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We investigate the relationship between information scrambling and work statistics after a quench for the
paradigmatic example of short-range interacting particles in a one-dimensional harmonic trap, considering
up to five particles numerically. In particular, we find that scrambling requires finite interactions, in the
presence of which the long-time average of the squared commutator for the individual canonical operators
is directly proportional to the variance of the work probability distribution. In addition to the numerical
results, we outline the mathematical structure of the N-body system which leads to this outcome. We
thereby establish a connection between the scrambling properties and the induced work fluctuations, with
the latter being an experimental observable that is directly accessible in modern cold-atom experiments.
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The response to a sudden change in the Hamiltonian is a
topic which has led to many valuable insights into the
physics of quantum many-particle systems in recent years.
Quenches have been used to probe phase transitions [1–7],
explore the orthogonality catastrophe [8–13], and inves-
tigate irreversibility, thermodynamics, and equilibration
properties [14–18]. For example, systems that obey the
eigenstate thermalization hypothesis have been shown to
thermalize [15,16] while integrable systems do not [14,17].
Studying the dynamical response of a system to a sudden
quench usually entails calculating the time evolution of
expectation values of observables such as the momentum
distribution. However, one can also characterize a quench
more broadly, for example through operator-independent
(aside from the final Hamiltonian ĤF) quantities such as
the diagonal ensemble [15,19] and the closely related
experimentally measurable work probability distribution
[18,20–24]. The statistical moments of the work probability
distribution, hWαi ¼ Tr½ðĤF − ĤIÞαρ̂I�, where ĤI is the
initial Hamiltonian and ρ̂I is the initial state, are often used
to give an indication of the irreversibility of the quench
process [21]. One example of this is the irreversible work
hWirri ¼ hWi − ΔF which quantifies the disparity between
the average work and the free energy during a nonquasi-
static process. Further insight can be gained through the
variance of nonequilibrium fluctuations about the average,
ΔW2 ¼ hW2i − hWi2, which is of interest in the field of

statistical quantum thermodynamics [16,20,25] and has
been suggested as a probe of critical behavior [26,27].
Since the work probability distribution is related to the

delocalization of the initial state in the Hilbert space
defined by the eigenstates of the final Hamiltonian, it is
natural to characterize this further by investigating the
delocalization dynamics. This process is often referred to as
scrambling [28,29], whereby over time the initial state can
no longer be reconstructed from local measurements alone.
One particular measure of this scrambling is the expect-
ation value of the squared commutator of two operators
ÂðtÞ¼eiĤtÂe−iĤt and B̂, CABðtÞ ¼ h½ÂðtÞ; B̂�2i [28], which
can be rewritten in terms of time-dependent correla-
tion functions as CABðtÞ¼DABðtÞþIABðtÞ−2Re½FABðtÞ�,
with

DABðtÞ ¼ hB̂†Â†ðtÞÂðtÞB̂i; ð1Þ

IABðtÞ ¼ hÂ†ðtÞB̂†B̂ ÂðtÞi; ð2Þ

FABðtÞ ¼ hÂ†ðtÞB̂†ÂðtÞB̂i: ð3Þ

Most work in recent years has focused on the four-point
out-of-time ordered correlation (4-OTOC) function FABðtÞ,
asDABðtÞ is time ordered and IABðtÞ ¼ hÂ†B̂†ð−tÞB̂ð−tÞÂi
is anti-time-ordered for an eigenstate of the Hamiltonian.
The squared commutator and the 4-OTOC were initially
proposed as measures of quantum chaos [30] but have
recently been shown to be powerful tools for studying
information scrambling in nonchaotic systems as well,
for example near quantum critical points [31–33], in the
presence of many-body entanglement and coherence
[34,35], and in quantum thermodynamics [36,37]. For
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initial states that are not eigenstates, e.g., states after a
quench, IABðtÞ is also not time ordered and called a three-
point OTOC (3-OTOC) [38]. One can see that IABðtÞ is
readily interpretable as a time-reversal test, i.e., it corre-
sponds to taking the expectation value of B̂†B̂ with the
quantum-state ÂðtÞjψi. It therefore measures how much
the time-reversal symmetry is broken by the application of
the operator Â.
While in discrete systems schemes for measuring the

OTOCs have been experimentally implemented using a
time-reversal protocol [34], in continuum systems such a
direct implementation is extremely difficult as it requires
reversing the kinetic energy terms. Therefore, finding a
connection between information scrambling and other
measures of irreversibility, particularly ones that can be
measured in continuum systems is important. While
progress toward such an understanding has recently been
made [36,38–41], we will focus in this work on nonchaotic
systems and look at experimentally available cold-atom
systems of interacting bosons in quasi-one-dimensional
traps. Such systems offer an ideal test bed to study
nonequilibrium dynamics as advances in the experimental
manipulation of single- and few-body systems allows for
precise control over their interactions and trapping poten-
tials [42,43]. The total number of particles can also be tuned
deterministically allowing one to explore the crossover
between few- and many-body physics [44]. They are
therefore highly suitable to consider how information
scrambling emerges after sudden quenches, specifically
as a function of finite interactions between the particles.
The system we consider consists of N particles and can

be described by the dimensionless Hamiltonian

Ĥ ¼
XN
j¼1

�
−
1

2

∂2

∂x̂2j þ
1

2
Ω2ðtÞx̂2j

�
þ
X
k>j

gδðx̂k − x̂jÞ; ð4Þ

where the interactions and trap frequency are parametrized
by g and ΩðtÞ, respectively. To explore nonequilibrium
scrambling in this system we consider the canonical
operators x̂j and p̂j after a sudden change of the trapping
potential described by ΩðtÞ ¼ γ þ ΘðtÞð1 − γÞ, where ΘðtÞ
is the Heaviside step function. The trap strength in the
initial Hamiltonian is therefore given by γ, while the final
Hamiltonian has a trap strength of unity. This allows us to
scale all relevant quantities in units of the final Hamiltonian
and all results only depend on γ, which then quantifies the
strength of the quench and whether the trap is compressed
(γ < 1) or expanded (γ > 1). We keep the interaction
strength fixed throughout the dynamics with g > 0 describ-
ing repulsive interactions. This allows us to clearly identify
the effects of finite interactions on the information scram-
bling and work statistics after the quench of the trapping
potential.

Sudden quenches are characterized by the eigenspace
of the final Hamiltonian ĤFjψ ji ¼ Ejjψ ji and the overlap
coefficients cj ¼ hψ jjψ Ii, where jψ Ii is the initial state
with energy EI. This allows one to write the contributions to
the squared commutator as

DABðtÞ ¼
X
j;k;n;m

c�jcke
−iðEmnÞtB†

jnhÂ†ÂinmBmk; ð5Þ

IABðtÞ ¼
X
j;k;n;m

c�jcke
−iðEkjþEnmÞtA†

jnhB̂†B̂inmAmk; ð6Þ

FABðtÞ ¼
X
j;k;n;m

c�jbke
−iðEkjþEnmÞtA†

jnB
†
nmAmk; ð7Þ

where bj ¼ hψ jjB̂jψ Ii, Ajk ¼ hψ jjÂjψki, hÂ†Âinm ¼
hψnjÂ†Âjψmi, and the other operator matrix elements are
defined similarly. The energy differences are given by
Emn ¼ Em − En. The statistical moments of the work
probability distribution can be expressed as hWαi ¼P

j jcjj2ðEj − EIÞα with α ¼ 1; 2;… [21]. The variance
ΔW2 ¼ hW2i − hWi2 will be used as a quantifier of the
irreversibility of the quench dynamics, while the informa-
tion scrambling will be gauged by the infinite time ave-
rage of the squared commutator C̄AB ¼ limT→∞ð1=TÞ×R
T
0 h½ÂðtÞ; B̂�2idt. Time-averaged behavior has recently
attracted more attention and has been connected to the
description of quantum phases [31,33].
The Hamiltonian in Eq. (4) possesses analytical many-

body solutions in the noninteracting limit g ¼ 0 and the
Tonks-Girardeau (TG) limit of infinite repulsive inter-
actions, g → ∞. In both cases the many-body system is
described by a harmonic spectrum which elicits self-similar
dynamics after changes to the trapping frequency [45,46],
and the scrambling of canonical operators in these limits
therefore simply reflects the single-particle breathing mode
following a trap quench. In fact, it can be shown that the
time averaged scrambling in both limits for the indivi-
dual canonical operators ½ÂiðtÞ; B̂j�2, where Âi ¼ x̂i; p̂i and

B̂j ¼ x̂j; p̂j is given by [47] C̄g¼0
Aj;Bk

¼ C̄g→∞
Aj;Bk

¼ 1
2
δjk. The

scrambling is therefore independent of both the system-size
and the strength of the trap quench γ.
For finite interactions, g > 0, the energy levels acquire

nontrivial shifts Eg>0
j ¼ Eg¼0

j þ Δj which destroy the
regularity of the harmonic oscillator spectrum. This leads
to complex dynamics which do not admit a single particle
description and introduces correlations between the par-
ticles. While large systems become computationally intrac-
table, few-body systems are solvable while retaining the
physics stemming from the finite contact interactions [51].
For N ¼ 2 particles analytic solutions exist [52,53] which
can be used to find an analytic expression for the full
squared commutator [47]. For larger systems, N ¼ 3, 4, 5,
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one must solve the Hamiltonian in Eq. (4) numerically
which we do by utilizing exact diagonalization techniques
[54] with an effective interaction approach [55] and an
optimized choice of the many-body basis [56]. We will
focus on the dynamics of ½x̂1ðtÞ; x̂1�2, as other combinations
of canonical operators give similar results [47].
In Figs. 1(a) and 1(b) the variance of the work distri-

bution and average scrambling is shown as a function of the
quench strength γ for finite interactions g ¼ 5 and different
system sizes. Reducing γ (increasing the compression of
the trap) drives the system further from equilibrium and
therefore increases both the variance and the information
scrambling. For the different system sizes the variance
and the average scrambling are rescaled by NbW and NbC ,
respectively, where the exponents bW and bC are found by
extrapolating the behavior of the system in the analytically
solvable limits g ¼ f0;∞g. In these the variance as a
function of N and γ is ΔW2

g¼0 ¼ ðN=8Þ½γ − ð1=γÞ�2 and
ΔW2

g¼∞ ¼ ½NðN2 þ 2Þ=24�½γ − ð1=γÞ�2, which evinces
that the interaction only affects how the system size scales.
For finite interactions we therefore fit the function
ΔW2

g;N ¼ NbWðgÞλWðg; NÞ½γ − ð1=γÞ�2 with the exponent
having values 1 < bWðgÞ < 3 which are g dependent.
Similarly for the time-averaged squared commutator
the following function gives a good fit C̄x1;x1 ¼
NbCðgÞλCðg; NÞf½γ − ð1=γÞ�2 þ kCðg; NÞg. For up to N ¼
5 particles the leading exponents of the system size are
found to be bWð5Þ ≈ 2 and bCð5Þ ≈ 1.7.

In Fig. 1(d) we list the numerically obtained values of the
remaining fitting constants showing that they quickly
converge for N ≥ 3, which can also be seen in Figs. 1(a)
and 1(b) as the data for N ¼ 3, 4, 5 show strong
convergence. In Fig. 1(c) we plot C̄x1;x1 as a function of
the variance ΔW2, showing that the average information
scrambling is linearly proportional to the work fluctuations.
For a system with finite interactions the information
scrambling is therefore closely related to the irreversible
nonequilibrium excitations created by the trap quench,
something which is absent in the g ¼ f0;∞g limits where
C̄x1;x1 ¼ 1=2 and therefore does not depend on the system
size N or quench strength γ.
The results in Fig. 1 can be explained in more detail by

considering the structure of the Hamiltonian and the
squared commutator analytically. To do this, we first
outline some generic conditions under which the squared
commutator will simplify and which are applicable to other
similar models. First, we consider a nondegenerate system
[condition (i)], which is the case in many situations of
interest. From Eqs. (5)–(7) one can see that contributions to
the infinite-time average of the squared commutator are
only obtained when the complex exponential equals 1,
which means that DABðtÞ has contributions whenever
Em ¼ En. The contributions to IAB and FAB can be split
into three cases: the energy differences can be pairwise zero
in the case where Ek ¼ Ej and Em ¼ En or the sum can be
zero whenEk ¼ Em and En ¼ Ej. Finally, it is also possible
that Ek − Ej þ En − Em ¼ 0 for j ≠ k ≠ n ≠ m. However,
we will consider an additional constraint on the spectrum,
namely Ek − Ej þ En − Em ≠ 0 for j ≠ k ≠ n ≠ m [con-
dition (ii)] which ensures that these terms have no con-
tributions. This often holds in chaotic systems [57],
although it needs to be explicitly shown for any system
of interest. The resulting time averages can therefore be
written as

D̄AB ¼
X
j;k;n

c�jckB
†
jnhÂ†ÂinnBnk; ð8Þ

ĪAB ¼
X
j;n

jcjj2A†
jnhB̂†B̂innAnj þ

X
j≠k

c�jckA
†
jjhB̂†B̂ijkAkk;

ð9Þ

F̄AB ¼
X
j;n

c�jbjA
†
jnB

†
nnAnj þ

X
j≠k

c�jbkA
†
jjB

†
jkAkk: ð10Þ

If the system obeys a final constraint on the matrix
elements of the operators with respect to the eigenbasis of
the final Hamiltonian, namely Bkk ¼ Akk ¼ 0 [condition
(iii)] the second term in Eq. (9) and both terms in Eq. (10)
will be zero. This constraint is much less generic than those
on the spectrum and is only fulfilled by certain classes of
models and operators. In general, it will be obeyed by

FIG. 1. (a) Variance and (b) time-averaged squared commutator
as a function of the quench strength γ for g ¼ 5. (c) Time-
averaged squared commutator as a function of the variance. The
colors correspond to N ¼ 2 (red), N ¼ 3 (magenta), N ¼ 4
(blue), and N ¼ 5 (black). The time-averaged squared commu-
tator is scaled with NbC , while the variance is scaled with NbW ,
with bCð5Þ ¼ 1.7 and bWð5Þ ¼ 2. (d) Corresponding fitting
components as a function of particle number.
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systems with an odd-even parity symmetry and for oper-
ators which change the parity of a state.
The time averages for any system which fulfills con-

ditions (i)–(iii) reduce to F̄AB ¼ 0 and C̄AB ¼ D̄AB þ ĪAB,
with

D̄AB ¼
X
j;k

cjckKBA
jk ; ĪAB ¼

X
j

jcjj2KAB
jj ; ð11Þ

where KAB
jk ¼Pn A

†
jnhB̂†B̂innAnk. ĪAB is given as the

diagonal ensemble expectation value of an emergent
operator and is therefore directly related to the work
statistics of the quench with no dependence on the sign
of the overlap coefficients. D̄AB is given as a sum over all
the off-diagonal values of a similar emergent operator
which means that the sign of the overlap coefficients matter
and negative and positive contributions can interfere
destructively.
The symmetries of a system of N interacting particles in

a harmonic trap have been thoroughly explored [51,58–62],
and the many-body Hamiltonian can be rewritten in
terms of a center-of-mass (CM) coordinate R ¼ ð1= ffiffiffiffi

N
p Þ×P

N
n¼1 xn andN − 1 relative Jacobi coordinates (REL) given

by yn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½n=ðnþ 1Þ�p ½ð1=nÞ ×Pn

j¼1 xj − xnþ1�. The sys-

tem is then separable as Ĥ ¼ ĤCM þ ĤREL, where the
center-of-mass Hamiltonian corresponds to a single particle
harmonic oscillator with frequency ΩðtÞ, while the rela-
tive Hamiltonian contains the effects of interactions and is
given by

ĤREL ¼
XN−1

j¼1

�
−
1

2

∂2

∂ŷ2j þ
1

2
Ω2ðtÞŷ2j

�

þ
X
k>j

gδ

 ffiffiffiffiffiffiffiffiffiffi
j − 1

j

s
ŷj−1 −

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

k

r
ŷk−1

−
Xk
n¼j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp ŷn

!
: ð12Þ

Rewriting the lab-frame position operators as x̂n ¼
ðR̂= ffiffiffiffi

N
p Þ þ Ŷn, where Ŷn ¼

P
N−1
j¼n ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þp Þŷj −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðn − 1Þ=n�p
ŷn−1 is the collective relative coordinate,

allows us to recast the infinite time average as [47]
C̄x̂j;x̂k ¼ C̄Ŷj;Ŷk

þ ð1=N2ÞC̄R̂;R̂. The infinite time average

is therefore given simply as the sum of the CM and REL
averages and this also holds when considering the momen-
tum operators C̄x̂j;p̂k

and C̄p̂j;p̂k
[47].

For the CM coordinates the squared commutator is
equivalent to the non-interacting system and given by
C̄R̂;R̂ ¼ 1

2
[47,63]. This contribution to the full scrambling

decreases with the system size as ð1=2N2Þ. The average
scrambling in the system after a quench is therefore entirely

determined by the relative-coordinate sector for which
state-dependent energy shifts for the even parity states
resulting from the interaction ensure that condition (ii) is
obeyed. As the Hamiltonian has a full reflection symmetry
with respect to the Jacobi coordinates ŷn [60] one can prove
condition (iii) for the individual operators and therefore the
squared commutator for Ŷn fulfills conditions (i)–(iii) and
has an infinite time average given by Eq. (11) [47].
In order to show that C̄x̂1;x̂1 is proportional to the work

fluctuations, however, we also require knowledge of the
emergent operator KY1;Y1. From the analytically solvable
N ¼ 2 case we find that KY1;Y1 from Eq. (11) is approxi-
mately a tridiagonal matrix with the largest contribution from
the elements KY1;Y1

jj , KY1;Y1

j;jþ1, and KY1;Y1

j;j−1 which scale with
leading terms proportional to ðEREL

j Þ2. The second moment
of the work probability distribution is given as hW2

RELi ¼P
j jcjj2ðEREL

j − EIÞ2, while ĪY1;Y1
∝
P

j jcjj2ðEREL
j Þ2 as it

is only diagonal in KY1;Y1

jj . While this clearly links the
dynamics of the correlation functions to the second moment
of the work probability distribution, it also holds for its
variance ΔW2 ¼Pj jcjj2ðEREL

j Þ2 − ðPj jcjj2EREL
j Þ2 as

hW2i ∝ hWi2. A similar argument can be made for D̄Y1;Y1

which can effectively be described as a sum over the
tridiagonal elements of KY1;Y1 [47]. This final condition
(iv) [KA;B

jj ∝ ðEREL
j Þ2] is required to link the scrambling to

the work fluctuations. While this is satisfied for a harmonic
trap one cannot expect this result to generalize to other
systems. However, the scrambling in any systemwhich obeys
conditions (i)–(iii) will be closely connected to the work
statistics through Eq. (11), although the relation can be more
complicated depending on the properties of KA;B.
As noted previously, there is no connection between the

variance and the information scrambling when the particles
are in the limits of zero and infinite interactions, however,
for finite interactions a linear relationship was found. Next,
we explore how this manifests as a function of the
interaction strength for N ¼ 2. Using Eq. (11) the infin-
ite-time average of the squared commutator C̄x̂1;x̂1 can be
calculated as a function of the interaction g, which is shown
in Fig. 2(a). The information scrambling increases with
increasing interactions and reaches asymptotic values for
g → 0 and g → ∞. However, these asymptotic values are
different from the known values in the limits g ¼ f0;∞g,
given as C̄x̂1;x̂1 ¼ 1=2 (black triangles in the figure). In
contrast, the work fluctuations show a smooth crossover to
the limiting values (red lines and triangles, respectively).
The difference between the asymptotic values of the

squared commutator and the limiting values at g ¼ f0;∞g
shows that the scrambling is very sensitive to small
deviations from the harmonic oscillator spectrum on
infinitely long timescales. To check this result we compute
the full time-dependent OTOCs in Eqs. (5)–(7) and numeri-
cally find their time average in the range t ∈ ½0; 200π�
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[black dots in Fig. 2(a)]. For intermediate values of g ∈
½0.1; 70� these results are indistinguishable from each other,
but as the extremal interaction limits are approached the
finite time-average and infinite time-average results
diverge. For the g ¼ 0 limit the dynamics are shown in
Fig. 2(b) and are simply given by Cx̂1;x̂1ðtÞ ¼ sin2ðtÞ
(yellow dashed line). It is interesting to compare them to
the case of weak interactions, g ¼ 0.002, which possesses
equivalent dynamics on short timescales (black solid line).
In this case the interaction induced energy shift Δj is small
and decreases asΔj ∝ j−1=2 [52], such that the dynamics on

short times can be approximated as e−iðE
0
jþΔjÞt ≈ e−iðE

0
j Þt

with E0
j being the single particle harmonic oscillator

energies. However, at long times these energy shifts will
affect the dynamics, leading to a change in the time average
that is captured by Eq. (11). This discontinuity in the
average information scrambling is therefore only observ-
able in the long-time limit as the timescale required to
observe the average scrambling diverges (similar for the
g → ∞ case).

In summary,we have shown that for harmonically trapped
interacting atoms, which are a fundamental building block
in many cold-atom experiments, the time average of the
squared commutator CABðtÞ for canonical operators is
proportional to the work fluctuations. The operator scram-
bling in Hilbert space is therefore intimately linked to the
work probability distribution, which is an experimentally
accessible thermodynamic measure [21–23] of the non-
equilibrium excitations induced by the quench. However,
the timescale required to observe information scrambling is
interaction dependent, being shorter the further the system is
from the harmonic limits. In fact it diverges as the non-
interacting and TG limits are approached, highlighting the
importance of intermediate interactions to be able to observe
information scrambling on short timescales. The relative
lack of finite-size effects is curious and a further inves-
tigation of the moments of the work probability distribution
as a function of g and N in a harmonic trap is an interesting
line for future investigations. It would also be interesting to
investigate other potentials which obey conditions (i)–(iii),
but likely not condition (iv), in order to contrast and compare
with the case of harmonic trapping.
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