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Classical electromagnetism is linear. However, fields can polarize the vacuum Dirac sea, causing
quantum nonlinear electromagnetic phenomena, e.g., scattering and splitting of photons, that occur only in
very strong fields found in neutron stars or heavy ion colliders. We show that strong nonlinearity arises in
Dirac materials at much lower fields ∼1 T, allowing us to explore the nonperturbative, extremely high field
limit of quantum electrodynamics in solids. We explain recent experiments in a unified framework and
predict a new class of nonlinear magnetoelectric effects, including a magnetic enhancement of dielectric
constant of insulators and a strong electric modulation of magnetization. We propose experiments and
discuss the applications in novel materials.
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Classical electromagnetism is linear and hence supports
the principle of superposition. It has been pointed out by
Heisenberg and Euler in 1936 that, due to quantum
mechanical effects and the presence of the Dirac sea,
linearity ceases to hold in strong fields [1]. Quantum
electrodynamics (QED) is therefore nonlinear as the
electromagnetic field polarizes the Dirac sea as though it
is a material medium. This effect becomes significant at
electric and magnetic fields E⋆ ≃ 1.3 × 1016 V=cm and
B⋆ ≃ 4.4 × 109 T, at which the Zeeman splitting and
electric potential over the Compton wavelength become
comparable to the electron rest energy. These are the so-
called Schwinger critical values [2] and they are enormous
on the laboratory scale. Such fields exist only in exotic
environments, e.g., neutron stars [3] and heavy ion colliders
[4]. Nevertheless, some low-order nonlinear QED effects,
such as scattering or splitting of photons, have been
observed in the laboratory [5,6], and probing strong field
effects is an active area of research [7].
Dirac materials have been known for decades [8–10].

Nevertheless, their recently understood topological proper-
ties and surface excitations have led to a surge of interest
[11–16]. The nonlinear electromagnetic response of Dirac
materials have been studied [16–23] due to their transport
properties (e.g., rectification) and possible applications in
photovoltaics. In this Letter, rather than transport, we study
dielectric and magnetization response of the three-dimen-
sional (3D) Dirac insulators and semimetals due to the
Dirac vacuum, i.e., filled valence band. We include non-
linear contributions to all orders by nonperturbatively
analyzing the Heisenberg-Euler action [1,24–27], going
both beyond known results of QED and the general
framework in condensed matter physics [28]. In known

Dirac materials, we find the typical values of Schwinger
fields, E⋆ ∼ 105 V=cm and B⋆ ∼ 1 T, that are easily
accessible, providing a platform to explore the strong field
regime of QED and to observe quantum nonlinear electro-
magnetic effects in the laboratory.
The nonlinear effects contribute to the experimentally

observed high field magnetization in the recent work on the
Weyl semimetal TaAs [31] and the Dirac semimetal Bi [32],
but the importance of this observation and its origin in the
Heisenberg-Euler effect has not been recognized. In the
present Letter, we demonstrate this connection and show
that the data [31,32] agree with our predictions. More
importantly, we predict a new class of magnetoelectric
effects. The most significant is the magnetic field tunable,
very large enhancement of the dielectric constant, reaching
up to δϵr ∼ 10 per every 1 T of the applied magnetic field.
We also predict an electric field modulated magnetization.
Both these effects are highly anisotropic, that is, they
depend on relative orientation of E and B fields and their
crystallographic orientation.
In a material, the classical Lagrangian of the electro-

magnetic field is [33]

Lcl ¼
1

8π
ðETϵE − BTμ−1BÞ: ð1Þ

One of our principal results is the quantum one-loop,
nonlinear, nonperturbative contribution to the Lagrangian

δLHE →
Δ

24π2λ3D
½ðb · eÞ2jbj−1 þ jbj2 ln jbj�; ð2Þ
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in a strong B and weak E field (see further below and also
Sec. S6 of the Supplemental Material [34]). Here, the
dimensionless vectors e and b depend on the fine structure
constant αD ¼ e2=ℏv of the Dirac material,

eðαDÞ ¼
UE

E⋆ðαDÞ
; bðαDÞ ¼

U−1B
B⋆ðαDÞ

; ð3Þ

and the critical “Schwinger” electric E⋆ðαDÞ and magnetic
B⋆ðαDÞ fields in the material are defined by

E2⋆ðαDÞ ¼
v2

c2
B2⋆ðαDÞ ¼

Δ
αDλ

3
D
¼

�
Δ2

eℏv

�
2

: ð4Þ

Equations (2)–(4) account for the anisotropy of real
materials [64], for which the velocity tensor is a 3 × 3
symmetric matrix [10] V ¼ vU, with detðUÞ ¼ 1. The
terms UE and U−1B are linear transformations of E and B,
respectively (see Supplemental Material Sec. S1 [34]).
We have defined the symbols in Eqs. (3) and (4) according

to convention in QED. The “Dirac wavelength” λD ¼
ðℏv=ΔÞ and the “Dirac magneton” μD ¼ ðeℏv2=2ΔcÞ
replace the Compton wavelength and the Bohr magneton,
respectively. When the fields reach the Schwinger scale,
Zeeman splitting and the potential difference at λD are equal
to half of the Dirac band gap,

2μDB⋆ ¼ λDeE⋆ ¼ Δ; ð5Þ

and the nonlinearity becomes relevant. In Table I we list
material parameters considered in this Letter. For more
details, see Sec. S2 and Table S1 of the Supplemental
Material [34].
The quantum contribution to the Lagrangian can be

viewed as the sum of the infinite chain of one-loop
diagrams in Fig. 1 that represent the polarization of the
Dirac sea of electrons by external electric and magnetic
fields. In this Letter, we consider only nonmagnetic crystals
with inversion symmetry [74,75] and assume the static
(quasistatic) approximation, ω, kv ≪ Δ, where ω and k are
the frequency and the wave number of the external fields.
Therefore our diagrams, Fig. 1, have only even numbers of
external E and B lines. Besides diagrams in Fig. 1, there
are also multiloop diagrams suppressed by a factor of

αD=ϵ ∼ 0.03 per each additional loop, where ϵ is the large
dielectric constant mainly due to the lattice and intraionic
polarization. For the discussion of the suppression of the
multiloop diagrams in the context of phenomena consid-
ered here, see Sec. S3 in the Supplemental Material [34]
and also Refs. [76,77].
In Fig. 1, the first diagram quadratic in external fields is

ultraviolet divergent and is equal to [24,65]

δL1 ¼
Δ

12π2λ3D
ln

�
Λ
Δ

�
ðjej2 − jbj2Þ: ð6Þ

Here the subscript “1” indicates contribution from the first
diagram in Fig. 1 and Λ ∼ vðℏπ=aÞ ∼ 1 eV is the ultra-
violet cutoff energy, where a is the lattice spacing. In QED
this diagram describes the electric permittivity and mag-
netic permeability of vacuum, and thus it is included in the
definitions of the electric charge and electromagnetic fields.
As a result, δL1 does not appear explicitly in QED.
However, for Dirac materials δL1 is an explicit contribution
that has to be added to the classical Lagrangian (1). Indeed,
this is the contribution of the Dirac sea (valence band) to the
dielectric constant and magnetic susceptibility.
Equating ðE2 − B2Þ=ð8πÞ þ δL1 to the classical

Lagrangian (1), we find the linear dielectric constant ϵD
and the linear magnetic susceptibility χD (μ ¼ 1þ 4πχ ),

ϵD ¼ 1þ 2αD
3π

ln

�
Λ
Δ

�
U2; ϵD ∼ 3; ð7Þ

χD ¼ −
αD
6π2

v2

c2
ln

�
Λ
Δ

�
U−2; χD ∼ −10−6; ð8Þ

where estimates are given for the diagonalized tensors.
Equations (7) and (8) define the Dirac contributions to

the total dielectric and magnetic susceptibilities. The
contribution (7) is relatively small compared to the total
relative permittivity ϵ in Eq. (1), typically ϵ ∼ 100, which is
primarily due to the ionic (lattice) and intraionic contribu-
tions (see Supplemental Material Table S2 [34]). The
magnetic response (8) constitutes a significant part of
the diamagnetic susceptibility, which also has contributions
from lower bands and core electrons. For bismuth, the
Dirac valence band contribution (8) has been previously
considered in Ref. [78].

TABLE I. Comparison of parameters including the band gap
(2Δ) [65], effective fine structure constant αD ¼ ðe2=ℏvÞ as the
ratio αD=α ¼ c=v, and the Schwinger fields in Eq. (4).

2Δ (meV) αD=α E⋆ (V=cm) B⋆ (mT)

QED (Δ ¼ mec2) 109 [69,70] 1 1.3 × 1016 4.4 × 1012

Pb0.5Sn0.5Te 63 [71] 580 2.9 × 104 5.6 × 103

Bi0.9Sb0.1 15.5 [72,73] 188 571 36
TaAs 0 357 0 0

FIG. 1. Diagrammatic representation of the Heisenberg-Euler
action δL1 þ δLHE [Eqs. (6) and (9)]. The dashed line corre-
sponds to the constant external electromagnetic fields B, E and
the solid line is the Green’s function of a Dirac sea electron.
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We describe now the nonlinear effects. The diagrams in
Fig. 1 beyond the first one (n ≥ 2) are convergent at
arbitrarily large jej, jbj [79] and are resummed exactly
[80] to yield the one-loop, nonperturbative Heisenberg-
Euler action

δLHE ¼
X∞
n¼2

δLn ≡ −Δ
8π2λ3D

Z
∞

0

dηe−η

η

×

�
A− cotðηA−ÞAþ cotðηAþÞ −

1

η2
þ 1

3
ðA2

− þ A2þÞ
�
;

A∓ ¼ −
i
2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ ieÞ2

q
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb− ieÞ2

q i
; ð9Þ

which accounts for crystal anisotropy, cf. Eq. (3), as well as
the strong electric and magnetic field behavior. The
imaginary part of Eq. (9), obtained via its analytic con-
tinuation, captures the dielectric breakdown, which can be
avoided in weak electric fields jej < 1 (E < E�). Then,
Eq. (9) can be expanded in powers of e. However, the
magnetic field can be much larger than B⋆, leading to the
asymptotic expression (2) (see Supplemental Material
Sec. S6 [34]). At weak magnetic fields, jej, jbj ≪ 1,
Eq. (9) reduces to the second diagram in Fig. 1,

δL2 ¼
Δ

360π2λ3D
½ðjej2 − jbj2Þ2 þ 7ðe · bÞ2�: ð10Þ

At E ¼ 0, the nonlinear magnetic susceptibility is

δχ ¼ ∂2δLHE

∂B∂B ¼ U−2 αD
12π2

v2

c2
FðjbjÞ;

FðjbjÞ ¼ 2

5
jbj2; kbj ≪ 1;

FðjbjÞ ¼ ln jbj; jbj ≫ 1: ð11Þ

The dimensionless function FðjbjÞ in the full range of
magnetic fields obtained by numerical integration of Eq. (9)
is shown in Supplemental Material Fig. S2 [34]. Strong and
weak field limits of F follow from the actions given by
Eqs. (2) and (10), respectively.
The total magnetic susceptibility of the Dirac valence

band is the sum of the linear susceptibility, Eq. (8), and the
nonlinear contribution χ ¼ χD þ δχ . When jbj ≫ 1, we
have

χ ¼ −U−2 αD
12π2

v2

c2
ln

�
cΛ2

ejU−1Bjℏv2
�
: ð12Þ

Here χ depends on B but not onΔ and is well defined in the
limit Δ ¼ 0, as in the Weyl semimetal TaAs [31].
According to Eqs. (11) and (12), the magnetic suscep-

tibility is nonlinear, i.e., it depends on magnetic field.
Remarkably, this Dirac nonlinearity has been recently
observed, but its connection to nonlinear electrodynamics

was not identified. Here we show its origin in the
Heisenberg-Euler effect. The magnetization of Weyl semi-
metal TaAs has been measured up to B ¼ 30 T, Ref. [31],
and magnetization of Dirac semimetal Bi has been mea-
sured up to B ¼ 60 T, Ref. [32]. In Zhang et al. [31], the
valence band contribution to magnetization at E ¼ 0 was
considered [81], and in the high magnetic field limit, the
magnetization quasilinear in the applied B field is inves-
tigated. Here we study the universal nonlinear susceptibil-
ity and eliminate all uncertainties, such as the choice of
ultraviolet cutoff Λ, subleading terms, and contributions
from other bands or core electrons.
Both TaAs and Bi have nonzero chemical potential and

hence have conduction electrons. Therefore, at weak mag-
netic fields, both compounds show magnetic oscillations.
The conduction electrons freeze and the oscillations dis-
appear atB > 5 T inBi [32] andB > 10–13 T in TaAs [31].
In these ranges of B, we can compare the data with our
predictions. In Fig. 2(a), the points show magnetic suscep-
tibilities of TaAs (c direction) and Bi (binary and bisectrix
directions). The points have significant spread, as they are
obtained by numerical differentiation of experimental mag-
netizations from Refs. [31,32]. To focus on the nonlinearity,
we plot χref − χ, where χref ¼ χðB ¼ 30Þ T for TaAs and
χref ¼ χðB ¼ 50Þ T for Bi. Solid curves present our theo-
retical predictions, which are manifestly consistent with the
data. For discussion of material specific details, anisotropy,
etc., see Supplemental Material Sec. S8 [34]. Interestingly,
Bi0.9Sb0.1 alloy has the band structure very close to that of
Bi, butwith no conduction electrons [72,73], and could be an
ideal test platform for our theory. The susceptibility of this
compound has not been measured yet. Our theoretical
prediction is shown by the solid red curve in Fig. 2(a).
We now consider novel magnetoelectric effects. The

nonlinear dielectric constant is

δϵD ¼ 4π
∂2δLHE

∂E∂E ¼ U2
αD
3π

GiðjbjÞ;

jbj ≪ 1∶GjjðjbjÞ ¼
1

3
jbj2; G⊥ðjbjÞ ¼ −

2

15
jbj2;

jbj ≫ 1∶GjjðjbjÞ ¼ jbj; G⊥ðjbjÞ ¼ − lnðjbjÞ: ð13Þ

Here the index i ¼ jj;⊥ shows the relative orientation of e
and b [82]. Dimensionless functions GiðjbjÞ in the whole
range of b obtained by numerical integration of (9) are
plotted in Supplemental Material Fig. S2 [34]. Its strong
and weak field limits define actions given by Eqs. (2) and
(10), respectively. The dependence of the dielectric con-
stant on the applied magnetic field is a novel magneto-
electric effect. For bke the contribution δϵD is positive and
can be very large, while for b⊥e the contribution δϵD is
negative. The expressions for arbitrary angle between b and
e, and the relation to the angle between applied fields B and
E, which is generally different due to properties of the
anisotropy transformation, are given in Sec. S7 of [34].
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Furthermore, according to (1) and (10), there is a nonlinear
contribution quadratic in the electric field,

δϵDðEÞ ¼ U2
2αD
15π

jej2; jbj ¼ 0; ð14Þ

which is suppressed by jej2=jbj when jbj ≫ 1. Notably, at
jej; jbj ≪ 1, contributions (13) and (14) add up.
The magnetic field induced variation of the dielectric

constant in Eq. (13) scales as δϵD ∝ 1=B⋆ ∝ Δ−2. Thus, the
effect is most significant in small band gap Dirac insulators.
In Fig. 2(b), we plot our predictions for Bi0.9Sb0.1. For ejjb
the effect is enormous, δϵD ∼ 10=T. For E⊥B the effect is
smaller and has the negative sign. In the same Fig. 2(b), we
also plot predictions for δϵD in Pb0.5Sn0.5Te. This com-
pound has a larger gap, and therefore the effect is smaller,
but still observable.
One more novel magnetoelectric effect is the dependence

of magnetization on the applied electric field. The electric
field-dependent magnetization MðeÞ ¼ ð∂δL=∂BÞ, in units
of Dirac magnetons per “Dirac volume,” reads

4πMðeÞ ¼ U−1b
jbj

μD
3πλ3D

jej2DiðjbjÞ;

jbj ≪ 1∶DjjðjbjÞ ¼
2

3
jbj; D⊥ðjbjÞ ¼ −

4

15
jbj;

jbj ≫ 1∶DjjðjbjÞ ¼ 1; D⊥ðjbjÞ ¼ −
1

jbj : ð15Þ

The direction of the magnetization (15) in a Dirac crystal is
defined by the vector b and depends on crystal anisotropy
as described by Eq. (3). Dimensionless functionsDiðjbjÞ in

the whole range of b obtained by numerical integration of
(9) are plotted in Fig. S2 in the Supplemental Material [34].
For bke the magnetization is large and paramagnetic,
while for b⊥e the magnetization is diamagnetic [82].
Magnetization (15) is quadratic in the applied electric field
and, as a function of magnetic field, saturates when
jbj ≫ 1.
To enhance the magnetization in Eq. (15) one needs the

electric field as strong as possible. However, the field is
limited by the dielectric strength, Ed of the material,
beyond which dielectric breakdown occurs. The breakdown
probability (rate of Zener tunneling by electric field per unit
volume) is obtained from Eq. (9) [25] and found to be
P ∝ jej2e−π=jej (See Sec. S4 in [34]). The most important
aspect here is the exponential dependence, which univer-
sally applies to both the Dirac spectrum and quadratic
dispersion. Thus, one expects that Ed is proportional to E⋆.
Taking two band insulators, diamond (2Δ ≈ 5.5 eV,
Ed ≈ 107 V=cm) and silicon (2Δ ≈ 1.14 eV, Ed ≈
3 × 105 V=cm), as reference materials, we observe that
the dielectric strength scales as Ed ∝ Δ2. Therefore, Ed is a
fixed fraction of E⋆. Significant E-dependent magnetic
effects [Eq. (15)] can then be observed for jej ¼ 0.1–0.3
[83]. Furthermore, as usual in solids, setups with huge
built-in electric fields in the insulating regime can be
explored [84].
For a fixed e ¼ E=E⋆, the electric field modulated

magnetization in Eq. (15) obeys MðeÞ ∝ B⋆ ∝ Δ2, so
materials with a large gap are preferable, unlike in the
dependence of the dielectric constant on magnetic field. In
Fig. 2(c), we plot the predicted magnetization for
Pb0.5Sn0.5Te versus magnetic field at E ¼ 104 V=cm,

(a)
(b) (c)

FIG. 2. (a) Nonlinear diamagnetic susceptibility χref − χ versus magnetic field, χref ¼ χð50 TÞ in Bi and χref ¼ χð30 TÞ in TaAs. In
TaAs (blue) the field is along the crystal c direction and in Bi there are two directions, binary (red) and bisectrix (green). The points
represent numerical differentiation of TaAs and Bi magnetization data from Refs. [31,32], respectively. The experimental points are
connected by dashed lines for guidance. Solid lines represent our theory. The red solid line is our prediction for Bi0.9Sb0.1. (b) Predicted
variation of the dielectric constant in magnetic field, for parallel (perpendicular) field configurations shown by solid (dashed) lines.
(c) Predicted electric field modulated magnetization as a function of applied magnetic field, along the magnetic field direction
at E ¼ 0.3E⋆.
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which corresponds to e ≈ 0.3. For both fields e and b,
parallel to the c axis, the electric field driven magnetization
is 4πMðeÞ ≈ 0.2 μT at B ¼ 1 T. When E⊥B, the magneti-
zation changes sign, see Fig. 2(c). In the same figure, we
also plot the magnetization in Bi0.9Sb0.1 for e ≈ 0.3. Here
the effect is smaller due to the smaller Dirac gap.
The electric field driven magnetization in Bi0.9Sb0.1

(4πMðeÞ ∼ 10−8 T) and in Pb0.5Sn0.5Te (4πMðeÞ ∼
2 × 10−7 T) can be feasibly detected in lock-in experiments
in an applied electric field having a constant and an ac
component (with frequency ω). The induced magnetization
is then characterized by contributions modulated at
frequencies ω and 2ω. Of course, the condition ℏω ≪
2Δ is assumed fulfilled. Experiments on observation of
MðeÞ could also take advantage of the SQUID magnetom-
etry, sensitive to magnetization as low as 10−15 T=

ffiffiffiffiffiffi
Hz

p
[85], much lower than the predicted values.
In conclusion, based on the Heisenberg-Euler theory of

the physical vacuum, we develop the theory of nonlinear
electromagnetic effects in Dirac materials. We explain the
results of two recent experiments on nonlinear contribution
to magnetization of Dirac materials. We predict two novel
magnetoelectric effects and discuss possible experiments
and materials for their observation.
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