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Contraction of the cytokinetic ring during cell division leads to physical partitioning of a eukaryotic cell
into two daughter cells. This involves flows of actin filaments and myosin motors in the growing membrane
interface at the midplane of the dividing cell. Assuming boundary driven alignment of the actomyosin
filaments at the inner edge of the interface, we explore how the resulting active stresses influence the flow.
Using the continuum gel theory framework, we obtain exact axisymmetric solutions of the dynamical
equations. These solutions are consistent with experimental observations on closure rate. Using these
solutions, we perform linear stability analysis for the contracting ring under nonaxisymmetric deforma-
tions. Our analysis shows that few low wave number modes, which are unstable during onset of the
constriction, later on become stable when the ring shrinks to smaller radii, which is a generic feature of
actomyosin ring closure. Our theory also captures how the effective tension in the ring decreases with its
radius, causing significant slowdown in the contraction process at later times.
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Cell division is fundamental to all living organisms. The
last stage of cell division is called cytokinesis, where
closure of a polymeric ring, made of actin filaments and
myosin molecular motors [1,2] completes the physical
partitioning of the cell. In one mode of partitioning, an
intercellular membrane forms [see Fig. 1(a)]. This is
common in mitotic cell divisions (e.g., in C. elegans
embryo, a widely studied model system for eukaryotes)
and also in some compact tissues [3]. In the other mode [see
Fig. 1(b)], the contact area between the daughter cells
gradually shrinks to zero, as the division furrow [the cusp in
Fig. 1(b)] caves in [4]. Here we focus on the development
of the intercellular membrane (the first mode), which starts
out as an annulus at the equatorial plane [see Figs. 1(a)
and 1(c)] and gradually closes itself, as its inner boundary
grows radially inward. The growth is assisted by the flow of
actomyosin, beneath the cell surface (the “cortical flow”)
[5]. Experiments suggest [1,2,6] that the adenosine tri-
phosphate (ATP) driven interaction between actin and
myosin leads to the generation of active contractile stresses
in the cytokinetic ring. How this stress changes with time
during the course of the constriction, however, is not clear.
Earlier models [4,7] explain the observed contraction rate
by assuming a constant contractile stress. Sain et al. [8]
had, in addition, assumed an ad hoc intrinsic dynamic
friction, to account for the eventual slowdown of the
contraction process.
Such an approach, which considers the actin ring to be a

separate entity attached with the growing active membrane,
cannot explain the recent experimental observations [9]
where the ring is found to reorganize and constrict even
after part of it is destroyed by localized laser ablation. This
motivates us to consider the cortical ring to be part of the

actomyosin continuum spread over the growing membrane
interface. In Ref. [10], the authors developed an active gel
model of the cytoskeletal flows to discuss wound healing in
Xenopus oocyte [11]. Such a description involves solution
of coupled equations for the actin alignment field QαβðrÞ
(the order parameter, OP) and the velocity field vαðrÞ. The
ring was assumed to be a narrow annular zone with a higher
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FIG. 1. Radial velocity field vrðrÞ (main figure), in units of
Lc=ðη̃=ζΔμÞ and OP field Q̃ðrÞ (inset) are shown as a function of
r=R0, for R0 ¼ 5 μm. Schematic diagram (a) shows a side view of
the growing interface at the middle of the cell and (c) shows its
cross-sectional view; (b) shows partitioning without an interface.
In diagram (c) alignment of filaments increases sharply near the
inner boundary of the annulus at R0. The outer boundary is fixed
at r0 ¼ 15 μm for both the plots in the main and the inset.
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level of myosin activity ζΔμ than the rest of the growing
interface.
In this Letter, we follow a similar continuum gel theory

approach and first solve the coupled equations for the OP
and the velocity fields numerically (Fig. 1), retaining flow
coupling. However, instead of assuming an active contrac-
tility gradient, which is standard in the literature [10], we use
the observation that actin filaments are aligned tangentially
to the inner boundary of the closing annulus [12,13] as a
boundary condition. This ismotivated by recent experiments
[14,15] which indicate that local assembly kinetics, like
guided polymerization, can drive rapid filament alignment at
the ring at a much faster rate compared to the relatively slow
hydrodynamic modes of the OP and the flow fields. The
mean (time-averaged) effect of this molecular level, fast,
alignment kinetics can be incorporated in the hydrodynamic
equation for the OP field as a boundary condition. Such a
boundary driven alignment was used in Refs. [16,17] to
solve for the OP field. Chen et al. [16] reported that
actomyosin filaments at open cell boundaries can respond
to the curvature of the boundary and align parallel or
perpendicular to the concave or convex boundaries, respec-
tively. Encouraged by these observations on boundary
driven alignment, we set out to compute (a) the constriction
rate of the cytokinetic ring and (b) its stability with respect to
nonaxisymmetric deformations, which has wide applicabil-
ity across eukaryotic cell division.
Active gel model for actomyosin filaments.—The acto-

myosin gel on the growing interface is modeled as a
nematic fluid. Orientational order in a nematic fluid, in
three dimensions, is defined by the tensor order parameter
Qαβ ¼ hnαnβ − δαβ=3i, where nα is the nematic director
field, and α; β ¼ ðx; y; zÞ. As the actomyosin filaments
(nematic directors) lie in the flat interface ðx–yÞ, symmetry
and tracelessness ofQαβ dictate that the nondiagonal matrix
elements involving z are zero, Qxy ¼ Qyx ¼ q, Qzz ¼
−1=3, and Qxx þQyy ¼ 1=3. Further, if the orientation
distribution is isotropic in the x–y plane, then the resulting
matrix Q0

αβ is diagonal, with Q0
xx ¼ Q0

yy ¼ 1=6 and

Q0
zz ¼ −1=3. In the presence of cortical flows or due to

specific boundary conditions, the isotropic distribution is
modified to Qαβ ¼ Q0

αβ þQ0
αβ. Again symmetric structure

and tracelessness of Qαβ require (see Supplemental

Material [18]) that Q0
xx ¼ −Q0

yy ¼ Q̃, Q0
xy ¼ Q0

yx ¼ q,
and the rest of the elements are zero. This form remains
invariant as we transform from Cartesian to 2D polar
coordinates later.
The free energy of the inhomogeneous nematic field can

be described by the Landau–de Gennes form [19], using the
Q0 matrix. F ¼ R

d3r½ðχ=2ÞQ0
ijQ

0
ji þ ðL=2Þ∂kQ0

ij∂kQ0
ij�.

This enforces an isotropic arrangement of the director field
in the bulk of the 2D growing cortical layer with a
correlation length Lc ¼

ffiffiffiffiffiffiffiffi
L=χ

p
. Later, we will see that this

turns out to be the width of the actomyosin ring, which has
been measured [20] to be ∼1 μm.
Constitutive equations of the active gel can be described

by a linear relationship between thermodynamic fluxes and
forces [10,21–23]. We choose stress tensor σαβ, the rate of
change of nematic order parameter ðDQαβ=DtÞ, and the
rate of ATP consumption as the fluxes. The conjugate
forces are the strain rate vαβ ¼ 1

2
ð∂αvβ þ ∂βvαÞ, the trace-

less nematic force field Hαβ ¼ −ðδF=δQ0
αβÞ, and the

chemical potential difference generated due to ATP hydro-
lysis Δμ. Following [10], the hydrodynamic equations in
the liquid limit can be expressed as follows:

σαβ ¼ 2ηvαβ − β1Hαβ þ ζΔμQαβ; ð1Þ

D
Dt

Qαβ ¼ β1vαβ þ
1

β2
Hαβ: ð2Þ

ðD=DtÞ here implies material derivative [21], ζΔμQαβ is
the active stress, and contractility of the cortical layer
enforces ζ > 0 [21,22]. We ignored any explicit active term
in the second equation because it just renormalizes the
inverse susceptibility χ−1. Here η is the fluid viscosity,
while β1 and β2 are Onsager coefficients [10] and give the
flow coupling and nematic relaxation strengths, respec-
tively [10].
Following [10], we define a 2D “tension tensor” tij via

the relation tij ¼
R ðσij − δijPÞdz. Imposing the net normal

stress on the interface tzz to be zero yields pressure P ¼ σzz.
Further, ignoring variation of stress across the thin inter-
face, we get [10] tij ¼ eðσij − δijσzzÞ, where e is the
effective thickness of the interface, assumed to be a
constant here. This tension tensor allows us to write a
two-dimensional hydrodynamic theory with the force
balance equation as ð∂=∂tÞðρviÞ ¼ ∂jtij − αvi. Here α is
the cytoplasmic friction external to the growing membrane
interface. The flat growing interface has an annular shape,
see Fig. 1(c). The shrinking cytokinetic ring of radius R0ðtÞ
lies at its inner periphery, while its outer periphery is fixed
at radius r0. After changing to 2D polar coordinates
and dropping the time derivative in the highly viscous
regime, the force balance equations are ∂rtrr þ ð1=rÞðtrr−
tθθÞ þ ð1=rÞ∂θtrθ ¼ αvr, and ∂rtθr þ ð1=rÞðtθr þ trθÞ þ
ð1=rÞ∂θtθθ ¼ αvθ (see Supplemental Material [18]).
The 2 × 2ðxyÞ block of the Q0

αβ matrix (anisotropic part)
remains traceless and symmetric, parametrized by two
variables Q̃ and q, although their values change in the
polar frame. The 2 × 2 block of the isotropic matrix,
however, remains unchanged, Q0

αβ ¼ I=6, where I is the
identity matrix (see Supplemental Material [18]).
Rotationally symmetric solutions for Q0

αβðrÞ and
vαðrÞ.—We first consider the special case where the circular
ring is at r ¼ R0, with our domain of interest r ≥ R0. We
start with α ¼ 0, set a stress-free boundary condition at the
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open edge, i.e., normal stress σrrðR0Þ ¼ 0, and vr ¼ 0 at
r → ∞. The nematic directors are assumed to be parallel to
the inner boundary, i.e., n̂ðR0Þ ¼ θ̂, and isotropic as
r → ∞. It implies that, at r ¼ R0, the anisotropic Q0

αβ

matrix is diagonal with Q0
rr ¼ −Q0

θθ ¼ Q̃ ¼ −1=2 (see
Supplemental Material [18]) and Q0

αβðr ¼ ∞Þ ¼ 0.
We assume a quasisteady state where the material

derivative DQαβ=Dt ¼ 0 in Eq. (2). Note that ∂Qαβ=∂t ≠
0 since the inner edge R0 keeps moving, but the convection
term v · ∇Qαβ counters this change to keepQαβ unaltered in
the material frame. This yields Hαβ ¼ −β1β2vαβ. When
expressed in polar form, the diagonal elements of this
equation gives Eq. (3) below. However, the nondiagonal
part yields q ¼ 0 (see Supplemental Material [18]). Here
we used β2 ≈ η [10] and ζΔμ=χ ≃ 1,

1

r
∂rðr∂rÞQ̃ −

�
1

L2
c
þ 4

r2

�
Q̃ ¼ −

β1
2L2

c

η

ζΔμ

�
∂rvr −

vr
r

�
:

ð3Þ

Substitution of Hαβ ¼ −β1β2vαβ into Eq. (1) simply
renormalizes the viscosity to η̃ ¼ η½1þ ð1=2Þβ21�. The
resulting velocity equation (in polar form) using force
balance yields

4η̃∂r

�
∂r þ

1

r

�
vr ¼ −ζΔμ

�
∂r þ

2

r

�
Q̃: ð4Þ

Using zero influx vrðr0Þ ¼ 0 at the outer boundary and a
stress-free inner boundary σrrðR0Þ ¼ 2η̃∂rvr þ ðζΔμ=6Þþ
ζΔμQ̃ ¼ 0, we solve these two coupled equations numeri-
cally (using Mathematica) for different values of the flow
coupling strength β1. The solutions are shown in Fig. 1,
using Lc as the unit of length and ðη̃=ζΔμÞ as the unit of
time. It shows damping of the velocity field vr with
increase in flow coupling strength β1. Therefore, stronger
flow coupling delays the ring closure time; however, the
order parameter profile, shown in the inset of Fig. 1,
appears to be almost unaffected by flow coupling strength
β1. Note that, in this moving boundary problem, the major
role of the flow coupling on the OP is to move the boundary
inward where the actin field gets realigned quickly. By
setting Q̃ðR0Þ ¼ −1=2, we have already captured this effect
indirectly. This important observation allows us to ignore
flow coupling in the OP equation here [rhs of Eq. (3)],
which can now be solved exactly. The general solution is
Q̃ðrÞ ¼ c1K2ðr=LcÞ þ c2I2ðr=LcÞ, where K2 and I2 are
modified Bessel functions (see Supplemental Material
[18]). For the outer boundary r0 → ∞, we get

Q̃ðrÞ ¼ −K2ðr=LcÞ=2K2ðR0=LcÞ: ð5Þ

The solution for finite r0 is given in the Supplemental
Material [18]. The sharp rise in the magnitude of Q̃

(irrespective of β1) at the inner edge can be interpreted
as the actomyosin ring, of width Lc. Using this solution, we
can now solve for vr [Eq. (4)] with arbitrary β1. For
r0 → ∞, the solution reads

vrðrÞ
ζΔμ=η̃

¼ −
��

1þ 3K0
1ðR0=LcÞ

4K2ðR0=LcÞ
�
R2
0

6r
þ Lc

8

K1ðr=LcÞ
K2ðR0=LcÞ

�
:

ð6Þ

Note that the velocity at r ¼ R0 is the ring closure rate
vrðR0Þ ¼−ðζΔμ=η̃ÞðR0=6Þ½1− 3

4
K0ðR0=LcÞ=K2ðR0=LcÞ�,

which is directly damped by the flow coupling strength
β1 via the effective viscosity η̃. Inclusion of cytoplasmic
friction (αv), the velocity influx vrðr0Þ at a finite outer
boundary r ¼ r0 > R0 (instead of r0 → ∞), can also
influence the flow and the closure speed. Solutions for
the boundary conditions Q̃ðr0Þ ¼ 0 and vrðr0Þ ¼ 0 are
given in the Supplemental Material [18].
Cytoplasmic friction adds αvr to the right-hand side of

Eq. (4) but does not alter the equation for Q̃. Restricting
ourselves to radial motion only (vr nonzero, vθ ¼ 0Þ and
assuming azimuthal symmetry, we get

�
∂r

�
∂r þ

1

r

�
−

α

4η̃

�
vr ¼ −

ζΔμ
4η̃

�
∂r þ

2

r

�
Q̃: ð7Þ

With boundary conditions Q̃ðr0Þ ¼ vrðr0Þ ¼ 0, and those
at r ¼ R0 remaining the same as before, we solve Eq. (7),
both using Green’s function (see Supplemental Material
[18]) and numerically in Mathematica. As expected, see
Fig. 2, cytoplasmic friction damps the flow at the growing
interface and slows down the ring closure speed (inset
of Fig. 2).
The above analysis is carried out quasistatically for a

fixed R0. We can use these results to obtain the ring closure
kinetics. We integrate the kinematic boundary condition
ðd=dtÞR0 ¼ vrðR0Þ to derive the time dependence of
the radius of the contracting ring, i.e., R0 versus t. In
Fig. 2 (inset), we compare this closure rate with experi-
mental data on C. elegans embryo [7,24]. Note that this is a
three parameter fit with α, β1, and the active timescale
ðη̃=ζΔμÞ. Reasonable fits can be obtained for several
combinations of these parameters in the range α; β1 ∈
½0.1; 0.5� and ðη̃=ζΔμÞ ∈ ½1.5; 2.5� sec. One such example
is shown in Fig. 2 (inset). Here we used Lc ¼ 1 μm [24].
Membrane tension σ0 in the growing membrane can be
linked to the activity as σ0 ¼ ζΔμe=2 [10]. Using
ðη̃=ζΔμÞ ≃ 2 sec, measured value of cortical tension σ0 ¼
3 × 10−4 N=m [25], and the thickness of the growing
actomyosin cortex e ≃ 0.3 μm [24], we get η̃ ≃ 4×
103Pa sec, which is similar to the estimates obtained in
earlier works [10,26].
The ring closure rate in eukaryotes shows an intriguing

slowdown at late times [Fig. 2 (inset)], which has not been
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understood yet. In Ref. [8], an ad hoc intrinsic dynamic
friction ζL was added to the ring tension to account for
hitherto unknown internal processes in the ring. In Ref. [4],
the cortical flow from the poles, converging toward the
equatorial furrow [vrðr0Þ in our theory], was shown to
affect the slowdown [4]. In our present theory, σθθðr ¼ R0Þ
is the effective ring tension Σ of Ref. [8]. From Eq. (1),

σθθ ¼ 2η̃
vr
r
þ ζΔμ

6
− ζΔμQ̃: ð8Þ

In Fig. 3(a) we show the ring tension as a function of the
ring size R0, and Fig. 3(b) shows how azimuthal stress
varies in the bulk of the closing interface, for a given ring
size R0. First, σθθ is always positive, implying contractile

stress in the ring and the interface. Second, the ring tension
falls sharply at small R0, which explains the slowdown.
Third, the azimuthal stress σθθðrÞ is very high at the edge
r ¼ R0 and small in the interior. This property perfectly
justifies the role of the ring as the main generator of
cytokinetic tension. Note, that in Eq. (8) the last two terms
on the right-hand side are constants (at the ring r ¼ R0) and
positive; however, the first term is negative and its
magnitude grows large as the hole shrinks, eventually
reducing the line tension. So the slowing down effect
appears naturally due to viscosity of the flowing gel and
curvature of the ring. Interestingly, this tension reduction
term has the same structure vrðR0Þ=R0 ¼ _R0=R0 that was
assumed in Ref. [8], based purely on phenomenology.
Stability of ring closure.—We now use the rotationally

symmetric solutions for the Qij and the v fields to examine
the stability of the inner boundary where the ring forms.
This is motivated by the observation that wild type rings,
during constriction, typically show deviation from circular
shape [9,24,27]; however, it becomes more circular as
constriction proceeds. Toward this, we express the shape of
the deformed inner boundary, at any given time, as
rðθÞ ¼ R0 þ δRðθÞ, and using Fourier decomposition
δRðθ; tÞ ¼ P∞

n¼0 δRneinθþωnt. We study stability of these
deformation modes [28] by computing ωn, up to n ¼ 10.
Note that the n ¼ 1 mode corresponds to a uniform
translation of the inner circular boundary and, therefore,
ω1 ¼ 0. The system has translational symmetry provided
the outer boundary r0 → ∞, which we use, along with
β1 ¼ α ¼ 0, for this calculation. The results below are
unlikely to change qualitatively when r0 is finite, except
that ω1 will be nonzero.
The change at the inner edge leads to change in all the

dynamical variables: Q̃ðr; θ; tÞ ¼ Q̃0ðrÞ þ δQ̃ðr; θ; tÞ, and
similarly, qðr; θ; tÞ ¼ δqðr; θ; tÞ, vrðr; θ; tÞ ¼ v0rðrÞþ
δvrðr; θ; tÞ, and vθðr; θ; tÞ ¼ δvθðr; θ; tÞ. Here Q̃0 and v0r
refer to solutions in Eqs. (5) and (6).
Further, the perturbation fields δQ̃, δq, δvr, and δvθ can

be decomposed into Fourier modes as δQ̃ðr; θ; tÞ ¼P∞
n¼0 δQ̃nðrÞeinθþωnt, δvrðr;θ;tÞ¼

P∞
n¼0δvr;nðrÞeinθþωnt,

and similarly for the other two fields.
We substitute these perturbed fields in the dynamical

equations and do a linear stability analysis to obtain
fωng, where ωn ¼ ∂rv0rðR0Þ þ ½δvr;nðR0Þ=δRn�, following
Ref. [28]. Details of our calculations are given in the
Supplemental Material [18].
Figure 4 reveals interesting behavior for the growth rates

of the Fourier modes fωng for different inner radius R0. At
large R0, several modes are unstable (ωn > 0), however,
they subsequently turn stable (ωn < 0) as R0 becomes
small, absolutely consistent with experimental observa-
tions. Note that ω0 < 0, irrespective of R0, implies stability
with respect to uniform contraction or expansion of the
circular inner boundary. While in our theory ωn is exactly
proportional to the activity, Fig. 4 shows that ω0 is
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fixed at r0 ¼ 14 μm, appropriate for C. elegans embryo [7,24].
Friction (nonzero α) does not affect ring tension significantly.
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approximately proportional to R0. Also note that the higher
modes decay relatively faster, which would make any sharp
distortion of the ring heal fast. This could be relevant for
wound healing in cells as well. However, the fact that a
larger number of modes are unstable at larger ring size
indicates that very large rings, if distorted, will fail to
contract.
In summary, our phenomenological approximation on

the boundary driven actomyosin alignment was useful in
obtaining exact solutions for the OP and the velocity field.
The stability calculation, which produced several insights,
exploited these solutions to perturb around them. Also we
could identify three separate sources of slowdown near the
end of the constrictions, namely, (a) the curvature at the
ring (1=R0), (b) the cytoplasmic friction (α), and (c) the
flow coupling strength (β1). Experiments along the lines of
Ref. [14], which probed poly- and depolymerization
processes near the ring, and Ref. [9], which studied healing
of the perturbed ring after laser ablation, might be useful to
assess the role of boundary in maintaining actin alignment
in the dynamic ring.
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