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Understanding whether dissipation in an open quantum system is truly quantum is a question of both
fundamental and practical interest. We consider n qubits subject to correlated Markovian dephasing and
present a sufficient condition for when bath-induced dissipation can generate system entanglement and
hence must be considered quantum. Surprisingly, we find that the presence or absence of time-reversal
symmetry plays a crucial role: broken time-reversal symmetry is required for dissipative entanglement
generation. Further, simply having nonzero bath susceptibilities is not enough for the dissipation to be
quantum. We also present an explicit experimental protocol for identifying truly quantum dephasing
dissipation and lay the groundwork for studying more complex dissipative systems and finding optimal
noise mitigating strategies.
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Introduction.—Open quantum systems, where a system
of interest interacts with an external environment, play a
central role in many areas of physics ranging from quantum
information to cosmology. Their evolution is, in general,
nonunitary [1], being described by, e.g., a quantum master
equation or more general quantum map. A ubiquitous type
of system-environment interaction is dephasing. Dephasing
interactions do not change populations of energy eigen-
states of the system, but rather only impact coherences, i.e.,
the off-diagonal elements of the density matrix in the
energy eigenbasis. The role of dephasing in quantum
computation has been extensively studied (see, e.g.,
Ref. [2–4]). Even in this simple setting, there is a
fundamental, surprisingly subtle question of interest: can
the environment-induced dissipation of the system be
attributed to interaction with a completely classical envi-
ronment, or does it necessarily require a truly quantum
environment?
Answering this question is, of course, contingent on how

one defines the line between classical and quantum
environments. Several previous works have examined this
issue (see, e.g., Ref. [5–11]), largely in terms of possibly
representing dissipative quantum dynamics with an equiv-
alent classical process. In this Letter, we take instead an
operational and experimentally motivated approach and
define a truly quantum environment to be one that can
mediate dissipative interactions that generate system entan-
glement. A necessary requirement for this phenomenon is
having nonzero bath response susceptibilities [12–14],
manifested in asymmetric-in-frequency environmental
quantum noise spectral densities. We show, surprisingly,
that this is not sufficient: bath-mediated dissipative inter-
actions can only generate system entanglement if they
cannot be mimicked using local measurements and feed
forward. We note that an analogous approach has been

suggested to test probe whether gravitational interactions
are quantum [15–18].
We focus in this Letter on setups, where a set of qubits

are coupled to a generalized Markovian dephasing envi-
ronment (as described by a Lindblad master equation). We
show that the presence or absence of environmental time-
reversal symmetry (TRS) is crucial in determining whether
bath-induced dissipation is classical. In the presence of
TRS, this dissipation is always equivalent to driving by
classical noise, whereas without TRS this is no longer
necessarily true. We provide a condition based on the
Peres-Horodecki criterion [19,20] that allows one to iden-
tify truly quantum dephasing dissipation. Our Letter
provides a new approach to identifying truly quantum
dissipative behavior and also provides a sensitive method
for detecting broken TRS in dephasing environments.
Setup.—Consider a multiqubit system, whose dephasing

interaction with a stationary environment is Ĥint ¼P
i Ẑi ⊗ B̂i, where Ẑi is the Pauli σ̂z ¼ j0ih0j − j1ih1j

operator on qubit i, and B̂i is a Hermitian environment
operator. Throughout the Letter, we transform to the inter-
action picture with respect to the internal Hamiltonians of
the system (S) and environment (E), ĤS þ ĤE, where the
environment operators are given by B̂iðtÞ ¼ eiĤEtB̂ie−iĤEt.
In the Markovian limit, the evolution of the system
undergoing such correlated dephasing is described by
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
equation ðdρ̂=dtÞ ¼ Lðρ̂Þ, with the Liouvillian given by

Lðρ̂Þ ¼ −i½ĤLS; ρ̂� þ
X
i;j

cij

�
Ẑiρ̂Ẑj −

1

2
fẐiẐj; ρ̂g

�
: ð1Þ

Here ĤLS ¼ 1
2

P
ij hijẐiẐj is the so-called Lamb shift

Hamiltonian [see Fig. 1(a)] and describes Hamiltonian
Ising interactions mediated by the bath. The remaining
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terms describe bath-induced system dissipation and cause
the net evolution to be nonunitary. The evolution generated
by this equation is completely positive if and only if the
matrix C ¼ ðcijÞ is positive semidefinite (PSD) [21].
Our central goal is to understand whether the bath-

induced dissipation is classical or quantum; we thus set
hij ¼ 0 in what follows. It is tempting to think of the
remaining dissipative evolution as always being equivalent
to driving by external classical noise. This is not true,
however, if ImðCÞ ≠ 0: as we show below, the imaginary
part of C encodes dissipative bath-mediated interactions
that are distinct from classical noise and cannot be
mimicked by a Hamiltonian Ising interaction. Further,
the presence of these interactions is necessary, but not
sufficient to make the dissipation quantum, i.e., capable of
generating system entanglement.
Consider first Eq. (1) with a real C and ĤLS ¼ 0. Such an

evolution can always be emulated by (correlated) classical
white noise [22]. Specifically, consider a system evolving
under the Hamiltonian Ĥc ¼

P
i biðtÞẐi, where biðtÞ

describe classical Gaussian fluctuations with hbiðtÞi ¼ 0.
In the white noise limit, where hbiðtÞbjðtÞi ¼ cijδðt − t0Þ,
the average evolution of the system (over the fluctuations)
reproduces the master equation of interest, with C corre-
sponding to the covariance matrix of noise biðtÞ [23,24].
Note that, because this evolution can always be emulated
by a local time-dependent Hamiltonian, it cannot create
entanglement in the system.
Interpretation of complex C.—As shown above, driving

a system with classical noise will never generate a nonzero
ImðCÞ. To understand the physical origin of ImðCÞ ≠ 0, we
revisit the general microscopic quantum bath model and

Ĥint. Making use of the standard Born-Markov appro-
ximation [1], we can relate ImðCÞ to spatial asymmetries
in the environment’s response properties: ImðcjkÞ ¼
1
2
fRe½χjkðω ¼ 0Þ� − Re½χkjðω ¼ 0Þ�g. Here, χjkðωÞ≡

−i
R∞
0 dteiωth½B̂jðtÞ; B̂kð0Þ�i are standard linear response

susceptibilities, which describe how a bath operator expect-
ation value hB̂jðtÞi changes due to a weak perturbation that
couples to B̂k [12]. In contrast, ReðCÞ is not related to bath
response; for a generic quantum bath, ReðCÞ are given by
the symmetrized quantum noise spectra, which play the
role of classical noise [12]. It is important to note that, if
the bath Hamiltonian ĤE has TRS and the bath operators
all transform under TRS with the same parity, we may
invoke Onsager-type reciprocity relations to show that
ImðcjkÞ ¼ 0 [25]. Conversely, for environments with bro-
ken TRS, which is typically the case for driven-dissipative
environments, there is no fundamental reason to expect that
ImðCÞ should vanish.
An alternate way to understand the bath-induced dis-

sipation and ImðCÞ is to realize that it also describes a
situation in which there is no environment, but where the
system evolves because of continuous measurement and
feed forward [26]. We first write the dissipative part of
Eq. (1) as

Ldissðρ̂Þ ¼
X
k

γk

�
L̂kρ̂L̂

†
k −

1

2
fL̂†

kL̂k; ρ̂g
�
; ð2Þ

where γk and L̂k are found by diagonalizing C [1]. Further,
each L̂k can be written as L̂k ¼ Âk þ iB̂k, where Âk and B̂k
are Hermitian system operators. While such dissipators
arise in many contexts [26–29], we focus on the connection
to continuous measurement and feed forward of Ref. [30].
As shown in the Supplemental Material [24], each term k in
Eq. (2) describes unconditional system evolution under a
two-way measurement and feed forward scheme. One half
of this scheme is a weak continuous measurement of Âk
[26], with the measurement record used to set the amplitude
of a drive applied to −B̂k. The other half is the reverse
process, i.e., measuring B̂k and feed forwarding the result to
drive Âk.
This equivalence immediately lets us make general

statements on the properties of the dissipative evolution.
In general, the measurement and feed forward realization
involves nonlocal operations, indicating that a complex C
might create system entanglement. However, there are
notable exceptions. First, emulating a purely real C in this
way does not have any feed forward driving. In this case,
measurement results are discarded, and the evolution is just
due to measurement backaction (which is equivalent to
classical noise). No entanglement is generated. Even if
ImðCÞ ≠ 0, the measurements and feed forward could
all be purely local processes. Again, in this case, no

(a)

(b)

FIG. 1. (a) A system of n qubits is coupled to a Markovian
dephasing environment. The resulting evolution obtained by
tracing out the environment (trE) is a GKSL master equation (1)
and can be decomposed into driving by effective classical noise
dWi with correlations ReðcijÞ, Hamiltonian Ising interactions hij,
and dissipative Ising interactions ImðcijÞ. (b) The evolution of the
partial transposed (T A ⊗ 1) state with respect to subsystem A is
again in GKSL form, with different classical noise dW0

i, whose
correlation is now −cij and with the role of hij and ImðcijÞ
reversed.
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entanglement generation is possible, and the environment
dissipation would be categorized as being classical.
We also comment on a third way to realize a restricted

class of processes with a complex C using classically
stochastic time-dependent system Hamiltonians [8,31].
Suppose our system is coupled to classical noise whose
time integral is a Poisson process with the rate ν. Averaging
over this noise leads to a term νðL̂†

kρ̂L̂k − ρ̂Þ in the master
equation, where L̂k is a unitary operator reflecting the
coupling of the noise to the system. Combined with the
previously discussed classical white noise processes that
generate Hermitian L̂k, we now have an approach for
realizing any master equation with Hermitian or unitary
Lindblad operators [8,31]. In our case, a process that can be
expressed in this way can have nonzero ImðCÞ, but can
never generate system entanglement. The reverse statement
is, however, surprisingly, not true: there exist master
equations with nonzero ImðCÞ that are not equivalent to
the above classical noise model, but nonetheless are unable
to generate entanglement (see Supplemental Material [24]).
Entanglement generation.—We have defined the envi-

ronment-induced dissipation in (1) as being quantum if it
can generate entanglement within the system. To study this
condition quantitatively, we now employ the Peres-
Horodecki (PH) criterion [19,20]. It ensures that a state
whose partial transpose (PT) has a negative eigenvalue is
entangled. Thus, to see if environmental dissipation can
create entanglement, we could, in principle, evolve arbi-
trary initial product states and check whether the PH
condition is violated for any t > 0. We do not require
steady-state entanglement generation (unlike, e.g., reser-
voir engineering protocols [32]). This would appear to be a
formidable task. Fortunately, we can greatly simplify this
problem. First, we find the exact evolution of the partial
transposed state of the system with respect to a chosen
subsystem A, i.e., ρ̂TA ¼ ðT A ⊗ 1Þðρ̂Þ [see Fig. 1(b)].
Surprisingly, the evolution ðdρ̂TA=dtÞ ¼ L̃ðρ̂TAÞ is still in
the GKSL form L̃ðρ̂TAÞ ¼ −i½ĤPT; ρ̂TA � þ L̃dissðρ̂TAÞ [24],
with ĤPT ¼ 1

2

P
ij h̃ijẐiẐj, and

L̃dissðρ̂TAÞ ¼
X
i;j

c̃ij

�
Ẑiρ̂

TAẐj −
1

2
fẐiẐj; ρ̂TAg

�
: ð3Þ

In this partial transposed equation of motion, the coef-
ficients (for i < j) of the Hamiltonian and the dissipator are
given by

ðh̃ij; c̃ijÞ

¼

8>><
>>:

ðImðcijÞ;−ReðcijÞ þ ihijÞ i ∈ A and j ∉ A;

ð−hij; cjiÞ i ∈ A and j ∈ A;

ðhij; cijÞ otherwise:

ð4Þ

The coefficients for i > j can be inferred from the
symmetries c̃ij ¼ c̃�ji and h̃ij ¼ h̃ji.
Note that ĤPT is Hermitian; hence the only way that L̃

can generate nonpositive states is through the dissipative
part L̃diss specified by C̃. This is, in general, possible, as C̃
is Hermitian, but not necessarily PSD. If our original master
equation had a nonzero Ising Hamiltonian hij ≠ 0, we see
clearly from Eq. (4) that C̃ could be non-PSD. This simply
reflects the fact that Hamiltonian Ising interactions can
create entanglement. We are, however, interested in the
effects of the dissipative evolution alone, i.e., hij ¼ 0. As
we will see, in this case too, C̃ can fail to be positive. Note
that there is a small subtlety here: to show the possibility of
entanglement generation, we need to show that the evolu-
tion generated by L̃diss is not positive. However, a negative
eigenvalue of C̃ only implies, in general, that the evolution
is not completely positive [33]. Luckily, in our case, we can
show that these two notions coincide (see Supplemental
Material [24]).
To summarize, we have found a sufficient condition for

an environment to be entangling and hence be truly
quantum. To check this condition, we need to find C̃ using
the recipe in Eq. (4) and examine its eigenvalues for all the
possible choices of subsystem A. If there exists a negative
eigenvalue in any of these cases, it indicates that the
dissipative evolution is entangling. We note that, however,
the absence of a negative eigenvalue does not rule out
entanglement generation for n > 2, as there are entangled
states with a positive partial transpose [34].
Case studies.—To provide further intuition, we now ana-

lyze three special cases of Markovian correlated dephasing
on n qubits. Let feign−1i¼0 denote the standard basis of Cn.
Additionally, define the Fourier basis ffkgn−1k¼0, such that
fk ¼ ð1= ffiffiffi

n
p ÞPn−1

j¼0 ω
jkej, where ω ¼ expð2πi=nÞ. As our

first example, consider a purely real correlation matrix

Cð1Þ ¼ f0f
†
0, whose entries are c

ð1Þ
ij ¼ 1=n for all i’s and j’s.

As mentioned earlier, this process can always be emulated
by classically correlated fluctuations of σ̂z terms in the
Hamiltonian and is not entangling. Using our procedure,
C̃ð1Þ stays PSD under any bipartition. This is because, for
any realC, Eq. (4) is equivalent to mapping ei → −ei for all
i’s in one of the partitions. This is a unitary transformation
and does not change the eigenvalues of the originally PSD
matrix C.
Next, we consider a correlation matrix Cð2Þ, whose

elements above (below) the diagonal are all i (−i). The
diagonal elements are all set equal to a constant γ ¼ n − 1,
chosen so that Cð2Þ is PSD. This Cmatrix corresponds to an
environment with broken TRS and with vanishing classical
noise correlations (a situation where one might expect the
bath to be maximally quantum). For concreteness, we take
subsystem A to be the firstm of our n qubits. Under Eq. (4),
C̃ð2Þ is a block diagonal matrix. It is obtained from Cð2Þ by
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setting the off-diagonal blocks to zero, i.e., c̃ð2Þij ¼ 0 if i ∈ A
ði ∉ AÞ and j ∉ A (j ∈ A), and transposing the block
corresponding to A. Because the original matrix Cð2Þ is
PSD and noting that principal submatrices of a PSD matrix
are also PSD [35], we conclude that C̃ð2Þ is PSD. We note
that the dynamics corresponding to Cð2Þ can be fully
realized using measurement and feed forward that is local
with respect to the A=B bipartition. Hence, despite not
being equivalent to classical noise, this environment cannot
generate system entanglement and would be deemed
classical under our classification.
Finally, we analyze a rank-1 complex correlation matrix

Cð3Þ that is impossible to emulate with a local measurement
and feed forward strategy. Specifically, we choose
Cð3Þ ¼ f1f

†
1. For n ≥ 3, we have ImðCð3ÞÞ ≠ 0, correspond-

ing to a bath with broken TRS that mediates nonzero
dissipative interactions. To show that the corresponding
evolution is capable of generating entanglement, it suffices
to find one bipartition such that C̃ð3Þ has a negative
eigenvalue. Choosing the first qubit as one of the partitions
results in a rank-3 C̃ð3Þ. As shown in the Supplemental
Material [24], the low-rank nature of C̃ð3Þ allows us to
analytically calculate jC̃ð3Þjþ ¼ ½ð2 − nÞ=4n2� (the pseudo-
determinant of C̃), which implies that C̃ð3Þ has at least one
negative eigenvalue for all n > 2. Note that, in general, the
evolution of an initial product state will at most result in
transient entanglement [36] (but no steady-state entangle-
ment) (see Supplemental Material [24]).
Random environments.—The above examples suggest

that both the imaginary and the real parts of the off
diagonals of C are necessary to create entanglement.
This expectation is corroborated by examining three-qubit
random Liouvillians with C ¼ ww†, where w is drawn from
a complex Ginibre ensemble [37] (see Supplemental
Material [24] for details). Analogous ensembles of random
Liouvillians have been considered previously, in a different
context, to understand spectral properties of random open
quantum systems [38]. Interestingly, the results reported in
Ref. [38] show no sensitivity to the choice of real and
complex ensembles, whereas in our Letter the latter
corresponds to broken TRS, which is necessary for entan-
glement generation. In Fig. 2, we observe that λmin, the
minimum eigenvalue of C̃ [39], is non-negative when C is
purely real [kImðCÞkfro ¼ 0] or has a purely imaginary off-
diagonal part [kReðCÞ − diagðCÞkfro ¼ 0]. However, when
the norm of the imaginary and real off-diagonal parts are
comparable, the fraction f of the samples that are entan-
gling (λmin < 0) is maximized.
Our simple examples also raise another question: can

dissipative interactions only generate entanglement if C is a
low-rank matrix? Physically, this corresponds to a situation
where the bath couples to the system via only a small
number of delocalized system operators. To answer this

question, we again consider random C ¼ ww† and vary
system size. We examine the minimum eigenvalue of C̃
acting on the partial transposed state of the system with
respect to the first qubit. To quantify the rank of C, we
introduce trðC2Þ=trðCÞ2 that measures variance of C
eigenvalues. We observe that the entangling behavior
is not a property of rank-1 matrices [for which
trðC2Þ=trðCÞ2 ¼ 1] and is common in the ensemble of
random C’s we considered (see Fig. 3). Note that the
minimum eigenvalue of C in this case scales inversely
with n [40]. Hence, the transformation to C̃ is more
likely to create a negative eigenvalue (see Supplemental
Material [24]).
Experimental implementation.—When combined with

the ability to measure C, our results can serve as a probe
for fundamental symmetries and the nature of the envi-
ronment. The evolution generated by the Lindbladian L in
Eq. (1) can be decomposed into a decaying part from ReðCÞ
and a phase evolution from ImðCÞ and ĤLS [41].
Reference [41] presents a compressed sensing protocol

FIG. 2. The distribution of the minimum eigenvalue of C̃ for
106 random three-qubit dephasing environments. The solid
purple curve (right axis) shows the fraction (over bins of size
0.02) of samples where C̃ has a negative eigenvalue (entangling).
A C matrix with purely real or purely imaginary off diagonals is
not entangling.

(a) (b) (c)

FIG. 3. Typicality of entangling C’s. The distribution of the
minimum eigenvalue λmin of C̃ for 105 random C’s as a function
of trðC2Þ=trðCÞ2 for (a) n ¼ 4, (b) n ¼ 16, and (c) n ¼ 64 qubits.
To obtain C̃, we choose the first qubit as a subsystem. Entangling
C’s become more common as the system size increases.
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that uses randomized measurement to extract both the real
and imaginary part of cij and also the Lamb shift terms hij.
Here, we present a less efficient but simpler scheme.
Our measurement protocol relies on preparing and meas-
uring Bell states jϕiji ¼ ð1= ffiffiffi

2
p Þðj0iij0ij þ j1iij1ijÞ on

pairs of qubits with j > i (the omitted qubits are assu-
med to be in the j0i state). Let ρ̂ðtÞ denote the state of the
system after some time t that is initially prepared in jϕiji.
The matrix element h0jih0jjρ̂ðtÞj1iij1ij evolves as
ð1=2Þ exp½ðiΩij − ΓijÞt�. Therefore, by measuring this
matrix element at different times and finding its decay
rate and oscillation frequency, we can find bothΩij and Γij.
The real part of cij can then be directly extracted from
Γij ¼ 2ðcii þ cjj þ cij þ cjiÞ as shown in [42]. The analy-
sis of Ωij, however, is more subtle. First, unlike Γij, Ωij

contains linear contributions from ImðckmÞ’s, where k and
m are not just restricted to fi; jg. Therefore, we need to
solve a linear system to find ImðCÞ. Second, there might be
other sources of phase evolution in addition to ImðCÞ, e.g.,
the Lamb shift term, in the experiment. In particular, it is
impossible to distinguish Lamb shift terms from ImðCÞ
using only the above measurements.
However, performing an additional set of measure-

ments using jϕ̄iji ¼ ð⊗i
k¼1 j1ikÞ ⊗ ð1= ffiffiffi

2
p Þðj0ij þ j1ijÞ

with j > i, and where qubits with omitted index are in
j0i, provides enough information to distinguish hkm’s
contributions from ImðckmÞ’s [24]. Determining the nature
of such coherent phase errors is also helpful in a broader
context. In the context of error mitigation, where correlated
noise processes severely impact the performance of the
device [2,43–45], it is important to correctly identify the
source of noise to combat it. For example, coherent
phase errors originating from parasitic ZZ couplings
(see, e.g., Ref. [46,47]) can be simply canceled by an
offset Hamiltonian, whereas a simple offset cannot help
with the errors coming from ImðCÞ.
Discussion.—Our study reveals that the presence or

absence of TRS has a profound effect on dephasing
dissipation, even in the Markovian limit: broken TRS is
needed for the dissipation to be entanglement generating
(and hence quantum). Our Letter thus provides a concrete
experimental protocol for detecting the presence of broken
environmental TRS. Note that, to check entanglement
generation between all possible bipartitions, our protocol
requires a time that scales exponentially with the system
size. It is intriguing to ask whether this is a fundamental
limitation or whether more efficient schemes are possible. It
would be extremely interesting to apply our ideas to
systems with nonlinear and nonlocal coupling to an
environment and going beyond the Markovian limit and,
more generally, study the role of TRS in more general kinds
of dissipative dynamics (e.g., baths that couple transversely
to the qubits).
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