties. We find that

the fractional difference of the quasilocal mass of the final
black hole between the charged and uncharged cases is
always below 1%. This implies that the mass of the remnant
does not depend on λ at the level of our accuracy (see

Supplemental Material). Note, however, that apparent
horizons are not completely gauge invariant as they depend
on the spacetime slicing.
Our simulations demonstrate that even with small boosts

(γ ≈ 1.1) charge does not matter in the dynamics of the
event and in a number of gauge-independent quantities, or
if it did, it would do so only at the percent level (contrarily
to what happens for γ ¼ 1 [40]). We can build intuition on
why this happens with the following qualitative semi-
classical argument. Consider a head-on collision of two
black holes with massM, chargeQ ¼ λM, Lorentz factor
γ, and infinite initial distance. Initially, the interaction is
negligible and the motion is completely determined by the
initial velocity. The separation dEM at which the electro-
magnetic interaction starts to be important is when the
magnitude of its associated energy (λ2M2=dEM) is com-
parable to the kinetic energy [2ðγ − 1ÞM]. (The gravita-
tional interaction starts to be important at larger
separations. However, this increases the kinetic energy
and only makes the conclusions stronger.)

dEM ¼ λ2M
2ðγ − 1Þ ¼

λ2

4

MADM

γðγ − 1Þ ; ð2Þ

where we used thatMADM ¼ 2γM. For separations that are
much larger than this value, the bodies can be considered
noninteracting, so charge does not matter. In classical
physics, particles will always reach dEM, where they start
to be repelled by the electrostatic force. This is not what
happens for black holes, where there is another length scale
that we need to consider and that drastically alters this
picture. Assuming that all the initial energy ends up in the
remnant, and callingR ¼ 2MADM its Schwarzschild radius,

FIG. 1. Real part of the dominant multipolar component of
the Newman-Penrose scalar Ψ4 (l ¼ 2, m ¼ 0) for simulations
with different charge-to-mass ratio λ as extracted at radius
rex ¼ 131.430M. Note that no time shift was applied to the
signals: the almost identical alignment indicates that charge has a
negligible influence in these collisions. The time of formation of
the horizon is also nearly insensitive to the value of charge.

FIG. 2. Total energy lost by gravitational and electromagnetic
waves normalized to the initial ADM mass. At any given Bowen-
York momentum P, the energy lost for different values of λ is the
same (within our error, see Supplemental Material [46]). The
black line is the zero-frequency limit (ZFL) prediction [63]
[Eq. (1) with E∞ ¼ 0.13], which has been shown to be accurate
for uncharged collisions [3,6].
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we expect R to be where general-relativistic effects to be
dominant (consider, for example, the hoop conjecture [64]).
When the two initial horizons get closer than R, they stick
together as a newly formed remnant, overcoming the
electrostatic repulsion. So, if dEM ≪ R, electromagnetism
starts to be dominant only after the formation of a common
apparent horizon and charge would be unimportant. We
conclude that charge does not matter when dEM=R ≪ 1,
and, according to our simple model, dEM=R ¼
λ2=½8γðγ − 1Þ�. This value is smaller or much smaller than
one for all λ and P we considered, consistently with the
results of our numerical-relativity simulations.
Established that charge plays a subdominant role in the

dynamics of the event under consideration, we can now
turn to the problem of cosmic censorship. We argue that
the conjecture is not violated in ultrarelativistic head-on
collisions of charged black holes on the grounds that the
final black hole always has λremnant < 1 for any given initial
charge and momentum. We tackle this problem with
conservation arguments. Consider two black holes with
Christodoulou mass M, charge Q ¼ λM boosted
with Lorentz factor γ and initial separation such that they
can be considered noninteracting. Conservation of energy
implies that the mass of the remnant has to be Mremnant ¼
MADM − EGW − EEM, where EGW and EEM are the ener-
gies carried away by gravitational and electromagnetic
waves, respectively. Let us define ϒðγÞ ¼ EEM=EGW and
ZðγÞ ¼ EGW=MADM. As shown in Fig. 2, the ZFL
approach provides a good approximation to ZðγÞ, so we
can use the expression in Eq. (3) in [3], noting that ZðγÞ ≲
0.14 for any value of γ [3,6]. Conversely, we do not have
a good formula for ϒðγÞ. In [40] it was found that
ϒð1Þ ≈ λ2=4, and our simulations show that ϒðγÞ ≪
λ2=4 even for low values of γ, in accordance with the
conjecture that charge does not matter. So, assuming that
the conjecture is true, ϒðγÞ has to be at least bound.
Dividing the equation of energy conservation by MADM
and using Mremnant ¼ 2Q=λremnant (charge is conserved)
and MADM ¼ 2γQ=λ, we find that

λremnantðγÞ ¼
�

1

1 − ½1þϒðγÞ�ZðγÞ
�
λ

γ
: ð3Þ

Given that ϒðγÞ and ZðγÞ are bound, there exists a constant
C such that the term in the brackets is smaller than C for
all γ. Hence, λremnant ≤ Cλ=γ, indicating that λremnant

decreases with γ. In Fig. 3, we show Eq. (3) by reporting
the values of λremnant predicted for various λ assuming
ϒðγÞ ≪ 1. We overlay the result of our simulations with
markers, which are in excellent agreement. Since in the
limit of γ → ∞, Eq. (3) predicts that λremnant goes to zero,
we find agreement with the conjecture that matter does not
matter and we conclude ultrarelativistic head-on collisions
of charged black holes should not be expected to form
naked singularities. This result is robust and only depends

on the assumption that electromagnetic waves cannot
radiate away all the additional kinetic energy, as our general
relativistic calculations show.
Conclusions.—Ultrarelativistic collisions of black holes

are fertile ground for theoretical studies in general relativity
and high-energy physics. In this Letter, we presented the
first results on high-energy head-on mergers of charged
black holes. We found that the intuition built with simple
semiclassical arguments carries over to full general rela-
tivity. First, we found that charge does not play an
important role, supporting the conjecture that matter does
not matter. This is an important step in claiming that the
conclusion holds for generic four-dimensional general-
relativistic black holes. This result is also important in
the context of the production of microscopic black holes in
particle accelerators and cosmic rays. We also argued that,
as a result, we should not expect the formation of naked
singularities in this kind of event.
Given that the expectation that charge is unimportant is

met even with relatively low boosts, we anticipate that
varying the other variables that were not considered here
(mass, impact parameter, charge, spin) will yield the same
results as the uncharged case. This should be tested, along
with expanding the current study to more extreme λ and P
and increasing the accuracy. This might require enhance-
ment in the initial data (e.g., by using better guesses for the
electromagnetic fields and by lifting the assumption of
conformal flatness) and a reduction in the error budget
(e.g., by reducing initial data ambiguity, increasing the
accuracy in the wave zone—possibly with multipatch grids
[65]—and performing interpolation of waves to infinity).

G. B. is indebted to Vasilis Paschalidis for several
insightful conversations and comments on the manuscript.

FIG. 3. Charge-to-mass ratio λremnant for the remnant left by a
merger of two equal-mass black holes with initial Lorentz factor γ
and charge-to-mass ratio λ. The curves are obtained with Eq. (3)
assuming ϒðγÞ ¼ 0 (expected from the fact that charge does not
matter in the energy emitted in these mergers) and the markers are
the values from our simulations. The figure seems to hint that the
only case where we can obtain an overcharged remnant is with λ,
γ → 1, where our approximations break down and previous
studies found no violation [40].
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