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A hologram fully encodes a three-dimensional light field by imprinting the interference between the field
and a reference beam in a recording medium. Here we show that two collinear pump lasers with different
foci overlapped in a gas jet produce a holographic plasma lens capable of focusing or collimating a probe
laser at intensities several orders-of-magnitude higher than the limits of a nonionized optic. We outline the
theory of these diffractive plasma lenses and present simulations for two plasma mechanisms that allow
their construction: spatially varying ionization and ponderomotively driven ion-density fluctuations.
Damage-resistant plasma optics are necessary for manipulating high-intensity light, and divergence control
of high-intensity pulses—provided by holographic plasma lenses—will be a critical component of high-
power plasma-based lasers.
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Holograms record both the phase and the amplitude of
light, allowing the complete reconstruction of a light field at
a later time [1]. A hologram is created by imprinting the
interference between a signal beam and a reference beam in
a light-sensitive medium, e.g., a photographic plate; a
delayed second reference beam diffracts to reproduce the
signal beam. The interference is commonly mapped to
attenuation, but the pattern may also be embedded as a
phase shift [2]: a variation of the refractive index’s real
component. Any medium where the index of refraction is
modified by the intensity of light can be used, but current
holograms rely on a limited collection of solid-state
materials. The index of refraction (n) of a plasma
(n < 1) differs from that of both vacuum (n ¼ 1) and
neutral gas at similar density (n > 1), and the formation
and density evolution of plasma may be driven by light. We
may therefore create a hologram using lasers to modulate
plasma density.
The damage threshold of a plasma is orders-of-magni-

tude higher than that of a solid-state optic; plasma optics
use this to manipulate light at extreme intensities [3].
Plasma-based versions of optical components include
amplifiers [4–7], gratings [8–11], mirrors [12,13], wave
plates [14–16], and Pockels cells [17]. However, the only
demonstrated solutions for focusing light with unfocused
intensity above 1012 W=cm2 are the concave plasma mirror
[18] and compound parabolic concentrator [19], neither of
which is well-suited to high-repetition-rate experiments. A
holographic plasma lens offers an alternative approach.
Imprinting the interference between two copropagating
pump beams with different foci in a plasma (e.g., a
collimated beam and a tightly focused one) results in a

plasma-based zone plate, a diffractive lens which in non-
plasma form is used to focus x rays [20]. An efficient
holographic plasma lens could allow collimation of high-
intensity light for high-order harmonic generation [21] and
filamentation [22] experiments or improve the focusing of
high-energy laser facilities (e.g., the AdvancedRadiographic
Capability (ARC) laser [23]). Previous efforts to design
plasma holograms have relied on reflective surface [24] and
reflective volume [25] approaches, which require high-
quality surfaces and high (near-solid) plasma density,
restricting viability for high-repetition-rate systems, or elec-
tron plasma waves [26], which are short-lived and are
destroyed when the probe intensity is comparable to that
of the pump beams, a serious constraint for a plasma optic.
In this Letter, we propose a new plasma lens concept

based on transmission volume holograms constructed via
two plausible plasma mechanisms: spatially varying ioni-
zation (SVI) or ponderomotively driven ion structures.
Both schemes rely on two copropagating pump beams
whose interference pattern imprints a three-dimensional
(3D) refractive index structure acting as a diffractive lens.
SVI uses ionization of a background gas in the high-
intensity fringes of the interference pattern while areas of
destructive interference remain as neutral gas, leading to an
index modulation ngas − nplasma ≈ 10−2 [27–30]. For pon-
deromotively driven structures, electrons are ponderomo-
tively forced out of high-intensity regions; the resultant
space-charge force pulls ions down the intensity gradients
as well. An index modulation is then formed by the plasma
density difference between the high and low intensity
regions [8–10,31–33]. For both mechanisms, the diffractive
lens structure remains after the pumps are turned off. The
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relaxation time is dictated by recombination and diffusion
for SVI [29] and by ion motion for ponderomotive
structures [10]. This enables the manipulation of a probe
at a substantial delay or with a much longer duration than
the pump lasers, and, as we show here, requires relatively
small volumes of gas-density plasma to create efficient
transmission holograms tolerating probe intensities from
1014 to 1017 W=cm2.
Consider two collinear equal-power pump lasers (α ¼ A,

B) focused at distinct points fα along z with the f number
of each beam (Fα) chosen such that they have the same
beam diameter at z ¼ 0 (jfA=FAj ¼ jfB=FBj), as shown in
Fig. 1(a). The beams propagate in vacuum outside a region
with extentD centered at z ¼ 0where the index of refraction
is intensity dependent, a configuration that can, for example,
be realizedwith a gas jet. For ease of analysis, wewill restrict
fα to be larger than the Rayleigh range. The two pumps
interfere everywhere they overlap, but inside the gas that
interference is encoded as a variation of the refractive index
by the dependence of n on intensity (I), creating the index
modulation of a zone plate [Fig. 1(c)]. At a delayed time
[Fig. 1(d)], a probe crossing the index modulation can be
focused [Fig. 1(b)], with the plasma density potentially
evolving due to both the pumps and the probe.
A zone plate consists of concentric alternating regions of

opaque or phase shifting material, spaced so that trans-
mitted light interferes constructively at the desired focal
point [2,34,35]. The radii of boundaries between zones (rp
for the pth boundary) are associated with λ=2 phase shifts
of light, from which follows r2p ¼ pλðf þ pλ=4Þ, λ is the
wavelength of the light of interest, and f is the focal length.
For pλ ≪ f, r2p ≈ pλf. If the pump and probe have

different wavelengths (λp and λ0, respectively), both must
satisfy pλ ≪ f for efficient diffraction. The size of the focal
spot is governed by the total number of zones (P) as
w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λf=4P

p
, which follows from the dependence of spot

size on numerical aperture. Zone plates are highly chro-
matic, restricting the focusable bandwidth (Δλ); the probe
must satisfy Δλ=λ0 ≤ 1=P for the focal position of its
component wavelengths to differ by no more than a
Rayleigh range.
A zone plate created by two pump lasers with focal spots

at fA and fB will have focal length

f ¼ fAfB
fA − fB

·
λp
λ0

: ð1Þ

A probe focused at the point f0 along the z axis, will, after
passing through the plasma zone plate, have new m-order
focal spots at

fm ¼ ff0
f þmf0

; ð2Þ

where f is given by Eq. (1) and the energy in each order is
determined by the detailed spatial variation of the refractive
index [36].
We can distinguish two regimes for diffractive lenses by

the thickness of the optic relative to the light wavelength
and zone size. For a thin lens (Q ¼ Dλ0=δ2 ≪ 1, where δ is
the width of the outer-most zone), the thickness of the optic
is set by the condition that adjacent zones produce a relative
phase shift of π: Δϕ ≈ π ¼ 2πðD=λ0ÞΔn. For a volumetric
(thick) plasma lens (Q ≫ 1), which can be described by
coupled mode theory [47], the required thickness is [48]

FIG. 1. Schematic of a holographic plasma lens. (a) Two pump lasers overlap in a gas (extent along z is D), arranged so that their
interference pattern is a sinusoidal zone plate. (b) At a delayed time, a probe laser passes through the resulting structure and is diffracted
into one or more orders. (c) The intensity profile of the overlapped pumps and the resultant index modulation. (d) The peak index of
refraction modulation as a function of time, showing the formation of the structure with the arrival of the pumps, followed by a decay and
possible modification by the probe. The amplitude and timescale both depend on the chosen nonlinear mechanism.
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D
λ0

≈
1

Δn
: ð3Þ

Taking SVI as a representative example, we will neglect
absorption and note that the real part of the refractive index
varies between that for plasma (n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ne=nc
p

where ne
is the plasma density and nc is the plasma critical density
nc ¼ ε0meω

2=e2) and that for the nonionized gas, where
ordinarily j1 − nplasmaj ≫ j1 − ngasj. A reasonable approxi-

mation is then Δn ≈ 1 − nplasma ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ne=nc

p
≈

ne=2nc for ne ≪ nc. From this and the above condition
on Δϕ, the plasma density and thickness should satisfy
neD=2nc ≈ λ0.
Thin lenses support multiple diffraction orders, whereas

a thick lens can produce a single well-defined spot [47].
This is analogous to the Raman-Nath and Bragg regimes
for diffraction gratings. The loss of energy to higher orders
for thin lenses makes them less attractive as focusing optics,
and here we will focus on the thick lens regime, using three
types of simulation to study the interaction: a linear paraxial
solver, a nonlinear paraxial solver, and a particle-in-cell
code.
First, we use a linear 3D paraxial propagation solver

(PPS) to numerically evaluate the formation and perfor-
mance of diffractive lens shapes. The solver neglects the
time dynamics of the pumps and probe and considers the
interaction as three separate steps: (1) linear propagation of
the pumps through a uniform medium, (2) change of the
refractive index as a function of pump intensity, and
(3) linear propagation of the probe through the new
distribution of refractive index [36]. The arbitrary func-
tional relationship between the pump intensity and the
refractive index in step (2) allows both SVI and ponder-
omotive lenses to be approximated. Figure 2(a) shows a
probe beam with vacuum focus at z ¼ 1 mm being
collimated by a thick plasma lens, with 80% of the energy
within the (collimated) m ¼ −1 mode. In Fig. 2(b), a
similar plasma lens focuses a collimated incident probe,
with more than 50% of the energy inside a 2 μm spot.
Figure 2(c) shows how the focusing efficiency of the optic
in (b) decreases as the plasma density changes from its

optimal value. The maximum efficiency occurs near where
D=λ0 ¼ Δn, with smaller values of DΔn=λ0 producing
minimal energy transfer to the m ¼ 1 order.
To capture the nonlinear dynamics of SVI, where high-

intensity pulses propagate in an initially neutral gas, we
use a 3D numerical envelope equation solver [49] with
governing equation [40]:

∂E
∂z ¼ i

2k
∇2⊥E −

ik00

2

∂2E
∂t2 −

σ

2
ð1þ iωτÞneE −WFIðEÞnN

Ui

2jEj2 þ ik0nT2

�
ð1 − fÞjEj2 þ f

Z
∞

−∞
Rðt − t0ÞjEðt0Þj2dt0

�
ð4Þ

where k is the wave number, σ is the inverse Bremsstrah-
lung cross section, τ is the collision time, WFI is the field
ionization rate, nN is the neutral density,Ui is the ionization
energy, nT2 is the total Kerr nonlinearity with f the time
delayed fraction, and RðtÞ is a damped harmonic oscillator
model for the delayed response [36]. The terms on the
right-hand side describe diffraction, group velocity

dispersion, plasma phase shift and absorption, ionization
losses, and Kerr self-focusing, respectively. The evolution
of the plasma due to field and collisional ionization and
recombination is separately calculated. Figures 3(a)
and 3(b) show the results from a simulation of a 170 μm
diameter ionization lens formed in a 2 mm nitrogen gas
column by two 0.65 mJ, 10 fs pumps. In Fig. 3(a), the free

(a)

(b)

(c)

FIG. 2. Calculations (3D PPS) for a thick plasma lens, showing
collimation (a) and focusing (b) depending on the initial
probe focus position. (a) Probe (blue) near-collimated to focus
at z ¼ 6 mm by lens formed in D ¼ 1 mm initial gas (orange),
with Δn ¼ 1.3 × 10−4, λp ¼ λ0 ¼ 400 nm, fA ¼ 1 mm, and
fB ¼ 6 mm; 81% of energy is within the focal spot at
z ¼ 6 mm. (b) Focusing lens with D ¼ 200 μm and Δn ¼ 3.3 ×
10−3 for λ0 ¼ 800 nm probe. Focal spot full-width-half-maxi-
mum is 2.2 μm. Pumps have λp ¼ 800 nm, fA ¼ 0.5 mm, and
fB ¼ 3 mm. (c) Efficiency (η1) for lens shown in (b), defined as
probe energy a within 10-μm radius at z ¼ 0.5 mm as Δn is
varied between 1 × 10−5 and 9 × 10−3 for fixed D.
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electron density left by the pump lasers has the character-
istic zone-plate shape. After a delay of 0.8 ps, a 1 ps 60 mJ
probe passing through this lens is focused at z ¼ 0.5 mm.
Slight distortion and a reduction in intensity at the tail end
of the probe indicate that this pulse is near the maximum
tolerance of the optic, which at 2.4 × 1014 W=cm2 and
230 J=cm2 is well above the limits of glass.
A holographic plasma lens can also be created via the

ponderomotive force in a fully ionized plasma. As captured
by the 3D particle-in-cell (PIC) simulation (using the code
EPOCH [50]) shown in Figs. 3(c) and 3(d), the two pump
lasers (15 TW, 500 fs duration) ponderomotively create an
ion density perturbation in a fully ionized hydrogen plasma
[Fig. 3(c)]. Although the pumps are only on for 500 fs, this
modulation continues to evolve on a picosecond timescale
due to the acquired ion momentum. Under these specific
conditions, a 100 TW probe arriving 1.2 ps after the pumps
is brought to a high-quality focal spot at z ¼ 0.2 mm
[Fig. 3(d)]. At this power, the probe closely follows the
expected linear behavior based on the index modulation
created in the plasma. In fact, as long as the probe is weak
enough to not affect the lens, both SVI and ponderomotive
optics are well described by the linear PPS code, provided

that we have an adequate model relating pump intensity to
the index modulation. The agreement between PPS and
PIC, in particular, suggests that a good understanding of the
interaction can be achieved even without fully resolving all
components of the electromagnetic fields. However, inclu-
sion of nonlinear effects is required to understand how
performance changes as the probe energy increases.
Plasma optics are useful only if they support higher

intensity or energy flux in the probe than is required in the
pumps that create them, and to be practical, the damage
tolerance must be much higher than solid-state equivalents.
In Fig. 4(a), 3D nonlinear envelope simulations measure
the focusing efficacy, defined here as the peak intensity at
focus divided by incident probe power and normalized to
the low-power limit, for a SVI lens with the same
parameters as in Figs. 3(a) and 3(b). As energy increases
to 100 mJ, this efficacy drops, setting an effective damage
threshold. At 60 mJ, where performance is above 65%, the
probe energy is almost 100 times the energy in each pump
and the flux seen by this lens is 230 J=cm2, well above the
energy flux limits for a solid-state optic exposed to a
femtosecond pulse. In general, an SVI optic can take
advantage of wavelength-dependent ionization or the
differences between field and collisional ionization to sup-
port higher energy or intensity in the probe than required for
the pumps.
A similar approach is used to find an effective damage

threshold for a ponderomotive lens, as shown in Fig. 4(b),
where 2D PIC simulations at the same conditions as those
in Figs. 3(c) and 3(d) capture a gradual drop-off in lens
efficacy above 1014 W. Near this threshold, the intensity
within the lens is more than 1017 W=cm2. A ponder-
omotive plasma optic relies on the relatively slow response
of ions to intense light fields. Although the local electron
density provides the index modulation, the plasma lens has
an underlying ion density structure which changes shape
slowly, helping maintain the overall structure even at high
probe intensity. An ion structure can be formed over several

(a)

(c) (d)

(b)

FIG. 3. Simulations of focusing by thick plasma lenses formed
by SVI [(a),(b)] and ion fluctuations [(c),(d)] using a 3D non-
linear envelope equation solver [(a),(b)] and 3D PIC simulations
[(c),(d)]. (a) The density of plasma after passage of the pumps
(upper half) and the probe (lower half) through a D ¼ 200 μm
column of molecular nitrogen. (b) The probe intensity at the z ¼
3 mm focal spot. In (a),(b), the pumps are 10 fs, 800 nm, 0.65 mJ
pulses focused at z ¼ 3 mm and z ¼ 0.5 mm, and the probe is
1 ps, 800 nm, and 60 mJ. In (c),(d), the pumps are 15 TW, 1 μm
pulses with 500 fs duration, the probe is a 100 TW, 1 μm pulse
with 40 fs duration, and the hydrogen plasma has D ¼ 40 μm
with an initial density density ne=nc ¼ 0.045 and electron
temperature Te ¼ 100 eV. (c) The ion density after both the
pump and the probe have passed, and (d) the probe intensity near
the focal spot.

(a) (b)

FIG. 4. Plasma lens efficacy (peak focal intensity normalized
by incident probe power) at varied incident probe energy for
(a) SVI calculated with the 3D nonlinear envelope equation and
(b) the ponderomotive ion mechanism using 2D PIC. (a) Param-
eters apart from probe energy are the same as in Figs. 3(a)
and 3(b). (b) Physical parameters are the same as in Figs. 3(c) and
3(d), although these simulations are 2D and the resolution is
20 cells=λ and 10 particles per cell.
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picoseconds by weak pumps, but requires far higher
intensity to destroy during the 40 fs probe duration.
In conclusion, we have shown that plasma nonlinearities

can be used to create efficient high-damage-threshold
diffractive plasma lenses. Simulations suggest that the
intensity damage threshold of these lenses ranges from
more than 1014 W=cm2 for the ionization mechanism to
more than 1017 W=cm2 for the ponderomotive mechanism.
The generality of holography means that holographic
plasma optics can almost arbitrarily manipulate intense
beams; these mechanisms are not limited to the creation of
simple lenses.
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