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Using a double-well potential as a physical memory, we study with experiments and numerical
simulations the energy exchanges during erasure processes, and model quantitatively the cost of fast
operation. Within the stochastic thermodynamics framework we find the origins of the overhead to
Landauer’s bound required for fast operations: in the overdamped regime this term mainly comes from the
dissipation, while in the underdamped regime it stems from the heating of the memory. Indeed, the system
is thermalized with its environment at all times during quasistatic protocols, but for fast ones, the inefficient
heat transfer to the thermostat is delayed with respect to the work influx, resulting in a transient temperature
rise. The warming, quantitatively described by a comprehensive statistical physics description of the
erasure process, is noticeable on both the kinetic and potential energy: they no longer comply with
equipartition. The mean work and heat to erase the information therefore increase accordingly. They are
both bounded by an effective Landauer’s limit kBTeff ln 2, where Teff is a weighted average of the actual
temperature of the memory during the process.

DOI: 10.1103/PhysRevLett.128.070604

Information processing in the physical world comes with
an energetic cost: erasing a 1-bit memory at temperature T0

requires at least kBT0 ln 2 of work, as demonstrated
theoretically [1] and experimentally [2–10], with kB
Boltzmann’s constant. Practical implementations require
an overhead to Landauer’s bound (LB), observed to scale as
kBT0 × B=τ, with τ the protocol duration and B close to the
system relaxation time [7]. Most experiments use over-
damped systems, for which minimizing the overhead
means minimizing the dissipation. Underdamped systems
[10–12] therefore seem natural to reduce this energetic cost.
But cutting the dissipative energy cost has a counterpart: in
this Letter, we show experimentally and theoretically that,
for such systems, fast erasures induce a heating of the
memory and an accordingly higher energy expense,
kBTeff ln 2. The work influx is indeed not instantaneously
compensated by the inefficient heat transfer to the thermo-
stat, which results in a transient temperature rise visible in
the kinetic and potential energy evolutions. Our model
covering all damping regimes paves the way to new
optimization strategies [13], based on the thorough under-
standing of the energy exchanges.
The system under scrutiny is illustrated in Fig. 1: an

underdamped micromechanical oscillator confined in a
double-well potential U1ðx; x1Þ ¼ 1

2
kðjxj − x1Þ2, with x

the position of the oscillator, k its stiffness, and x1 the
user-controlled parameter tuning the barrier height [10]. In
our study, the only relevant degree of freedomof the physical
system, a microcantilever, is its first deflectionmode. The 1-
bit information is encoded in themean position: using a large
barrier (x1 ¼ X1 ≫ σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT0=k

p
), the system can be at

equilibrium either in the state 0 (in the left-hand well
centered in −X1) or in the state 1 (in the right-hand well
centered in þX1). The erasure process (illustrated in the
Supplemental Material [14]) consists in lowering the barrier
andmerging thewells (stage 1: decreasing x1 fromX1 to 0 in
a time τ), then translating the single well U2ðx; x1Þ ¼
1
2
kðxþ x1Þ2 to position −X1 (stage 2: increasing x1 from

0 to X1 in a time τ), before recreating the second well
centered inþX1 to recover the initial potentialU1 [10]. The
experimental probability distribution function (PDF) evo-
lution in gray on Fig. 1(c) points out the 100% success rate:
this protocol always drives the system in state 0 independ-
ently of its initial state.
Along a trajectory, the total energy of the system consists

in the sum of the potential energy U and of the kinetic
energy K ¼ 1

2
mv2 (withm the oscillator mass and v ¼ _x its

speed): E ¼ U þ K. This quantity equilibrates with the
stochastic work W and heat Q through the energy balance
equation

dE
dt

¼ dU
dt

þ dK
dt

¼ dW
dt

−
dQ
dt

: ð1Þ

This energy balance is the starting point of the model
developed in this Letter to explain the heating of the
memory during erasure, using an approach similar to that
followed in the theoretical description of feedback cool-
ing [11,12].
The data plotted in Fig. 1(c) (x and x1 along a trajectory)

contains all we need to compute the quantities involved in
Eq. (1). Indeed, applying to the underdamped regime the
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generic computations of stochastic energy exchanges
[10,19–24], we have

dW
dt

¼ ∂U
∂x1 _x1; ð2Þ

dQ
dt

¼ −
∂U
∂x _x −

dK
dt

: ð3Þ

In Ref. [10] we measure the mean work and dissipated
heat of erasure processes at different ramp speeds, starting

from the quasistatic regime (τf0 ¼ 250), to very fast
erasures [τf0 ∼ 6 in Fig. 1(c)]. As stated earlier, reducing
the operation time requires an overhead to LB: the mean
work and heat on an erasure cycle are, to a first approxi-
mation, hWi ¼ hQi ∼ kBT0ðln 2þ B=τÞ. In this Letter, we
explain the origin of this overhead increasing with the
speed: it comes in underdamped memories from the
transient rise of the effective temperature Teff , a source
of energy loss that fundamentally differs from the viscous
dissipation contribution of overdamped systems.
For this purpose, we measure the mean kinetic and po-

tential energy during either a quasistatic erasure [Figs. 2(a)
and 2(b)] or a fast one [Figs. 2(c) and 2(d)]. When we
proceed in a quasistatic fashion, the mean kinetic energy
stays as expected at its equilibrium value 1

2
kBT0, while odd

evolution of the mean potential energy complies with
equipartition for the biquadratic shape of U1 as detailed
in the Supplemental Material [14]. For fast operations, the
energy profiles are completely different: in particular they
strongly increase during stage 1, before relaxing during
the equilibration step. K can be decomposed into hKi ¼
1
2
mðhvi2 þ σ2v), summing the contribution of the velocity

mean value hvi that reflects the response to the well motion,
and the velocity variance σ2v that defines the kinetic temper-
ature (following Ref. [25]) of the first deflection mode:
T ¼ mσ2v=kB. The first term is responsible for the transient

(c)

(a) (b)

FIG. 1. Experimental setup and fast erasure cycle. (a) Schematic
diagram of the experiment: the underdamped oscillator
(resonance frequency f0 ¼ ω0=ð2πÞ ¼ 1270 Hz, quality factor
Q ¼ 10) is a conductive cantilever, sketched in yellow. Its
deflection x is measured with a differential interferometer [18].
The potential U is created by the electrostatic force F between the
cantilever and the electrode facing it [10]. (b) Measured double-
well potential energyU1 (blue) when x1 ¼

ffiffiffiffiffi
10

p
σ0 (5kBT0 barrier

height), with T0 ¼ 295 K and σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT0=k

p
∼ 1 nm, the stan-

dard deviation of the deflection at equilibrium inside a single
well. The potential is inferred from the measured PDF of x during
a 10 s acquisition and the Boltzmann distribution. The fit to the
U1ðx; x1Þ expression is excellent (dashed line). (c) Time record-
ing of the cantilever deflection x on a single trajectory (blue,
starting in state 1 in this example), superposed with the centers of
two wells: þx1 (black) and −x1 (red). Snippets of the potential
energy on top of the plot sketch the erasure protocol. Stage 1 (red
background) and 2 (green background) both last τ ¼ 5 ms. The
equilibrium periods around stages 1 and 2 are chosen freely as
long as they allow the cantilever to relax (natural relaxation time:
τr ¼ 2Q=ω0 ∼ 2.5 ms). The gray map corresponds to the PDF of
x, computed from N ¼ 2000 experimental trajectories of the
erasure process.

(c) (d)

(a) (b)

FIG. 2. Energy evolution during an erasure procedure. (a) In
blue, the time evolution of the mean kinetic energy hKi in kBT0

units over N ¼ 2000 iterations of a quasistatic erasure (τf0 ≫ 1):
stage 1 and stage 2 (red and green backgrounds) both last
τ ¼ 100 ms. The red line corresponds to the theoretical predic-
tion detailed in the Letter. (b) Same, with the mean potential
energy hUi. (c),(d) Same for a fast erasure: τ ¼ 5 ms. We add in
black line the results of a numerical simulation for step 1 that
provides more samples than the experiment Nsim ¼ 5 × 106 and
is thus free of statistical uncertainty.
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oscillations at the beginning of step 1 and during step 2, but
the energy rise during step 1 mainly comes from the thermal
term: 1

2
mhvi2 ∼ 1

2
kBT0X2

1=ð2πσ0τf0Þ2 ≪ 1
2
kBT0. It there-

fore demonstrates a transient temperature rise.
This warming and its consequences on the operation cost

can be interpreted using a simple analogy: during step 1, the
system behaves as a single-particle gas [26] at pressure p,
compressed so that the available volume V is divided by 2.
The infinitesimal work required for the compression is
dWc ¼ −pdV ¼ −kBTd lnV. If the transformation is
quasistatic, T ¼ T0 and the work simplifies into Wc ¼
kBT0 ln 2. In contrast, if the process is too fast to allow heat
exchanges with the surrounding thermostat, the transfor-
mation is adiabatic, and the temperature T of the gas
increases during the compression. Hence, the compression
work for fast operations writes Wc ¼ kB

R
τ
0 Td lnV ¼

kBTeff ln 2 with Teff ≥ T0. The heat exchanges after the
adiabatic compression will then allow the system to
thermalize at T0.
By analogy, we will also call “compression” the reduc-

tion of the phase space volume explored when the bistable
potential progressively shrinks until reaching a single well
during step 1. This analogy highlights the fact that the
warming during the compression is specific to the under-
damped system and would not exist if a strong coupling to
the bath allowed efficient heat exchanges. The objective of
the following sections is to build a model that describes
both the compression and translational motion as observed
in experiment.
We first proceed with the mean dissipated heat described

by [14]:

dhQi
dt

¼ ω0

Q
½mhvi2 þ kBðT − T0Þ�: ð4Þ

This expression is completely general and highlights that
the heat exchanges are reduced at high quality factors Q.
To compute the other energetic terms (hWi, hKi, and

hUi), we rely on the PDF of position x and speed v. Let us
introduce this PDF during the compression stage, suppos-
ing that the system is at equilibrium: it is governed by the
Boltzmann distribution

Pcðx; vÞ ¼ 1

Zc e
−1
2
βmv2e−

1
2
βkðjxj−x1Þ2 ð5aÞ

Zcðβ; x1Þ ¼
2πffiffiffiffiffiffiffi
km

p
β
V; V ¼ 1þ erf

� ffiffiffiffiffi
kβ
2

r
x1

�
; ð5bÞ

with β ¼ 1=ðkBTÞ, Zc the partition function, and V a
volumelike function that shrinks by a factor of 2 when
x1 decreases from X1 to 0. We can directly apply this PDF
to the slow erasures, in equilibrium at temperature T0 at all
times. We extend the use of this PDF to the case of fast
erasures as well, under the hypotheses that (i) the cantilever

oscillates several times in the double well before its shape
changes significantly (j_x1j ≪ ω0σ0), so that the phase space
is adequately sampled and (ii) a Boltzmann-like distribu-
tion still holds. In this case, however, we leave the
temperature T as a parameter free to evolve due to a
possible heating. Note that the PDF Pcðx; vÞ only describes
the volume compression and does not include any tran-
sients, leaving aside any coupling between x and v. The
main transient, due to the translational motion of the wells,
is addressed in the next paragraph. In the Supplemental
Material [14], we compare the PDF of our ansatz with one
sampled on a large numerical simulation, demonstrating its
relevancy.
During stage 2, or at the beginning of stage 1 before the

oscillator crosses the barrier, the dynamics is ruled by a
linear Langevin equation: the potential energy is quadratic
(no switching). xðtÞ is therefore the sum of the stochastic
response to the thermal fluctuations, and of the determin-
istic response�xDðtÞ to the driving force FDðtÞ ¼ �kx1ðtÞ
(the sign depending on which well is considered). xDðtÞ can
be easily computed for our simple x1ðtÞ ramps, and the PDF
Ptðx; vÞ, which determines the translational motion, is then
described by [27,28]

Ptðx; vÞ ¼ 1

Zt e
−1
2
βmðv−_xDÞ2e−1

2
βkðx−xDÞ2 ð6aÞ

Zt ¼ 2πffiffiffiffiffiffiffi
km

p
β
V; V ¼ 1: ð6bÞ

We easily retrieve hxi ¼ xD and hvi ¼ _xD.
In complement to Eq. (4) for the mean heat, having

knowledge of the PDF allows the computation of all mean
energetic quantities. During compression, for example, the
mean energy is hEci ¼ −∂ lnZc=∂β, while the mean work
derivative is h _Wci ¼ h∂U=∂x1i_x1 ¼ −_x1=β∂ lnZc=∂x1. In
the Supplemental Material [14], we derive the following
expressions, valid for all stages:

dhQi
dt

¼ ω0

Q
ð2KD þ kBT − kBT0Þ ð7aÞ

dhWi
dt

¼ dWD

dt
− kBT

∂ lnV
∂x1 _x1 ð7bÞ

hKi ¼ KD þ 1

2
kBT ð7cÞ

hUi ¼ UD þ 1

2
kBT þ kBT2

∂ lnV
∂T ; ð7dÞ

where WD, KD, and UD are respectively the deterministic
work and kinetic and potential energy that vanish in the
quasistatic regime. With Eq. (7b) for a quasistatic com-
pression in equilibrium at T0, we recover the gas analogy
dWc ¼ −kBT0d lnV; hence, LB: hWci ¼ kBT0 ln 2.
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Using Eqs. (1) and (7), we derive a differential equation
governing the time evolution of the temperature: the
deterministic terms cancels out, since they obey the energy
balance as well, and we are left with

dhEi
dt

¼ ∂hEi
∂T _T þ ∂hEi

∂x1 _x1

¼ −kBT
∂ lnV
∂x1 _x1 þ

kBω0

Q
ðT − T0Þ: ð8Þ

Explicit formulas for ∂hEi=∂T and ∂hEi=∂x1 are readily
computed from Eqs. (7c) and (7d). When we proceed in
quasistatic fashion (_x1 ∼ 0), or when the volume is constant
(∂=∂x1 ¼ 0), we observe no heating: T ¼ T0. For fast
compressions, this equation can be solved numerically and
leads to the evolution of the kinetic temperature TðtÞ.
Thanks to the knowledge of TðtÞ, our model describes

the evolution of all energetic quantities in Eqs. (7a)–(7d)
during the erasure process. For slow erasures, kinetic
[Fig. 3(a)] and potential [Fig. 3(b)] energies comply as
expected with equipartition. For fast erasures, we obtain a
strong temperature increase [29] during step 1, visible on

both energy profiles. The system then thermalizes before
responding to the translational motion of step 2 with
transient oscillations. Those theoretical results superim-
posed on Fig. 2 in red lines are in very good agreement with
the experimental observations for both slow and fast
erasures, with no adjustable parameters. We supplemented
the model validation by numerical simulation data (see the
Supplemental Material [14]): the black curve on Figs. 2(c)
and 2(d) closely matches the model, except for tiny ripples
during the thermalization that correspond to transients
unaccounted for. Additionally, the model predicts that a
fast erasure cycle will cause a mean power evolution that
displays transient oscillations and a rise during compres-
sion, both of which are consistent with the experimental
data of Fig. 3(c), and perfectly matches the simulation
results.
All in all, we propose an efficient theoretical framework

to predict the energy exchanges and explore the fast
information erasure cost. The model only requires the
system parameters (f0 and Q) and the protocol ones (X1

and τ) to estimate the erasure cost. As a further illustration
of the model reliability, in Fig. 4 we compare its predictions
with the experimental points and the empirical description
of the overhead in B=τ: it successfully quantifies the
divergence from LB as the speed is increased. The
remaining difference may result from calibration drifts or
experimental imperfections [30], or from the shortcomings
of the model with respect to transients.

FIG. 4. Divergence from the Landauer limit for fast erasures.
Erasure cost (hWi and hQi in kBT0 units) for different operation
speeds X1=ðσ0τÞ. Experimental data (in blue), computed from
N ¼ 2000 iterations each with X1 ∼ 6σ0, are in good agreement
with the analytical computation (red line). As a comparison, we
plot the empirical description of the divergence from LB as
kBT0ðln 2þ B=τÞ used in the existing literature, with B ¼ ð2.6�
0.2Þ ms here (red dotted line). Inset: same considering only the
translational motion in step 2.

(a) (b)

(c)

FIG. 3. Model prediction: energy and stochastic work profiles.
(a) Time evolution of the mean kinetic energy hKi for different
duration τ of the erasure steps computed from Eq. (7c). For small
τ, hKi is affected during step 1 (red background) by a transient
oscillation due to the dragging, followed by a strong rise in
temperature. Only the dragging transient appears during step 2
(green background). (b) Same plot for the potential energy hUi
from Eq. (7d). (c) Time evolution of the mean power over 2000
trajectories, following the fast protocol (τ ¼ 5 ms) corresponding
to Fig. 1 (blue). The red line is computed using Eq. (7b) and
closely matches the experimental results. Results of a numerical
simulation (black dashed line), corresponding to 5 × 106 trajec-
tories, match the model so well that we cannot distinguish the
curves.
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Furthermore, the model distinguishes the part of the
overhead due to the compression from the one due to the
translational motion. The latter, plotted in the inset of
Fig. 4, behaves at first order as X2

1=ðQω0Þτs [7,10]. On the
contrary, the former increases with the quality factor Q: it
behaves as kBTeff ln 2, with Teff > T0 the effective temper-
ature during the process [14], rising when the heat
exchanges with the bath are reduced (at high speeds or
high Q). In the mean adiabatic limit (as defined in
Ref. [25]) for erasure, however, the compression work
saturates at kBT0 [14]. Indeed, for adiabatic transformations
of underdamped systems, the conservation of the phase
space volume [25] requires one to enslave the variations of
the temperature T to those of the volume V. These
considerations open several possibilities (that could be
combined) to optimize the information processing: apply-
ing optimal protocols for the translational motion (pre-
dominant for overdamped systems) as suggested in
Refs. [7,31,32]; moving to the underdamped regime to
reduce the operation timescale and decrease the dragging
cost [10], while paying only the adiabatic limit kBT0

for Q ≫ 1.
As a conclusion, the underdamped framework addressed

in this Letter opens up new possibilities in information
processing: the operation times are several orders of
magnitude smaller than the ones encountered in the over-
damped regime, as is the cost required to move the system
in the bath. Nevertheless, the price to pay to get rid of the
viscous slowdown hides in the low coupling to the bath,
allowing the memory temperature to strongly rise for fast
drivings. We provide a full theoretical description of an
erasure cycle, the results of which are verified by a wide
panel of high-resolution experimental measurements and
complementary numerical simulations. It culminates in the
prediction of the overhead to LB for fast erasures. Such an
understanding of the erasure process, covering all damping
regimes, paves the way to new approaches to the informa-
tion processing optimization.
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