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Pauli blockade mechanisms—whereby carrier transport through quantum dots (QD) is blocked due to
selection rules evenwhen energetically allowed—are a direct manifestation of the Pauli exclusion principle, as
well as a key mechanism for manipulating and reading out spin qubits. The Pauli spin blockade is well
established for systems such as GaAs QDs, but is to be further explored for systems with additional degrees of
freedom, such as the valley quantum numbers in carbon-basedmaterials or silicon. Herewe report experiments
on coupled bilayer graphene double quantum dots, in which the spin and valley states are precisely controlled,
enabling the observation of the two-electron combined blockade physics. We demonstrate that the doubly
occupied single dot switches between two different ground stateswith gate andmagnetic-field tuning, allowing
for the switching of selection rules: with a spin-triplet–valley-singlet ground state, valley blockade is observed;
and with the spin-singlet–valley-triplet ground state, robust spin blockade is shown.
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Graphene quantum dots (QDs) have been proposed to
host spin qubits with long spin coherence times [1,2],
especially promising in bilayer graphene (BLG) due to its
smaller spin-orbit coupling compared with that of carbon
nanotubes [3–7]. In BLG, a band gap can be opened by an
electric field perpendicular to the BLG sheet [8–10].
Together with recent advancements in fabrication technol-
ogy [11], the quality of state-of-the-art BLG QDs has been
raised to such a level that highly tunable QDs [6,7,12–17]
can now be fabricated.
Observation of the Pauli blockade is a crucial step toward

qubit manipulation and read out. A coupled double QD
occupied by two carriers can be tuned to a regime where
two states coexist: one carrier on each dot, or both carriers
on the same dot. Transitions between these states can be
blocked by selection rules based on the Pauli exclusion
principle. Observation of a two-electron Pauli spin block-
ade relies on the single-dot two-electron spin-singlet and
-triplet states to be well separated in energy, with the spin
singlet being the ground state (GS). This usually arises
naturally at zero magnetic field [4,5,18–20]. In BLG QDs
however, at low magnetic field, the single-dot two-carrier
GS is observed to be a spin triplet [14,15,21] due to the
additional valley degrees of freedom K−=þ.
Unlike the low-lying valleys in silicon, complicating

qubit control by providing additional coherence channels
[22–24], energy splittings of BLG valley states are reliably

tunable by perpendicular magnetic fields [12–15] and by
gate voltages [13,25], and are themselves good quantum
numbers. Selection rules involving valleys have been seen
in carbon nanotubes and silicon [4,5,26], although with
limited control. In our coupled double QDs, valley tuna-
bility allows us to study the combined spin and valley
blockade physics, demonstrating controlled switching
between a spin-triplet–valley-singlet at low, and spin-
singlet–valley-triplet single-dot two-electron state at high
magnetic field. In this way, we show canonical two-
electron blockade physics by performing finite-bias mea-
surements, and observe valley blockade in the former and
spin blockade in the latter regime.
We utilized the tunable BLG band gap [8–10] to form a

coupled electron double QD with n-type leads [Fig. 1(a),
see Supplemental Material, Sec. S1 [27]]. Barrier-gate
(green) voltages VLB;MB;RB provide individual control of
the dot-lead [13,28], and interdot tunnel coupling [17].
Dots L, R are independently controlled by the plunger-gate
(yellow) voltages VL;R. A bias-voltage VSD is applied
symmetrically between the source (þVSD=2) and drain
(−VSD=2), and the current is measured.
The charge-stability map [Fig. 1(b)] displays honeycomb

patterns. Regions of low conductance suppressed by
Coulomb-blockade are labeled ðNL;NRÞ, with stable elec-
tron numbers in the left ðNLÞ and in the right ðNRÞ dot.
Transport resumes at intersections of Coulomb resonances
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of the two dots, and pairs of triple points of high
conductance appear. Three double dot charge occupancies
coexist at the triple point that they are adjacent to, and allow
for charge transport via these three states. More negative
plunger-gate voltages VL;R deplete the respective dots
down to the last electron.
A finite bias voltage VSD expands triple points into

finite-bias triangles, whose orientation depends on the sign
of VSD. Within the bias triangles, energies of the relevant
states are tuned into the bias window, such that these states
are accessible and allow for charge transport. We look at
the two-electron transport at the triple points encircled in
Fig. 1(b), where transitions between the two-electron
charge occupation (1, 1) (one electron on each dot) and
(2, 0) (both electrons on the left dot) states govern the
transport. [Note that we observe the same physics around
the charge occupation (1, 1) and (0, 2), only swapping the
role of the left and the right dot; see Supplemental Material,
Sec. S6 [27]]. An example of a current map of bias triangles
at B ¼ 800 mT is shown in Fig. 1(c). In one bias direction
[Fig. 1(c,i)], the high conductance bias triangles are
complete; in the other bias direction [Fig. 1(c,ii)] however,
the triangles appear smaller with a missing baseline. Here,
energetically allowed transitions are blocked by the Pauli
exclusion principle, blocking charge transport and sup-
pressing current, demonstrating the Pauli blockade effect.
Comparing line cuts [Fig. 1(c,iii)] along the dashed arrows

we see the following: At the baselines (black dots), for
negative bias the peak current is ∼180 pA, whereas for
positive bias it is masked by the noise floor (∼300 fA). In
the remaining part of the positive-bias triangles, the current
is ∼3 times weaker compared with that in the negative-bias
ones. In the following discussion, and with the aid of
schematics [Figs. 1(c,iv) and 1(c,v)], we will attribute the
missing baseline to spin blockade, and the weaker current
in the tip of the triangle to valley blockade.
A thorough understanding of the relevant (1, 1) and

(2, 0) states is crucial for interpreting the nature of the
blockade. Here, we introduce the recently established level
spectrum of one- and two-particle states in single BLGQDs
[6,7,13–16,31,32], and limit our discussion to the lowest
orbital state (the next orbital state is > 1.7 meV higher in
energy; see Supplemental Material, Secs. S2 and S3 [27]).
Within the first energy shell, the single-dot–single-

particle states are fourfold degenerate. A small spin-orbit
coupling ΔSO ∼ 80 μeV [6,7] splits them into two Kramer
pairs, j↓K−i and j↑Kþi, and j↑K−i and j↓Kþi (see
Supplemental Materials, Sec. S1 [27]). A magnetic field
splits the spin states by ΔE↑=↓ ¼ �gsμBB=2 in energy,
where gs ¼ 2 [12,14,15]. Analogously, the valleys K�
couple to a perpendicular magnetic field with ΔEK� ¼
�gvμBB⊥=2, linearly in the low-field limit. The valley
g factor gv is an order of magnitude larger than the spin
g factor gs [12,13,15].

FIG. 1. (a) Device illustration. Double electron dots are defined with plunger gates L and R, and barrier gates LB, MB, and RB.
A magnetic field B is applied perpendicular to the BLG. (b) Charge-stability diagram at VBM

¼ −5.76 V. (c) Finite-bias triangles
at VMB ¼ −5.76 V, B ¼ 800 mT with (i) negative and (ii) positive source-drain bias VSD. ϵ is the total energy, and detuning
δ ¼ ϵL − ϵR the interdot energy difference. (iii) Line cuts along the dashed arrows, with VL;R converted into δ. δ ¼ 0 at the baseline
of bias triangles. Current peaks are labeled by dots. Valley blockade (VB) and spin blockade (SB) suppress current in the positive-
bias direction. Energies of relevant states are sketched for δ ¼ 0 in (iv) and (v). For negative bias [electron transport ð2; 0Þ → ð1; 1Þ],
the spin-blockaded GS–GS transition [gray in (iv)] is readily circumvented by a transition close in energy (black). For positive bias
[electron transport ð1; 1Þ → ð2; 0Þ], the next available transition is higher in energy [red in (v)] and requires a valley flip.
(d) Evolution of single-dot two-particle energies in magnetic field, sketched with Eex ¼ 0.9 eV, gv ¼ 28, and gs ¼ 2. The two
different GSs (red) define regime A and B.
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For weakly coupled double dots, exchange interaction is
negligible between two electrons, each residing on one dot.
The (1, 1) basis states can therefore be approximated as
product states of two sets of single-dot–single-particle
states, generating 16 (1, 1) basis states with ten distinct
energies Eð1;1Þ that are sums of the energies of the two
sets (shown in Supplemental Material, Sec. S4 [27]). The
ground state ð1; 1ÞGS is always j↓K−;↓K−i.
Contrarily, the (2, 0) states are better described in the

basis of spin and valley singlet and triplets. We consider
only the lower symmetric orbital wave function, so that
the product of the valley and spin states is necessarily
antisymmetric. In this way, we reduce the 16 basis states
to six. Evolution of this single-dot two-particle spectrum
[15,31,32] in a perpendicular magnetic field is sketched in
Fig. 1(d). At low field, the spin-triplet–valley-singlet states
jT−=0=þ

s ijSvi are lower in energy than the spin-singlet–
valley-triplets, jSsijT−=þ

v i, by the exchange energy Eex. At
high field, jSsijT−

v i is lowered enough in energy due to
coupling with the magnetic field to become the GS. We
therefore separate the discussion into two regimes, where
the ð2; 0ÞGS is jT−

s ijSvi in regime A, and jSsijT−
v i in

regime B.

With the knowledge of the expected (1, 1) and (2, 0)
states, we look in Fig. 2 at finite-bias triangles with low
interdot coupling, where occurrences of elastic tunnelings
are observed as current resonances in the left and right dot
energy difference, i.e., the detuning axis δ ¼ ϵL − ϵR. The
different appearances of the three pair of triangles indicate
distinct sets of transitions involved, but the current at
positive bias is always suppressed compared with negative
bias: Unless higher orbital states are within reach in the bias
window, due to the Pauli exclusion principle, there exist
no (2, 0) states matching both spin and valley quantum
numbers of the ð1; 1ÞGS j↓K−;↓K−i.
In regime A (Fig. 2A), states involved in the GS-GS

transitions ð1Þ; ð10Þ (red) have mismatching valleys. Unless
another transition channel from the GSs exists, allowing the
electron to bypass this blockade, an electron loaded into
the GSs would be stuck and would suppress the current at
the baselines, until a valley-flip event occurs.
However, at B ¼ 0 T the baseline for ð2; 0Þ → ð1; 1Þ

[Fig. 2A(a,i)] is strong, with a peak current of ∼350 pA
[Fig. 2A(a,iii)], as the valley-blockaded transition (1) (red)
is easily circumvented by the nonblockaded transition
(3) (orange), because the (1, 1) states j↓K−;↓K−i and

FIG. 2. Finite-bias triangles at VMB ¼ −5.81 V in A: regime A with ð2; 0ÞGS∶ jT−
s ijSvi at B ¼ ðaÞ 0 T and (b) 200 mT, and in B:

regime Bwith ð2; 0ÞGS∶ jSsijT−
v i at B ¼ 800 mT for (i) negative [electron transport ð2; 0Þ → ð1; 1Þ], and (ii) positive [electron transport

ð1; 1Þ → ð2; 0Þ] source-drain bias VSD. (iv), (v) Schematics of electrochemical potentials μ of relevant transitions for (i), (ii), sketched at
δ ¼ 0, when μGSs align. Nonzero δ allows for higher energy transitions. (iii) Line cuts along the dashed arrow, with VL;R converted into
δ. Current resonances are labeled by numbered colored circles. Valley-blockade (VB) and spin-blockade (SB) regions are marked.
Current is suppressed for positive bias ð1; 1Þ → ð2; 0Þ by the valley and spin blockade, and is enhanced for clarity in the line cuts (iii) by
a factor of 5, 10, and 15 for A(a), A(b), and B. In A(a,ii), the valley blockade is lifted at the edges of the triangles, where the electron in
the dot can exchange with electrons in the source or drain leads [yellow arrows in A(a,ii) and schematic outlined in yellow in A(a,iii)].
In B, the line cut is taken at the dotted instead of the dashed line, due to a shift of the bias triangle along the ϵ direction, a result of the
change of ð2; 0ÞGS.

PHYSICAL REVIEW LETTERS 128, 067702 (2022)

067702-3



j↓K−;↓Kþi (or j↓Kþ;↓K−i) are nearly degenerate in
energy at B ¼ 0 T. At B ¼ 200 mT [Fig. 2A(b)], these
(1, 1) states are valley split in energy by gvμBB. Hence,
transitions (1) and (3) no longer occur at the same energy,
as (1) is lowered in detuning while (3) stayed the same. We
see therefore in Fig. 2A(b,i) a valley-blockaded region with
suppressed current, which at higher δ is lifted by the onset
of transition (3).
By contrast, for ð1; 1Þ → ð2; 0Þ [Figs. 2A(a,ii) and2A(b,ii)]

the valley blockade cannot be circumvented by another
transition. Current at the baseline is suppressed by a factor
larger than 5 at B ¼ 0 T, and larger than 10 at B ¼ 200 mT.
This is because the next available (2, 0) state accessible from
the ð1; 1ÞGS∶ j↓K−;↓K−iwith matching valleys is jSsijT−

v i.
Transition ð20Þ (gray) to this state is not only higher in energy,
but also requires a spin flip. Even at finite δ where enough
energy is provided, no lifting of the valley blockade via this
spin-mismatched transition is observed.
The valley blockade is lifted at B ¼ 0 T at the outer

edges of the triangles [Fig. 2A(a,ii), yellow arrows], with
current similar to the nonblockaded inelastic current. At the
edges, the GS electrochemical potential of the right dot
μR;ð1;1ÞGS is aligned with the drain μD [2,20,33], allowing an
electron with blockaded quantum numbers to tunnel back
into the lead, in exchange for one with quantum numbers

that allow the transport to continue. This lifting is no longer
observed at finite field B ¼ 200 mT in Fig. 2A(b,ii), as
the blockaded ð1; 1ÞGS j↓K−;↓K−i and the nonblockaded
(1, 1) state j↓K−;↓Kþi are split by gvμBB, more than the
thermal energy.
In regime B at a higher field, when ð2; 0ÞGS becomes

jSsijT−
v i (Fig. 2B), the GS-GS transitions (2) and ð20Þ

are spin blockaded. However, for the ð2; 0Þ → ð1; 1Þ bias
direction [Fig. 2B(i)], the spin-blockaded transition
(2) (gray) can be circumvented via transition (4) (purple)
that is very close in energy (only a Zeeman splitting higher
in detuning; see Supplemental Material, Sec. S5, for more
details), with a peak current of 200 pA [Fig. 2B(iii)].
For ð1; 1Þ → ð2; 0Þ [Fig. 2B(ii)], the spin-blockade

leakage current is smaller than the noise floor. The next
available transition in detuning is the valley-blockaded
transition ð10Þ (red) discussed above. This transition is
observed at larger δ, with a peak current of 10 pA. Spin
conservation during interdot tunneling is a stronger con-
dition than valley conservation, as the valley blockaded
transition ð10Þ lifts the spin blockade [Fig. 2B(ii)], but the
spin-blockaded transition ð20Þ cannot lift the valley block-
ade [Fig. 2A(a,ii)]. When increasing interdot coupling, we
enhance current from transport via nonelastic tunneling,
and arrive at the Fig. 1(c) shown before.

FIG. 3. Evolution in magnetic field of GS transitions for (a) negative and (b) positive source-drain bias VSD. Evolution in magnetic
field for (i) line cut along the δ axis (dashed arrows in Fig. 2A) and (ii) calculated transitions with Eex ¼ 0.9 meV, ΔSO ¼ 80 μeV,
gv ¼ 28, and gs ¼ 2, from ð2; 0ÞGS in (a,ii), and from ð1; 1ÞGS in (b,ii). Except for the GS-GS transition (2) and ð20Þ, transitions requiring
spin flips [sketched in light gray in (ii)] are not labeled. The thicker lines in (ii) represent the GS-GS transitions, and hence define the
baselines of the bias triangles. Yellow, blue, and purple represent nonblockaded (NB), VB, and SB regions, respectively. At high field,
oscillations periodic in 1=B are observed for both bias directions [29].
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We inspect the line cuts along the δ axis (dashed arrows
in Fig. 2A) in the magnetic field for the continuous
evolution of the identified transitions. The results are
displayed in Figs. 3(a,i) and 3(b,i) for ð2; 0Þ → ð1; 1Þ
and ð1; 1Þ → ð2; 0Þ, respectively. The corresponding
calculated transition energies are plotted in Figs. 3(a,ii)
and 3(b,ii) (see Supplemental Material, Sec. S4 for evolu-
tion of the states). VSD opens up a bias window of 1 meV
starting from the baseline, shown as higher conductance
regions in the measurements (a,i) and (b,i), and colored
regions in the calculated transitions (a,ii) and (b,ii). Beyond
the bias window, electron occupancy is Coulomb block-
aded in either (1, 1) or (2, 0).
For ð2; 0Þ → ð1; 1Þ, in regime A, transitions (1), (3), and

(5) split linearly in energy with the magnetic field, with
gv ≈ 28, corresponding to the (1, 1) valley configurations
jK−; K−i, jK−; Kþi, (jKþ; K−i), and jKþ; Kþi. The kink in
the baseline [red and gray in Fig. 3(a)] indicates the change
of GS-GS transitions from (1) to (2), caused by the change
of the ð2; 0ÞGS from jT−

s ijSvi to jSsijT−
v i.

For ð1; 1Þ → ð2; 0Þ, only the valley-blockaded transition
ð10Þ is observed. At high field, the bias window diminishes
and the edges appear no longer parallel to ð10Þ, but to ð20Þ
instead. This indicates the change of the GS-GS transition
from ð10Þ [red in Fig. 3(b)] to the spin-blockaded transition
ð20Þ (gray), with resonance masked by the noise floor.
Regions of no blockade, valley blockade, and spin

blockade are labeled in Figs. 3(a,ii) and 3(b,ii). Current
strength in these regions decreases due to the blockade
effect in this order [Figs. 3(a,i) and 3(b,i)]. The singlet-
triplet energy splitting, crucial for spin-qubit operation, can
be tuned in magnitude by magnetic field, or by tuning the
valley g factor with gate voltages [13].
In conclusion, in our BLG QDs we show controlled

switching between two regimes: At low perpendicular
magnetic field, the (2, 0) ground state is a spin-triplet
valley-singlet, allowing for the observation of valley block-
ade, whereas at higher field, the spin-singlet valley-triplet
(2, 0) ground state allows for the observation of a robust
spin blockade. These results demonstrate exquisite control
over spin and valley states, a thorough understanding of the
intricate two-particle Hilbert space, and high sample quality
of our BLG QDs. The observation of the blockade paves
the way for future graphene-based spin and valley qubits.
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