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We propose a novel type of a Bose-Hubbard ladder model based on an open quantum-gas–cavity-QED
setup to study the physics of dynamical gauge potentials. Atomic tunneling along opposite directions in the
two legs of the ladder is mediated by photon scattering from transverse pump lasers to two distinct cavity
modes. The resulting interplay between cavity photon dissipation and the optomechanical atomic
backaction then induces an average-density-dependent dynamical gauge field. The dissipation-stabilized
steady-state atomic motion along the legs of the ladder leads either to a pure chiral current, screening the
induced dynamical magnetic field as in the Meissner effect, or generates simultaneously chiral and particle
currents. For a sufficiently strong pump the system enters into a dynamically unstable regime exhibiting
limit-cycle and period-doubled oscillations. Intriguingly, an electromotive force is induced in this
dynamical regime as expected from an interpretation based on Faraday’s law of induction for the
time-dependent synthetic magnetic flux.
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Introduction.—Gauge theories describe a plethora of
fundamental phenomena, from electromagnetism to the
interaction between elementary particles [1]. Exploring
limits of such theories has driven the interest toward the
experimental implementation of “synthetic” gauge poten-
tials in ultracold neutral atoms [2]. Early experiment
successfully realized static background artificial gauge
potentials [3–9]; however, in a genuine gauge theory the
gauge potentials appear as dynamical degrees of freedom.
In this respect, introducing a density dependence on the
synthetic vector potential via the periodical modulation of
two-body interactions [10,11] and Floquet lattice shaking
[12,13] constitutes an important step towards implementing
dynamical gauge potentials [14].
Among alternative approaches to induce dynamical

gauge potentials, quantum-gas–cavity-QED setups stand
out owing to the intrinsic dynamical nature of cavity fields
[15,16]. Many interesting phenomena have been predicted
to arise in systems with cavity-induced dynamical gauge
potential, from the dynamical appearance of a vector
potential at the onset of superradiance [17,18] to a
dissipation-induced dynamical Peierls phase [19] and the
Meissner-like expulsion of a magnetic field [20]. The
prediction of cavity-induced dynamic spin-orbit coupling
[21–28] and its recent realization [29] has opened a new
avenue for engineering dynamical gauge potentials along-
side free-space schemes and experiments [30].
Motivated by the recent experimental realization of the

dynamical spin-orbit coupling [29] and a two-mode Dicke
model [31], we propose a novel cavity-QED scheme for
implementing an average-density-dependent dynamical

gauge potential. In particular, we develop a ladder model
[32] with cavity-assisted counterpropagating tunnelings as
shown in Fig. 1. A dynamic gauge potential appears at the
onset of the superradiant photon scattering from two
transverse pump lasers into two cavity modes owing to
dissipation-induced phase shifts of cavity photons. In
contrast to previous works [17–19], we take into account
the optomechanical backaction of the atomic dynamics,

(a) (b)

(c)

FIG. 1. Sketch of the setup. (a) A spinor BEC is loaded into a
1D tilted optical lattice perpendicular to the axis of a linear cavity.
Neighboring sites are Raman coupled via two cavity modes with
strengths Ga;b and transversely applied laser fields with ampli-
tudes Ωa;b. A microwave couples the two atomic states locally
with strengthΩ. (b) Sketch of the atomic level structure and of the
two independent two-photon Raman transitions inducing direc-
tional tunneling between neighboring lattice sites. (c) Effective
mapping of the spinor BEC in the 1D lattice in panel (a) into a
two-leg Bose-Hubbard ladder with cavity-assisted longitudinal
hoppings and microwave-generated transverse tunneling.
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leading to an average-density-dependent dynamical mag-
netic flux when the optomechanical backaction shifts
significantly the cavity resonances and consequently the
dissipation-induced photonic phases. The system exhibits
three steady states: photon-balanced Meissner (PB-M) and
vortex (PB-V) states and a photon-imbalanced biased
ladder (PI-BL) phase. In addition, the phase diagram of
the system features a region of highly nonlinear dynamics
with no steady state. Two stable dynamical phases are
identified with limit-cycle and period-doubled oscillations.
Remarkably, an electromotive force is induced naturally in
this regime, mimicking Faraday’s law of induction.
Model.—Consider a spinor Bose-Einstein condensate

(BEC) inside a linear optical cavity. The BEC is strongly
confined by an external optical lattice to a one dimension
perpendicular to the cavity axis at antinodes of two distinct
cavity electromagnetic modes, â and b̂; see Fig. 1(a). The
natural tunneling of atoms along the lattice is suppressed by
applying a potential gradient δ [33]. A directional hopping
is restored by two independent resonant two-photon Raman
transitions as shown in Fig. 1(b): The ground pseudospin
state j↓i (j ↑i) is coupled, respectively, by Rabi rates Ga
(Gb) and Ωa (Ωb) to a far detuned excited state jei via the
cavity mode â (b̂) with resonance frequency ωa (ωb) and an
out-of-plane transverse pump laser with frequency ωpa

(ωpb). The two pseudospin ground states are coupled on
site with a rate Ω through a radio-frequency drive with
frequency ωrf.
For large atomic detuning, the excited state can be

adiabatically eliminated. By only retaining resonant scat-
tering terms, the effective Hamiltonian reads [34],

Ĥ ¼ −ℏη
XL
j¼1

ðâ†ĉ†↓;jþ1ĉ↓;j þ b̂ĉ†↑;jþ1ĉ↑;j þ H:c:Þ

− ℏΩ
XL
j¼1

ðĉ†↑;jĉ↓;j þ H:c:Þ

þ V
2

XL
j¼1

X
σ¼↑;↓

N̂σ;jðN̂σ;j − 1Þ þ γV
XL
j¼1

N̂↓;jN̂↑;j

− ℏðΔa −UN̂↓Þâ†â − ℏðΔb − UN̂↑Þb̂†b̂; ð1Þ

where ĉσ;j is the atomic bosonic annihilation operator for
pseudospin σ at site j, and N̂σ ¼

P
j N̂σ;j ¼

P
j ĉ

†
σ;jĉσ;j.

The effective model (1) constitutes a spinor Bose-Hubbard-
type Hamiltonian with cavity-induced dynamical spin-orbit
coupling. It can be effectively mapped into a two-leg Bose-
Hubbard ladder of length L, with one of the two pseudospin
states acting as a synthetic dimension [35]. In this spirit, the
first row of the Hamiltonian corresponds to the motion of
the atoms along the longitudinal direction (i.e., legs) of the
ladder. The forward tunneling amplitudes, t̂aðbÞ ≡ ℏηâ†ðb̂Þ,
are restored by scattering photons from the pump (cavity)

into the cavity (pump) at a rate η ¼ GaΩa=Δe ¼ GbΩb=Δe,
with Δe ¼ ωp − ωe being the effective atomic detuning
from the average pump frequency ωp ¼ ðωpa þ ωpbÞ=2.
The second line represents a transversal hopping along
rungs of the ladder, with tunneling amplitude set by the
radio-frequency coupling Ω. The third line includes repul-
sive two-body on-site atomic interactions, with V being the
strength of intraspecies interactions and γ parametrizing the
ratio between the strength of inter- and intraspecies
interactions. The last two terms represent the free energy
of the photon fields with the cavity detunings defined as
ΔaðbÞ ¼ ωp � ωrf=2 − ωaðbÞ, where in the following we
assumeΔ≡ Δa ¼ Δb. The cavity resonances are shifted by
the atomic medium UN̂σ, where U ¼ G2

a=Δe ¼ G2
b=Δe is

the dispersive shift per atom.
Average-density-dependent dynamical gauge potential

and synthetic magnetic field.—Let us now describe the
mechanism by which a dynamical gauge potential can arise
when the photon-assisted tunnelings t̂a;b are restored. We
recall that on a lattice, the coupling of a charged particle Q
to a vector potential A is manifested by the phase factor

e
iQ=ℏ

R
path

A·dl
of the tunneling amplitude, i.e., Peierls phase

[36]. The Peierls phase is fixed by the circulation of the
vector potential along the path enclosing the unit cell, and
reduces to the Aharonov-Bohm phase in the continuum
limit [37]. Therefore, the magnetic flux piercing a lattice
plaquette is ΦB ¼ R

unit cell A · dl.
For neutral atoms the vector potential must be engi-

neered tailoring the atomic tunneling amplitudes. To
achieve this, our scheme exploits the superradiant scatter-
ing of photons into the cavity. In particular, in the super-
radiant phase the collective synchronized emission of
photons results in a macroscopic occupation of the two
cavity modes, which can be treated semiclassically as
dynamical electromagnetic fields. The cavity fields are
thus described by coherent states [38], â → hâi≡ α ¼
jαjeiϕα and b̂ → hb̂i≡ β ¼ jβjeiϕβ , and the tunneling
amplitudes for the lower and upper leg, respectively, reduce
to c numbers ta ¼ ℏηjαjeiϕα and tb ¼ ℏηjβje−iϕβ . The
pumping geometry is equivalent to a well-defined gauge
choice where the transverse component of the vector
potential along the rungs A⊥

j ¼ 0 vanishes, and its longi-
tudinal components depend on the phases of the cavity

fields Ak
a;j ∝ ϕα and Ak

b;j ∝ −ϕβ. Hence, the total phase
acquired by the atomic wave function around a closed loop
along one plaquette is Φ ¼ ϕα þ ϕβ. The dynamics of the
atoms is equivalent to the one of charge particles Q
threaded by the magnetic flux ΦB ¼ ℏΦ=Q ¼ Φ0BΦ=2π
with Φ0B ¼ h=Q.
In the adiabatic limit for the photonic dynamics [15,16],

the cavity fields can be slaved to the atomic degrees of
freedom and be obtained from the stationary solution of the
Heisenberg equations of motion, α ¼ −ηΘ↓=ðΔa −UN↓ þ
iκaÞ and β ¼ −ηΘ�

↑=ðΔb − UN↑ þ iκbÞ, where κa;b are the
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decay rates of the cavity fields and Nσ ¼ hN̂σi. This pre-
scribes the phase locking between the photons and the
average atomic hopping operators, Θσ ¼

P
jhc†σ;jþ1cσ;ji.

Up to a global phase, the phases of the cavity fields are
uniquely determined [34],

ϕαðβÞ ¼ − arctan

�
κaðbÞ

ΔaðbÞ −UN↓ð↑Þ

�
: ð2Þ

The atomic ladder acts as a refractive medium for the light
inside the resonator dispersively shifting the cavity reso-
nances, i.e., ΔaðbÞ − UN↓ð↑Þ, and the magnetic flux ΦB ∝
ϕα þ ϕβ becomes nonlinearly dependent on the atomic leg
density.
In order to unveil the effect of the cavity-induced

magnetic field, let us consider the single-particle physics.
The atomic part of the Hamiltonian (1) can be diagonalized
to yield the single-particle atomic energy bands,

ϵ�ðqÞ
ℏ

¼−ηFþþ
U
2
nph�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2þ

�
ηF−−

U
2
Δnph

�
2

s
: ð3Þ

Here we have defined F�ðqÞ ¼ jαj cosðqþ ϕαÞ�
jβj cosðq − ϕβÞ, nph ¼ nα þ nβ ¼ jαj2 þ jβj2 as the total
number of photons, and Δnph ¼ nα − nβ as the photon-
number difference. The quasimomentum q is minimally
coupled to the photon phases ϕα;β, and is conserved during
the dynamics for the noninteracting system. The self-
consistent band structure exhibits different behaviors
depending on Δnph. For the photon-balanced (PB) case,
Δnph ¼ 0, the lowest energy band has either a single
minimum at q ¼ 0 or symmetric double minima at
q ¼ �qm ≠ 0. The atomic ground state corresponds to a
Meissner (M) and a vortex (V) phase, respectively. For the
photon-imbalanced (PI) case, Δnph ≠ 0, the energy bands
become asymmetric, with the lowest band developing a
single minimum at a nonzero quasimomentum, q ¼
qm ≠ 0. The photon imbalance drives an atomic population
imbalance in the two legs, which breaks the Z2 reflection
symmetry of the system corresponding to the invariance
under the exchange of the cavity modes â ↔ b̂† and ladder
legs ĉ↑;j ↔ ĉ↓;j. We identify this state as the biased ladder
(BL) phase [39–41].
We find the steady state of the system by looking at the

long-time dynamics of the coupled Heisenberg equations of
motion with periodic boundary conditions, starting from a
uniform density distribution with zero quasimomentum
[34]. The steady-state phase diagram in the Δ–η parameter
plane is mapped out in Fig. 2(a) for N ¼ 1. Typical
self-consistent energy bands are presented in Fig. 2(b).
In this noninteracting low-density regime n̄ ¼ n̄↓ þ n̄↑ ¼
1=2L ≪ 1, the optomechanical backaction UNσ of the

atomic medium on the cavity resonances is negligible.
Therefore, the magnetic flux ΦB is almost density inde-
pendent and can only be tuned by varying the cavity
parameters Δ and κ; see the inset of Fig. 2(a).
By increasing the ladder density n̄ ¼ N=2L, the dis-

persive shift UNσ becomes significant, and the density
dependence of the induced magnetic flux ΦB becomes
apparent. Figure 3(a) shows for weak on-site interactions
the stationary value of the magnetic flux ΦB=Φ0B as a
function of the average atomic density n̄ ¼ N=2L and the
pump strength

ffiffiffiffi
N

p
η for cavity detuning, Δ ¼ −6κ. The

gray color indicates a dynamical region with no steady-
state solution. Figure 3(a) shows that density effects
become relevant for higher fillings, where the two cavity
modes are dispersively shifted closer to resonance. The
total photon number nph and the relative photon number
difference jΔnphj=nph are shown in Figs. 3(b) and 3(c),
respectively. The system exhibits a phase transition from a
photon balanced to a photon imbalanced phase when the
pumping strength is increased (white solid line in Fig. 3).
For large cavity detunings the weak magnetic fields,
ΦB=Φ0B < 0.15, do not support a PB-V phase transition
at weak pumping.
Superradiance and persistent currents.—Since each

photon scattering process is accompanied by a directi-
onal atomic tunneling along the legs of the ladder, sta-
tionary currents flowing in opposite directions are gener-
ated in the superradiant phase; see the sketch in Fig. 1(c).
Dissipation plays an essential role in the generation of
these currents [19]. By inspection of the leg currents,

(a) (b)

FIG. 2. Single-particle phase diagram. (a) The steady-state
phase diagram in the f ffiffiffiffi

N
p

η=κ;Δ=κg parameter plane. The
self-consistent band structure exhibits three distinct phases:
PB-M and PB-V, and PI-BL states. The color map indicates
the photon imbalance Δnph. The red dashed curve separating the
PB-M and the PB-V states has been obtained analytically [34].
The three phases intersect in a tricritical point indicated by the
brown dot. Inset: The synthetic magnetic flux ΦB=Φ0B as a
function of Δ=κ. For Δ=κ ¼ −0.5, (b) typical band structure
ϵ�ðqÞ in each phase corresponding to

ffiffiffiffi
N

p
η=κ ¼ f0.08; 0.50;

1.00g. Other parameters are set to L ¼ 51, U ¼ Δ=2L, Ω ¼ 1,
and V ¼ γ ¼ 0.
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J↓¼iη
P

jha†ĉ†↓;jþ1ĉ↓;j−H:c:i and J↑¼iη
P

jhb̂ĉ†↑;jþ1ĉ↑;j−
H:c:i, one sees that for the steady state the leg currents are
proportional to the photon number of the respective
coupled modes, J↓ ¼ 2κjαj2 and J↑ ¼ −2κjβj2. The chiral
current is determined by the total number of photons leaked
out of the cavity, Jc ¼ J↓ − J↑ ¼ 2κnph, while the photon
number difference identifies the net particle current,
Jp ¼ J↓ þ J↑ ¼ 2κΔnph. The current patterns are illus-
trated schematically in Fig. 3(d). At weak pumpings, a
Meissner phase is stabilized with a pair of equal, counter-
propagating currents flowing along the two legs. At
stronger pump strengths a net particle current is driven
by the photon imbalance in the biased ladder phase
[39–41].
Dynamical instabilities and Faraday’s induction law.—

We now take a closer look into the gray region of Fig. 3,
where the system exhibits a highly nonlinear dynamics
(NLD). When the long-time dynamics is characterized by
periodic oscillation of the cavity field amplitudes [see
Figs. 4(a) III and 4(b) III], the system behaves like a
limit-cycle oscillator. Self-sustained periodic oscillations of
the cavity modes spontaneously emerge in the absence of
an external periodic drive, breaking the time-translational
symmetry [42]. The time-translational symmetry breaking
in driven-dissipative systems has been recently interpreted
as a dissipative time crystal [43,44]. The system also
exhibits a period-doubling bifurcation at stronger pumping
with the appearance of an additional halved frequency

component above the main limit-cycle oscillation fre-
quency, possibly leading to chaos [45].
The nontrivial dynamics of the photonic phases shown

in Fig. 4 leads to a time-dependent magnetic flux ΦBðtÞ.
This in turn induces an electromotive force EðtÞ ¼
−∂ΦBðtÞ=∂t ¼ −ðΦ0B=2πÞ∂ΦðtÞ=∂t, with

∂ΦðtÞ
∂t ¼ 2Δ −UN −

K↓

2jαj2 −
K↑

2jβj2 ; ð4Þ

and the average longitudinal kinetic energies, K↓ ¼
−2ηReðα�Θ↓Þ and K↑ ¼ −2ηReðβ�Θ�

↑Þ. The time evolu-
tion of the magnetic flux and the induced electromotive
force are shown in the insets of Figs. 4(a) I and 4(b) I. The
time-dependent electromotive force drives periodically the
atomic population between the two legs, apparent from the
oscillating chiral Jc, particle Jp, and the emerging rung
current J⊥ ¼ iΩ

P
jhĉ†↑;jĉ↓;j − H:c:i; see Figs. 4(a) II and

4(b) II. In contrast to the steady-state results the photon-
number counts are no longer an exact measurement of the
leg currents. One can think of the residual currents as
induction currents which oppose the variation of the
magnetic flux, thus mimicking Faraday’s law of induction
with neutral particles [46].

(a)

(d)

(b)

(c)

FIG. 3. Many-body phase diagram. (a) Nonequilibrium phase
diagram in the f ffiffiffiffi

N
p

η=κ; n̄g parameter plane. For Δ=κ ¼ −6,
the system exhibits only two of the steady-state phases of
Fig. 2(a): the PB-M and the PI-BL states. The two phases are
separated by the solid white line. The gray area indicates a
region of dynamical instability with no steady state. The color
map indicates the steady-state synthetic magnetic flux ΦB,
clearly showing average-density dependence. The total photon
number nph (b) and the photon number difference Δnph=nph (c)
are shown in the same parameter plane. Photon number
saturates the scale in the bright blue region in (b). (d) Current
patterns in the PB-M and the PI-BL states. Parameters are the
same as Fig. 2, except VN ¼ 1, γ ¼ 0.1.

(a)

(b)

FIG. 4. Periodic nonlinear dynamics for high densities
n̄ ¼ 1.42. The phase space trajectories of the two cavity-mode
amplitudes α (gray) and β (black) for long-time dynamics withffiffiffiffi
N

p
η=κ ¼ 1.3 (a) and 1.55 (b) [outside of the phase diagram of

Fig. 3]. Insets in panels (I): Time evolution of the magnetic flux
(black) and e.m.f (dashed gray). Time evolution of the induced
chiral Jc (black), particle Jp (dashed gray), and rung J⊥ (dotted
blue) currents (II), and of the total photon number nph (black) and
the photon number difference Δnph (dashed gray) (III). Panel
(a) exhibits stable limit-cycle oscillations, while panel (b) shows
period-doubled oscillations. Other parameters are the same as
Fig. 3 for N ¼ 140.
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Experimental considerations.—Our proposal can be
realized by driving two optical transitions of 87Rb atoms
as in Ref. [29]. Several atomic ladders can be experimen-
tally isolated from single rows of a 2D optical lattice in the
plane intercepted by the cavity axis and the y direction. The
size of the ladder in the y direction is strictly limited by the
cavity waist w0. Assuming a transversal size of
2w0 ∼ 150 μm, an atomic cloud of ly ∼ 70 μm, and an
optical lattice with the lattice constant a ¼ λ851 nm=2 ¼
0.426 μm, the ladder would have Nu:c ¼ ly=a ∼ 160 unit
cells. Upon redistribution of the cloud into the 2D lattice,
and assuming a longitudinal cloud size of lx ∼ 2ly, the
filling of the 2D lattice can be varied in a range of ν ¼
N=ðlxlyÞ ∈ ½0.1; 2� for an atomic cloud of N ∼ 0.05–1.1 ×
105 atoms, respectively. The impact of the dispersive shifts
UNσ on the cavity resonances is significant in the strong
light-matter coupling limit. A good measure of the coupling
strength is provided by the parameterUN=κ, expressing the
ratio between the coherent and incoherent processes in the
system. For a high-finesse cavity with a linewidth
of 2κ ¼ 17 kHz, U ¼ 91 kHz as in Ref. [47], and N ¼
4 × 105 atoms, the optomechanical backaction, UN=κ∼
2.5 > 1, is in a desired range to observe the predicted
phenomena. Our scheme allows us to nondestructively
measure the phase diagram by monitoring photons leaking
out of the cavity [15]. The steady-state atomic currents can
be obtained from the population count of the two cavity
modes at the detector. The magnetic flux can be inferred
through homodyne detection by measuring the phase of the
two mode with respect to a probe laser.
Conclusions.—We studied the emergence of an average-

density-dependent dynamical U(1) gauge potential when
the motion of neutral atoms is strongly coupled to two high-
Q cavity modes. The gauge potential stems from the delicate
interplay between the optomechanical atomic backaction on
the cavity fields and photon dissipation into the environ-
ment. It differs from previously studied cavity-induced
gauge potentials which do not feature any atomic-density
dependence [17–19,21–27,27–29,48]. Emerging dynamical
instabilities with stable limit-cycle and period-doubled
oscillations can be interpreted as driven by an effective
oscillating electromotive force according to Faraday’s law
of induction. Our proposed scheme offers a unique pos-
sibility to explore these exotic nonequilibrium phenomena
in state-of-the-art quantum-gas–cavity-QED experiments.
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