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Polarizability is a key response property of physical and chemical systems, which has an impact on
intermolecular interactions, spectroscopic observables, and vacuum polarization. The calculation of
polarizability for quantum systems involves an infinite sum over all excited (bound and continuum) states,
concealing the physical interpretation of polarization mechanisms and complicating the derivation of
efficient response models. Approximate expressions for the dipole polarizability, α, rely on different
scaling laws α ∝ R3, R4, or R7, for various definitions of the system radius R. Here, we consider a range of
single-particle quantum systems of varying spatial dimensionality and having qualitatively different
spectra, demonstrating that their polarizability follows a universal four-dimensional scaling law
α ¼ Cð4μq2=ℏ2ÞL4, where μ and q are the (effective) particle mass and charge, C is a dimensionless
excitation-energy ratio, and the characteristic length L is defined via the L2 norm of the position operator.
This unified formula is also applicable to many-particle systems, as shown by accurately predicting the
dipole polarizability of 36 atoms, 1641 small organic molecules, and Bloch electrons in periodic systems.
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The dipole polarizability determines the strength of the
response of a system of charged particles to applied electric
fields as well as dispersion and polarization interactions
between atoms or molecules [1–3], and plays an important
role in the interpretation of experiments [4–8]. Efficient
models for polarizability are useful to predictively describe
various phenomena in physics, chemistry, and biology.
Moreover, a detailed understanding of quantum-mechani-
cal (QM) polarization mechanisms could help in develop-
ing a microscopic picture of intrinsic vacuum response
properties [9–11]. In general, the dipole polarizability is a
second-rank tensor which determines the dipole moment
induced by an applied electric field: d ¼ α

↔
E. For aniso-

tropic systems, the polarizability tensor can be diagonalized
using the principal axes, whereas in the case of isotropic

systems it effectively reduces to a scalar: αii ¼ α ¼ 1
3
Trα

↔
.

For a QM system in its ground state, the dipole polar-
izability can be evaluated via the Rayleigh-Schrödinger
perturbation theory [2]

α
↔ ¼ 2

X∞
n≠0

hΨ0jd̂jΨni ⊗ hΨnjd̂jΨ0i=ðEn − E0Þ; ð1Þ

where ⊗ indicates the dyadic vector product and the sum
goes over all excited states. This formula describes tran-
sient or fluctuating electric dipoles as the matrix elements
of the dipole operator d̂ ¼ P

j d̂j ¼
P

j qjr̂j, where qj and
r̂j are the charge and position operator of the jth particle,
respectively. For an accurate calculation of α, all bound and
continuum states must be taken into account. Thus, Eq. (1),
while being exact, is difficult to evaluate in practice.
Therefore, various approximations [12–16] have been
developed for a more efficient evaluation of Eq. (1).
Besides their computational advantage, approximate mod-
els often provide a deeper insight into the polarizability and
its relation to other physical observables.
According to Eq. (1), the polarizability should be related

to a certain characteristic length for a given QM system.
This has led to a proposition of a number of scaling laws
with respect to different effective system sizes:

α ∝ R3
cl; α ∝ R4

conf ; α ∝ R7
vdW: ð2Þ

The first relation stems from the classical formula,
α ¼ ð4πϵ0ÞR3

cl, where ϵ0 is the vacuum permittivity and
Rcl is the radius of a conducting spherical shell [17] or a
hard sphere with uniform electron density and a positive
point charge at its center [18]. This formula delivers the
most commonly accepted scaling law, which is used in
practice to describe the polarizability of atoms in molecules
and materials [19–23]. The second relation in Eq. (2) holds
for confined quantum systems of length Rconf , as was
derived by Fowler [24]. This relation was observed for
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semiconductor nanocrystals by using terahertz time-
domain spectroscopy [4,5]. The third scaling law,
α ∝ R7

vdW, connecting the atomic polarizability and van
der Waals (vdW) radius, was found [25,26] by studying the
balance between exchange and correlation forces for two
interacting quantum Drude oscillators (QDO) [27–29]. The
approach of Ref. [25] has been subsequently employed to
improve effective models for vdW interactions [30,31]. All
the three distinct scaling laws can be represented as

α ¼ ð4πϵ0ÞR3
pðRp=Rr

pÞp; ð3Þ

where ðRp=Rr
pÞp is a correction to the classical formula.

The renormalization length Rr
p depends on the choice of the

effective system size Rp ∈ fRcl; Rconf ; RvdWg, that corre-
sponds to p ¼ f0; 1; 4g. Whereas Rr

1 depends on the
system parameters [24], Rr

4 was found [25,26] to be the
same for all atoms. However, the vdW radius is an
interacting radius rather than an effective system size
and its accurate evaluation independent from the polar-
izability is difficult [25]. Therefore, it is desirable to
establish a general relation of α to a concrete effective
size of any given QM system, such as the scaling law for
confined systems with a defined confinement radius [24].
Since Eq. (3) gives the right units of α for any value of p,
the form of such a general relation is not obvious a priori.
In this Letter, we show that for distinct QM systems the

principal-axis components of the polarizability tensor in
Eq. (1) are given by a unified expression

αii ¼ Cið4μq2=ℏ2ÞL4
i ; ð4Þ

where the constant Ci depends on properties of the
quantum particle with mass μ and charge q. The character-
istic length Li measures the spatial spread of the ground-
state wave function Ψ0 with respect to its center of mass
R ¼ ðR1; R2;…; RNÞ ¼ hΨ0jr̂jΨ0i, which corresponds to
the nuclear position in case of atoms. The Euclidean L2

norm of the position vector, (r −R), is defined for a QM
system described by its ground-state wave function as

Li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

ðri − RiÞ2jΨ0ðrÞj2drN
s

; ð5Þ

where N is the system spatial dimensionality (D).
Equation (4), connecting αii with the characteristic length
Li along the ith principal axis, makes our approach
applicable to QM systems of any dimensionality.
Moreover, for atomlike systems with a well-defined pos-
itively charged center of mass, the dimensionless constant
Ci turns out to be close to unity. Equation (4) scales as the
relation obtained by Fowler [24] for confined systems via
either an exact derivation of the polarizability or its Unsöld
[12] and Kirkwood [14] estimates. However, the size of

such confined systems was imposed as a classical param-
eter which cannot be defined for QM systems in free space.
As we show below, with our choice of the characteristic
length—a QM generalization of the conventional
Euclidean L2 norm—one can properly describe the polar-
izability of any atomlike QM system.
To demonstrate the general validity of Eq. (4), we start

with the approach of Vinti [13], which bridges the Unsöld
and Kirkwood approximations, and employ the integral
mean value theorem (IMVT) [32] for the polarizability

αii ¼ ð2q2=ΔEiÞ
X∞
n>0

hΨ0jr̂ijΨnihΨnjr̂ijΨ0i; ð6Þ

by introducing ΔEi as an effective excitation energy. Based
on the IMVT, ΔEi can be chosen to give the exact
polarizability, which differs from the Unsöld approxima-
tion [12] with ΔE ¼ E1 − E0 providing an upper bound
estimate for the polarizability (α ≤ αU), as was proven
variationally by Fowler [24]. The IMVT allows us to
connect the polarizability to the variance of the position
operator, ðΔriÞ2 ¼ hr2i i − hrii2, where hr2i i ¼ hΨ0jr̂2i jΨ0i
and hrii ¼ hΨ0jr̂ijΨ0i. Indeed, by using the closure relationP∞

n>0 jΨnihΨnj ¼ 1 − jΨ0ihΨ0j, Eq. (6) reduces to

αii ¼ ð2q2=ΔEiÞðΔriÞ2: ð7Þ

Employing now the IMVT [32] for the Thomas-Reiche-
Kuhn (TRK) sum rule [34]

ð2μ=ℏ2Þ
X∞
n>0

ðEn − E0ÞhΨ0jr̂ijΨni2 ¼ 1; ð8Þ

we obtain another effective excitation energy as ðΔẼiÞ−1 ¼
ð2μ=ℏ2ÞðΔriÞ2 which fulfills the exact TRK sum rule.
Generally, ΔẼi is not equal to ΔEi in Eq. (6) but there is a
constant Ci such that ΔẼi ¼ CiΔEi. Inserting ðΔEiÞ−1 ¼
Cið2μ=ℏ2ÞðΔriÞ2 into Eq. (7) yields

αii ¼ Cið4μq2=ℏ2ÞðΔriÞ4 ¼ Cið4μq2=ℏ2ÞL4
i ; ð9Þ

where we used the fact that L2
i defined via Eq. (5) is

identical to the variance ðΔriÞ2. With Ci ¼ 1 in Eq. (9), i.e.,
ΔẼ ¼ ΔE, we reproduce Vinti’s original derivation [13] of
the well-known Kirkwood formula [14], which yields a
lower bound to the exact polarizability (αK ≤ α) [24]. The
general formula, Eqs. (4) and (9), is based on fundamental
properties of QM systems caused by quantum fluctuations,
which determine and relate Li in Eq. (5) as the ground-state
metric of the position operator to αii as determined by the
transient electric dipoles in Eq. (1).
To assess the scope of validity of Eq. (4), we analyzed

several isotropic QMmodels: (i) particle in a box (PIAB) of
an arbitrary dimension; (ii) particle confined in a sphere;
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(iii) 1D Dirac delta potential; (iv) square well (SW) in one
dimension; (v) quantum Drude oscillator (QDO) in an
arbitrary dimension; (vi) 3D hydrogenlike atoms. These
model systems are chosen since they allow one to obtain
exact analytical solutions for their spectrum and polar-
izability containing a wide variety of features representing
real molecules and materials. Figure 1 summarizes the
obtained polarizabilities for these models, whereas the
detailed derivations are given in the Supplemental
Material [35]. We show that each system obeys the formula
given by Eq. (4) with L ¼ Li defined by Eq. (5) for all
models and constant C ¼ Ci being close to unity. This is
remarkable since the chosen systems possess qualitatively
different energy spectra: the PIAB and QDO have bound
excited states only, while the 1D Dirac delta potential has
solely excitations to the continuum; on the other hand, for
the hydrogenlike atoms and SW, both bound and con-
tinuum states are present. Moreover, the polarizability of
excited states of PIAB and QDO follow the same L4 scaling

law of Eq. (4), as shown by a straightforward generalization
of our approach to an arbitrary QM state [35]. Thus, the
polarizability of different models, regardless of their spatial
dimension, excitation state and spectra, can be expressed
by Eq. (4).
The difference between the model systems is reflected in

both the characteristic length and dimensionless constant
entering Eq. (4), but only L contains the system parameters,
while C is independent of their actual values. As shown by
Fig. 1, qualitatively similar systems have practically the
same constant: 1.023 < C < 1.028, for ND PIAB, 3D
Spherical PIAB, and 1D SW (with V0 ¼ 100ℏ2=2μA2),
as the cases of confined particles. For 1D SW, in the limit of
vanishing potential depth, only one bound state remains
resulting in C ¼ 1.25 [35], which is similar to the 1D delta
potential with just one bound state and C ¼ 1.25. For
hydrogenlike atoms and the QDO, we obtain C ¼ 1.125
and C ¼ 1, respectively. As mentioned above, the
Kirkwood approximation gives CK ¼ 1 in all cases.

FIG. 1. The exact and Unsöld (U) polarizability of six different quantum-mechanical models is represented by the general formula of
Eq. (4), where the characteristic length L is calculated for each system according to the same unified definition given by Eq. (5). The
Cartesian indices (ii) are dropped since all the models are isotropic. For theN-dimensional (ND) PIAB and QDO, n denotes the quantum
number of excited states (with n ¼ 1 and n ¼ 0, respectively, for the ground state). For the other systems, only the ground state
polarizabilty is evaluated. Furthermore, A, k0, R, r0 are the parameters of the potentials for the given systems [35]. Then, σ2 is the
variance of the harmonic oscillator, Ze is the nuclear charge for the hydrogenlike atoms, and aμ ¼ ð4πϵ0Þℏ2=μe2. The 1D square well is
considered with the depth V0 and the width A related as V0 ¼ 100ℏ2=2μA2.
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Figure 1 also shows CU obtained within the Unsöld
approximation, the upper bound of C. For the QDO, both
approximations deliver the exact result, C ¼ 1. Thus, for
atomlike systems in their ground state, ΔC in C ¼ 1þ ΔC
measures the strength of anharmonic contributions from
quantum fluctuations versus the dominant harmonic part.
The largest anharmonic contribution, ΔC ¼ 0.25, is found
for 1D delta potential and SW with vanishing potential
depth [35]. Remarkably, for hydrogenlike atoms, ΔC ¼
0.125 is exactly twice less than ΔC ¼ 0.25 obtained for the
two systems with just one bound state. For the other three
systems with confined particles, ΔC is vanishingly small,
similar to the harmonic potential. For excited states, C can
strongly deviate from unity depending on corresponding
quantum numbers (see Fig. 1 and the Supplemental
Material [35]), but the L4 scaling remains valid.
Altogether, this demonstrates that the general form of
Eq. (4) is valid for all single-particle systems shown in
Fig. 1. Furthermore, in the Supplemental Material [35] we
consider the nearly free electron model and show that the
same scaling law holds for Bloch electrons.
In the Supplemental Material [35], we discuss an

extension of Eq. (4) to a general many-particle system.
Here, we consider many-electron atoms by applying Eq. (4)
to each electron shell. In such a case, the (isotropic) atomic
polarizability reads

α ¼ 4mee2

ℏ2

Xocc
k

Ck

ηk

L4
k

Nk
≈ C̃

�
4mee2

ℏ2

�Xocc
k

L4
k

ηkNk
; ð10Þ

where the sum runs over occupied orbitals with degenerate
orbitals treated together [35], Lk is obtained by Eq. (5) for
the kth orbital, and Nk is its occupation number stemming
from the many-electron version of the TRK sum rule. Then,
ηk are orbital-dependent factors required for all atoms
starting from Li (ηHek ¼ 1), empirically found by us to be

ηk ¼ nlkN
½1þð−1Þl�=2
k , where l and nk are, respectively, the

orbital and principal quantum numbers of the kth orbital
[35]. Based on our results for single-particle models, we
assume all Ck to be close to each other, which allows us to
make the approximation given by the rhs of Eq. (10). As
shown in Fig. 2, the coarse-grained constant C̃ is close to
unity for different atoms. Hence, the response of each
electronic orbital in an atom is well approximated by
Eq. (10) with Ck ¼ 1. This means that we approximate
each orbital in a many-electron atom by an effective
quantum harmonic oscillator, where the screening of
nuclear charge caused by the presence of occupied orbitals
is taken into account via ηk. In particular, C̃ ≈ 1 for noble
gases from He to Kr, for which the QDOmodel is known to
work well [25,29]. Unlike single-particle systems, for
many-electron atoms C̃ can be lower than unity, and we
attribute this to correlation effects between electronic shells
that should be explicitly included for a more accurate

treatment. Equation (10) significantly improves over the
many-electron version of the Kirkwood approximation
derived by Buckingham [45], which corresponds to setting
Ck=ηk ¼ 1 in Eq. (10) and treating all orbitals equally. Such
approximation yields an overestimation up to a factor of 4
for the polarizabilities shown in Fig. 2 [35].
Let us now apply Eq. (4) to compute polarizabilities of

1641 small organic molecules from the TABS dataset [47]
by employing the Tkatchenko-Scheffler (TS) method [21],
which is widely used for vdW-inclusive density-functional
calculations. Because of the commonly assumed direct
proportionality between the atomic volume and polariz-
ability, within the TS method molecular polarizabilities are
approximated by a sum of effective atomic polarizabilities
expressed in terms of the polarizabilities of free atoms as

αTSmol ¼
X
n

αeffn ¼
X
n

αfreen ðVeff
n =Vfree

n Þ; ð11Þ

where the sum runs over all atoms in the molecule. The
weights (Veff

n =Vfree
n ) measuring the volume ratio for atom in

a molecule to the free atom in vacuum are obtained by the
Hirshfeld partitioning of the electron density [48]. Based on
the relation of Eq. (4), we modify Eq. (11) to

αTSmol ¼
X
n

αeffn ¼
X
n

αfreen ðLeff
n =Lfree

n Þ4; ð12Þ

which allows us to keep the simplicity of the TS method but
make it consistent with the L4 scaling law. Figure 3 shows

FIG. 2. Polarizabilities of multielectron atoms calculated using
ground-state DFT=PBE0 orbitals and the quantum-mechanical
(L4) scaling law. The lower panel demonstrates α calculated by
Eq. (10) with C̃ ¼ Ck ¼ 1. The upper panel shows C̃ obtained by
comparison of Eq. (10) to the reference polarizabilities [46].
Further details are given in the Supplemental Material [35].
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that by using Eq. (12) instead of Eq. (11) the average signed
relative error hREi drops from 8.29% to 0.09%. The
practically vanishing systematic deviation and the decrease
of the average absolute relative error hRAEi from 10.5% to
6.25% confirm the applicability of the employed scaling
law. The remaining deviations from reference DFT results
can be attributed to the anisotropy of molecular polar-
izability, which necessitates an explicit coupling between
atomic polarizabilities [49]. A detailed analysis performed
in the Supplemental Material [35] shows that among other
possible scaling laws Eq. (12) provides the best accuracy
for the TS method, which serves as an additional argument
[50] for the general validity of Eq. (4).
In summary, we have established a general formula for

the dipole polarizability, α ¼ Cð4μq2=ℏ2ÞL4, valid for QM
systems of varying spatial dimension, symmetry, excitation
state, and number of particles. The universality of the L4

scaling for α is connected to the unified QM metric L
measuring fluctuations of the particle position in terms of
the system parameters. By contrast, the dimensionless
coefficient C reflects just the qualitative properties of the
eigenvalue spectrum of each system. The geometric scaling
of the polarizability for a system in its ground state is solely
determined by the ground-state wave function, whereas the
effect of excited states is encoded in C only. Another

interesting finding is that the polarizability expression in
Eq. (4) is directly proportional to the particle mass, which is
opposite to the classical picture where the polarizability
vanishes for infinite particle mass. Our formula can be used
to improve DFT-based methods for vdW interactions
[3,21], parametrize polarizable force fields [27–29], or
efficiently calculate dynamic spectroscopic observables
based on the polarizability (i.e., Raman and sum-frequency
generation) [4–8]. These applications rely on efficient and
accurate evaluation of polarizability from ground-state
electron density.
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