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In bosonic gases at thermal equilibrium, an external quadratic drive can induce a Bose-Einstein
condensation described by the Ising transition, as a consequence of the explicitly broken U(1) phase
rotation symmetry down to Z2. However, in physical realizations such as exciton polaritons and nonlinear
photonic lattices, thermal equilibrium is lost and the state is rather determined by a balance between losses
and external drive. A fundamental question is then how nonequilibrium fluctuations affect this transition.
Here, we show that in a two-dimensional driven-dissipative Bose system the Ising phase is suppressed and
replaced by a nonequilibrium phase featuring Kardar-Parisi-Zhang (KPZ) physics. Its emergence is rooted
in a U(1)-symmetry restoration mechanism enabled by the strong fluctuations in reduced dimensionality.
Moreover, we show that the presence of the quadratic drive term enhances the visibility of the KPZ scaling,
compared to two-dimensional U(1)-symmetric gases, where it has remained so far elusive.
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How the absence of thermal equilibrium affects the
properties of matter is one of the fundamental questions
of many-body physics, with far-reaching consequences in
the engineering of novel materials, the development of
quantum technologies, and the understanding of active and
living matter. In nonequilibrium systems, the lack of
detailed balance can radically modify the collective behav-
iours typical of equilibrium systems. Accordingly, novel
phases can be expected, such as nonreciprocal (or chiral)
phases in active matter [1,2], quantum optical platforms
[3,4] and ultracold atoms [5], or dissipative time crystals in
many-body quantum systems [6–9].
An intriguing aspect concerns the impact of nonequili-

brium fluctuations in low spatial dimensions. At equilib-
rium, the Mermin-Wagner theorem forbids the spontaneous
breaking of a continuous symmetry in spatial dimensions
d ≤ 2 for systems with short-ranged interactions. Out of
equilibrium, the theorem does not hold: two-dimensional
flocks [10] or driven quantum spin chains [11,12] can
feature transitions to phases with long-range order. On the
converse, the Berezinskii-Kosterlitz-Thouless (BKT) phase
transition, expected for equilibrium Bose gases in two
spatial dimensions, is erased in their driven-dissipative
counterpart and replaced by a disordered phase featuring a
Kardar-Parisi-Zhang (KPZ) scaling of the phase fluctua-
tions [13]. Promising candidates to experimentally observe
this scaling are exciton-polariton fluids in microcavities
[14,15], although the length scales at which its signatures
are expected are dramatically larger than the typical system
sizes [16–19].
The fate of nonequilibrium systems with discrete sym-

metries is less explored. At equilibrium, they can exhibit
order also in two dimensions. This is the case for the

arguably most paradigmatic phase transition, namely, the
Ising transition. Among its many incarnations, the Ising
phase transition can be realized in bosonic gases in the
presence of an externally imprinted pair creation term: in
ultracold atoms, this can be induced by coupling to a
molecular condensate [20] (see also Ref. [21] for a wire of
fermionic atoms), by using a parametric down-conversion
scheme in microcavities [22,23], or by Feshbach-like
resonances in polariton biexcitons [24,25] or Rydberg
polaritons [26]. At equilibrium, the bosons undergo a
Bose-Einstein condensation (BEC) transition belonging
to the Ising universality class [27,28]. In optical systems,
the unavoidable presence of incoherent processes causes a
departure from equilibrium. Still, recent numerical analyses
showed that these driven-dissipative models can undergo a
BEC transition characterized by either the quantum or
classical Ising universality class [29–32].
In this Letter, we show that the absence of thermal

equilibrium suppresses the Ising phase transition in a two-
dimensional, driven-dissipative Bose gas, in favor of an
emerging KPZ phase. Our two main results are summarized
as follows. First, the long-wavelength description of the
quadratically driven Bose gas is given by a driven sine-
Gordon equation for the phase degree of freedom. In two
spatial dimensions, this dynamics is dominated by the
KPZ scaling at long wavelengths, resulting in the suppres-
sion of the BKT and Ising phases, present instead at
equilibrium. Second, the presence of the quadratic drive
reduces the scale at which the KPZ physics sets in,
enhancing its visibility in finite-size systems. This holds
promise for identifying this physics in two spatial dimen-
sions, where experimental realizations remain so far
elusive [33,34].
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Microscopic model.—We consider a gas of quadratically
driven and dissipative bosons, described by the master
equation

∂tρ̂ ¼ −i½Ĥ; ρ̂� þ
Z
r

X
n

�
L̂nρL̂

†
n −

1

2
fρ̂; L̂†

nL̂ng
�
; ð1Þ

with ρ̂ the system’s density matrix, Ĥ the Hamiltonian, and
L̂n ¼ L̂nðrÞ Lindblad operators. The quadratic drive can be
regarded as a process coherently creating or destroying
two particles at a given position. The Hamiltonian is thus
given by

Ĥ¼
Z
r

�∇ψ̂†∇ψ̂

2m
þδψ̂†ψ̂þG

2
ðψ̂2þ ψ̂†2ÞþU

2
ψ̂†2ψ̂2

�
; ð2Þ

with m the mass of the bosons, δ > 0 the detuning between
the bosonic and the drive frequency, and U > 0 the particle
interaction. The quadratic drive has a strength G, and we
can set G > 0 without loss of generality, by absorbing its
phase into a redefinition of the fields. The presence of
further incoherent processes, such as single particle losses
and pump, as well as two-particle losses, is included via the
Lindblad operators L̂1l ¼ ψ̂ , L̂1p ¼ ψ̂†, and L̂2l ¼ ψ̂2,
respectively. The nature of the instabilities arising in the
presence of both a strong incoherent pump [35,36] and
quadratic drive is an open question that we leave for future
investigations. In the following, we assume the single-
particle pump to be weaker than single-particle losses.
Since we are interested in the critical properties of this

model, we neglect quantum fluctuations, as they are
irrelevant compared to the statistical fluctuations induced
by the incoherent processes [37,38]. This approximation
allows us to treat ψ̂ as a stochastic field rather than an
operator: its dynamics is accordingly described by the
Langevin equation

∂tψ ¼ −ð−K∇2 þ rþ ujψ j2Þψ − iGψ� þ ζ; ð3Þ

with K, r, u complex numbers, and ζ a Gaussian, zero-
average white noise with correlations hζðr; tÞζ�ðr0; t0Þi ¼
2σδðt − t0Þδð2Þðr − r0Þ. The imaginary parts of K, r, u
(denoted by a “c” subscript) correspond to coherent
couplings describing reversible dynamics, while their real
parts (denoted by a “d” subscript) correspond to dissipative
couplings representing irreversible processes. Moreover,
Eq. (3) includes terms which, while zero at the microscopic
level, are expected to be generated by coarse graining, e.g.,
Kd, describing spatial diffusion.
For G ¼ 0, Eq. (3) is invariant under the U(1) trans-

formation ψ → eiαψ , ψ� → e−iαψ�, and it is known as the
complex Ginzburg-Landau equation [39,40], or as the
driven-dissipative Gross-Pitaevski equation in the context
of exciton polaritons [15]. For finite G, Eq. (3) is invariant
under the Z2 transformation ψ → −ψ , ψ� → −ψ�, and it is

known as the periodically driven complex Gross-Pitaevski
equation [40].
Driven sine-Gordon equation.—Amean-field analysis of

Eq. (3) shows that a phase transition is expected for
G > Gc, predicting the spontaneous breaking of the Z2

symmetry and the emergence of a condensate. This result is
expected to be qualitatively robust in higher spatial dimen-
sions d > 2, while in lower dimensions fluctuations can
dramatically modify the mean-field result. In passing, we
notice that for negative detunings δ < 0 the mean-field
solution may exhibit a bistable behavior, as predicted in
Ref. [41]. In the following, we will restrict ourselves to the
case δ ≥ 0, where no bistability is expected. The analysis of
the δ < 0 case is left for future work.
To assess the effect of fluctuations, we proceed in the

spirit of the hydrodynamic theory for quasicondensates
[13,42], and we represent the bosonic complex field as
ψðr; tÞ ¼ χðr; tÞeiθðr;tÞ, with χ and θ real fields associated
with density and phase fluctuations. By assuming that a
condensate exists, with a density determined by the saddle-
point equations, the dynamics is dominated by configura-
tions of χ around that value. The density field χ is gapped
and can therefore be eliminated adiabatically from the
dynamics (see the Supplemental Material Sec. S1 [43] for
the derivation of the driven sine-Gordon equation). This
results in the following effective equation for the phase:

η∂tθ ¼ γ∇2θ − 2g sinð2θÞ þ λ

2
ð∇θÞ2 þ F þ ξ; ð4Þ

with ξ a zero-average Gaussian white noise with correla-
tions hξðr; tÞξðr0; t0Þi ¼ 2Dδð2Þðr − r0Þδðt − t0Þ. The micro-
scopic values of the six parameters η; γ; g; λ; F;D are
given by

η ¼ 1; γ ¼ Kd þ uc
ud
Kc;

g ¼ G
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2c

u2d

q
; λ ¼ 2

�
−Kc þ uc

ud
Kd

�
;

F ¼ −rc þ uc
ud
rd; D ¼ σ

2χ2
0

�
1þ u2c

u2d

�
:

ð5Þ

The Z2 symmetry appears in Eq. (4) as an invariance under
the transformation θ → θ þmπ, for all odd integersm. The
properties of the phase θ derived from the solutions of
Eq. (4) can be directly translated into the correlations of the
original complex fields ψ ;ψ� via

hψðrÞi ≈ χ0eiθ0e−
1
2
hθðrÞ2i; ð6aÞ

hψðrÞψ�ð0Þi ≈ χ20e
hθðrÞθð0Þi−hθðrÞ2i; ð6bÞ

with θ0 the saddle point value of θ. The previous relations
are obtained by neglecting the fluctuations of χ, and
retaining only the leading terms in the cumulant expansion
of heiðθðrÞ−θð0ÞÞi.
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A first insight into the solution of Eq. (4) can be gained
by considering two limiting cases and only then the general
scenario:
(i) KPZ limit: For g ¼ 0, the equation possesses a U(1)

symmetry, realized by the invariance under the transfor-
mation θ → θ þ α, with α any real number, and the drift
term F can be removed by a gauge transformation
θ → θ þ Ft=η. Equation (4) thus reduces to the pristine
KPZ equation [44]. In two spatial dimensions, the massless,
KPZ-like fluctuations of the phase were shown to erase the
BKT phase usually expected in equilibrium Bose gases,
and replace it with a disordered phase [13].
(ii) Equilibrium limit: Thermal equilibrium is achieved

when the condition Kc=Kd ¼ rc=rd ¼ uc=ud is satisfied
[13,45], which entails the validity of the fluctuation-
dissipation theorem, or, more generally, the presence of
the associated thermal symmetry of the Keldysh action
[46]. In this case, λ ¼ 0 and F ¼ 0, and Eq. (4) reduces to
the relaxational dynamics of a sine-Gordon field, whose
renormalization was first studied in relation to the rough-
ening transition of crystal surfaces [47].
This model predicts two phases, depending on the

relevance of the sine term. In the first phase, the field θ
is massive, which is signaled by g being relevant in the RG
sense. The value of hθðrÞ2i is then infrared-convergent,
while hθðrÞθð0Þi decays exponentially. Accordingly,
Eqs. (6) predict a finite order parameter hψi and long-
range order, indicating that the system lies in the ordered
phase with a spontaneously broken Z2 symmetry. In the
second phase, g is irrelevant in the RG sense, and θ
becomes massless. Accordingly, hθðrÞ2i is infinitely large
as a consequence of the infrared divergence, while
hθðrÞθð0Þi − hθðrÞ2i grows logarithmically, implying an
algebraic decay of hψ�ðrÞψð0Þi. This suggests that long-
range order is suppressed, and the condensed phase is
replaced by a BKT phase with quasi-long-range order. This

is the usual case for two-dimensional Bose gases with U(1)
symmetry [i.e., G ¼ 0 in Eq. (2)].
Summarizing, for a two-dimensional equilibrium gas,

three phases are expected: a normal fluid with short-range
correlations (corresponding to the mean-field solution
without condensate), a BKT phase with quasi-long-range
order, and a Z2-symmetry-broken phase with long-range
order. The corresponding phase diagram in terms of G and
δ is reported in Fig. 1, (see Sec. S2 [43] for derivation).
Analogous phases have been obtained for the axial next-
nearest neighbor Ising (ANNNI) model [48,49] and the
XYZ spin chain in transverse field [50,51], which share the
same effective dimensionality and Z2 symmetry with the
present model.
(iii) Full problem: In Eq. (4), the KPZ fluctuations wash

out the sine-Gordon physics, thus destabilizing the phases
predicted at thermal equilibrium. The renormalization
analysis of this equation was first performed in
Refs. [52,53] to study the effect of nonlinearities on the
roughening transition of crystal surfaces. There, it was
shown that the KPZ physics dominates over large distances.
We will show that this has dramatic implications for driven-
dissipative Bose gases, as the equilibrium ordered and BKT
phases are destabilized by nonequilibrium fluctuations, and
replaced by a phase with short-range order, see Fig. 1.
Absence of long-range order.—The long-wavelength

physics of Eq. (4) can be conveniently studied using a
perturbative renormalization group approach. The idea
consists in treating g and λ perturbatively around the
Gaussian model, and in deriving an effective long-wave-
length theory by progressively integrating out high-energy
modes. The couplings of the long-wavelength model are
then expressed by a set of flow equations. We will consider
two RG schemes, derived in Refs. [53] and [54], and
discussed in Sec. S3 [43], which includes Ref. [55]. The
equations are expressed in terms of the dimensionless

FIG. 1. Center: mean-field phase diagram of a quadratically driven, open condensate, as a function of the imprinted pairing strengthG
and the detuning δ. Left: equilibrium phase diagram (see Sec. S2 in [43] for the derivation). Fluctuations give rise to an intermediate
phase featuring BKT scaling. Right: nonequilibrium phase diagram of model (4). The Ising phase is replaced by a phase with KPZ
scaling. A residual Ising phase (striped region) may persist in the nonperturbative regime of large G, inaccessible to our method.
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quantities ḡ≡ g=Λ2, and F̄≡ F=Λ2. Before proceeding to
a more detailed analysis, we discuss the qualitative solution
of the RG equations.
If the system is in thermal equilibrium, the equations

reduce to the ones for the relaxational sine-Gordon model
of Ref. [47]. If ḡ ¼ 0, instead, the equations reduce to the
ones for KPZ [56]: the noise level D and the effective
temperature T flow to infinity, indicating the relevance of
the KPZ scaling. Finally, if both ḡ0 and λ0 are finite, the
KPZ nonlinearity λ dominates over the sine-Gordon one ḡ,
which eventually renormalizes to zero. Typical flows of ḡ
are shown in Fig. 2: for λ ¼ 0 and F̄ ¼ 0, ḡðlÞ grows
indefinitely (dashed curves), signalling that the field θ is
gapped. For finite initial values of λ0 or F̄0, however, ḡ
flows back to zero, indicating the irrelevance of the sine-
Gordon term. The diamond symbols denote the onset of a
divergence in the RG flow (see below).
At long wavelengths, the phase correlations are then

expected to be captured by the KPZ exponents, i.e.,
hθðrÞθð0Þi − hθðrÞ2i ∼ −jrj2χ , with χ ≈ 0.38 [57,58].
Moreover, hθðrÞ2i diverges due to long-wavelength fluc-
tuations. Accordingly, by replacing these values in Eqs. (6),
we find that complex fields are short-range correlated via a
stretched exponential, implying that no phase transition
takes place. Whether the ordered phase is completely
removed or survives for large values of the two-particle
drive (corresponding to large values of g) cannot be
determined from our analysis, as the RG analysis is not
valid for nonperturbative values of g. Finally, here we
neglected the presence of topological excitations, such as
vortices and antivortices. Whether such defects play a role
on length scales below or only above the KPZ length scale
is a nonuniversal question, which depends on the micro-
scopic details of the experimental system. In the former

case, the KPZ phase would be replaced by a disordered
phase; in the latter, the KPZ physics will be visible in
experiments [59–64]. The impact of the Z2 symmetry on
these excitations is left for future work.
Enhancement of KPZ physics.—An essential question

concerns the visibility of the predicted 2D KPZ physics in
experimental systems or numerical simulations with limited
size. In fact, the length scale L� above which the KPZ
physics becomes visible is usually very large, and can
exceed the accessible systems’ size: this is the case for, e.g.,
the roughening transition in crystal surfaces [65], and for
exciton polaritons in two-dimensional microcavities
[13,18,66–68]. Here we show that the presence of a
sine-Gordon nonlinearity can actually lower L�, thus
enhancing the visibility of the 2D KPZ.
The value of L� can be extracted from the solution of the

flow equations [69]. To illustrate this, it is convenient to
first focus on the pure KPZ case of Eqs. S5 in [43], i.e.,
ḡ ¼ 0. Here, the relevant RG equation is the one for the
effective temperature T in Eq. S5d [43] with γ and λ
constant under the RG flow. TðlÞ features a divergence
for finite values of the flow parameter l, namely,
l� ¼ 8πγ3=ðT0λ

2Þ, with T0 the initial value of T. The
value of l� determines therefore the physical length scale
above which the KPZ scaling is visible via L� ¼ ξ0el

�
,

with ξ0 some microscopic length scale. As L� is exponen-
tially sensitive to the value of l�, finding conditions to
minimize l� is crucial to observe the KPZ physics. For
finite values of ḡ, l� cannot be determined analytically, but
it can be extracted from the divergence of the numerical
solutions. We computed l� for different values of ḡ0 and
F̄0: the results are reported in Fig. 3. Since l� is not a
universal quantity, we extracted its value using two

FIG. 2. Flow of ḡðlÞ for different initial values of ḡ0. Param-
eters for the solid curves: γ0 ¼ 0.3, T0 ¼ 1, λ0 ¼ 0.4, η0 ¼ 1, and
F̄0 ¼ 0. Parameters for the dashed curves: γ0 ¼ 0.3, T0 ¼ 1,
λ0 ¼ 0.0, η0 ¼ 1, and F̄0 ¼ 0. The diamond symbols denote the
onset of a divergence in the RG flow l�.

FIG. 3. RG scale for the KPZ crossover as a function of the
sine-Gordon nonlinearity ḡ0, for different values of F̄0. The solid
and dashed lines correspond to the RG schemes derived in
Ref. [53] and [54] (cf. Sec. S3 [43]). Parameters: γ0 ¼ 0.3,
T0 ¼ 1, λ0 ¼ 0.4, η0 ¼ 1.
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different RG schemes (cf. S3), finding the same qualitative
behavior.
Our results indicate that l� generically decreases as a

function of ḡ0. The decrease can be optimized by varying
the value of F̄, which, corresponding to the laser detuning
[cf. Eq. (6)], is an experimentally tunable parameter. The
value of l� can be reduced by up to a factor 4 upon reaching
ḡ0 ∼ 0.1, indicating that L� can be reduced by four orders of
magnitude compared to the case with ḡ0 ¼ 0. This implies a
dramatic improvement of the visibility of the KPZ scaling
in two-dimensional driven-dissipative gases, where it has
so far remained elusive. As an example, in exciton-polar-
iton fluids in the optical parametric oscillator regime, the
KPZ length scale was predicted to be ∼103 μm in the bad-
cavity regime [66], which is one order of magnitude larger
than the typical size in current experiments [70–72].
We estimated the KPZ length scale for current exciton-
polariton experiments [43]. We considered typical
experimental values for GaAs/AlAs microcavities [73],
namely, polariton massmP ¼ 10−4me (withme the vacuum
electron mass), single-particle losses γ1 ¼ 0.4 meV, polar-
iton-polariton interaction U ¼ 1.5 μeV μm2 (see, e.g.,
Ref. [74]), and a pump-spot size of L ¼ 50 μm. At
resonance (δ ¼ 0) and for a drive strength G ≈ 5 meV,
we find L�=L ≈ 0.83, indicating that the KPZ physics is
expected to be visible in current experimental setups.
Outlook.—We showed that, in two-dimensional quad-

ratically driven Bose gases, the absence of thermal
equilibrium leads to an emerging phase characterized by
KPZ scaling. Correspondingly, the BKT and Ising phases
expected at thermal equilibrium are suppressed. Moreover,
we discovered that the presence of a quadratic drive may
shrink the length scale at which the KPZ physics occurs,
thus enhancing its visibility in systems with finite size. Our
results open novel perspectives for the detection of non-
equilibrium phases of matter in experimental platforms, in
particular exciton polaritons in microcavities and nonlinear
photonic lattices. There, a quadratic drive can serve as a
tool to enhance the nonequilibrium nature of driven-
dissipative condensates and may provide the necessary
assist to experimentally access the unexplored physics of
the 2D KPZ equation.
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