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Time varying media recently emerged as promising candidates to fulfill the dream of controlling the
wave frequency without nonlinear effects. However, frequency conversion remains limited by the dynamics
of the variations of the propagation properties. Here we propose a new concept of space-time cascade to
achieve arbitrary large frequency shifts by iterated elementary transformation steps. These steps use an
intermediate medium in which wave packets enter and exit through noncommutative space and time
interfaces. This concept avoids high frequency or subwavelength demanding metamaterials. Upward and
downward frequency conversions are performed. The transmitted energy yield is given by the frequency
ratio, regardless of impedence mismatch. We implement this concept with water waves controlled by
electrostriction and achieve frequency conversion over 4 octaves.
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Spatial control of wave propagation has hardly any
limits, while time manipulation remains very challenging.
Frequency conversion is an essential component of spectral
processing upon which much fundamental research [1–4]
and countless industrial applications [5–7] are based. It is
traditionally performed using nonlinear processes that are
amplitude dependent and requires high power signals.
Time-varying media have recently opened exciting per-
spectives for linear frequency conversion based on wave
speed variations [8,9]. This relies on the considerable
theoretical developments [10,11] and technological
achievements in metamaterials, pervading all types of
waves such as electromagnetics [12–19], acoustics [20],
elastic [21,22], or hydrodynamics [23,24]. However, large
frequency conversions are still challenging as the achiev-
able changes in the medium properties are limited.
Here, we introduce the concept of a “space-time cas-

cade” to perform arbitrary large frequency conversions and
circumvent the previous limitations. It consists in iterating
arbitrarily small transformation steps, consisting of a
temporal and a spatial interface. We implement experi-
mentally this concept with water waves and achieve a
frequency conversion cascade over 4 octaves.
Comprehensive wave control involves the ability to

change the direction and frequency of a wave, i.e., to move
the characteristics of the wave from one point ðk1;ω1Þ to
another arbitrary point ðk01;ω0

1Þ on the dispersion cone.
To perform such a shift, a common technique is to introduce
a second propagating medium 2 with different properties
from the original medium 1. In ðk;ωÞ Fourier space,
these two media are represented as two distinct cones
as shown in Fig. 1(a). The general idea of space-time
cascade is to iterate small steps between the two media in
order to achieve arbitrary transformations by successive
projections.
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FIG. 1. Principle of wave manipulation by iterative space-time
interface crossing between two media. (a) In the ðk;ωÞ Fourier
space, each isotropic medium is represented by a cone given by
its dispersion relation. A wave packet in a given medium can be
represented as a point on the associated cone. Changing the
direction or the frequency of the wave packet can be seen as the
displacement (green line) of the point on the cone. (b) Example of
a transformation in the horizontal plane (with fixed frequency) for
a beam deviated by a prism and (c) the associated transformation
in the Fourier space. The initial plane wave ðk1;ω1Þ is deviated by
projection of the wave vector in the prism medium ðk2;ω1Þ along
the interface normal direction u ∝ k2 − k1 (red arrows) as it
enters the prism and is projected again along another direction as
it comes back in to the original media. Elementary horizontal
transformation (solid line arrows) composed of two space inter-
face crossings with different directions can be iterated to achieve
arbitrary wave bending (dashed arrows). (d) For a time interface,
the projection is in a vertical plane with k2 ¼ k1 and ω2 ≠ ω1

(blue arrows). The iteration of an elementary vertical frequency
conversion transformation (solid arrows) composed of a time
interface projection followed by a horizontal space interface
projection generates arbitrary frequency conversion (dashed
arrows). The reflected waves have been omitted for clarity.
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Let us first consider the special case of pure spatial
iterations in space, as sketched in Fig. 1(b). To change the
direction of a wave packet propagating in a medium 1, it is
possible (though a bit artificial) to proceed by successive
small changes of direction by using a prism made of
medium 2. The wave packet is going through two succes-
sive interfaces with different orientations that change the
final direction of the wave packet while its frequency
remains unchanged. Medium 2 acts as an intermediate
medium and at the end, the global change of direction
results from the noncommutativity of the two interface
crossings. In Fourier space, the initial wave packet can be
represented with good approximation by a point with
coordinates ðk1;ω1Þ lying the dispersion cone associated
to the propagating media as shown Fig. 1(c). When the
wave packet crosses the first prism interface of normal u,
the initial point ðk1;ω1Þ experiences a projection S1→2 and
ends up at coordinate ðk01;ω1Þ on the dispersion cone
associated to the prism. As the frequency is not affected by

the interface, the projection occurs in the horizontal plane
associated to constant ω slicing the two cones as shown in
Figs. 1(a) and 1(c). The projection direction of S1→2 is
given by k01 − k1 ∝ u giving a simple geometrical con-
struction of the projection. In the same manner, the wave
packet will experience a second horizontal projection S02→1

with direction given by the normal to the second interface
to exit the prism. As S1→2 and S02→1 do not commute, the
wave comes back on the first cone with different coor-
dinates compared to its initial position. Even though the
transformations allowed by one prism are quite limited,
iterating this process allows us to implement arbitrary
rotation on the dispersion cone in the horizontal
plane.The concept of space-time cascade is based on the
same idea to move vertically on the dispersion cone using
an iteration of elementary steps composed of a time and a
space interface [see Fig. 1(d)]. Projections associated with
time interfaces, T1→2, are obtained by a temporal change of
the propagation properties from medium 1 to 2 [8,17,19].
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FIG. 2. Experimental implementation of elementary space-time transformation step. (a) Schematic of the experimental setup. The
shaker produces a plane water wave packet. The transparent electrode changes medium 1 into 2 by electrostriction with controllable high
voltage switches. The wave field is measured by a camera from the deformation of a checkerboard pattern placed under the container
[27,28]. (b) Water waves dispersion curves of media 1 with no voltage and 2 with V0 ¼ 8.0 kV and d ¼ 6 mm. Example of an
elementary frequency up-conversion transformation step composed of successive space projection S1→2 and time projection T2→1 for an
initial wave at ν ¼ 10 Hz. Normalized kymographs of a wave packet centered at ν ¼ 10 Hz crossing (c), a space interface S1→2, (e), a
time interface T2→1 and (g), the elementary transformation step T2→1S1→2 [27]. (d), (f), and (h) Normalized k spectra and ν spectra taken
before and after the interface crossings, measured from (c), (e), and (g), respectively.
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In this case, momentum is conserved (k2 ¼ k1) while the
frequency changes ω2 ≠ ω1 [Fig. 1(d)], leading to a vertical
projection between the dispersion curves of the two media.
If one comes back in medium 1 with a spatial interface S2→1

corresponding to a horizontal projection, both the fre-
quency and the wave vector are changed through the global
transformation S2→1T1→2 [25].
In practice, the dispersion cones of the two media are

very close to each other due to the difficulty of significantly
varying the propagation properties of a medium. Step
transformations therefore induce very limited frequency
shifts Δν. However, these small shifts can be added by
iteration [Fig. 1(d)] allowing arbitrarily large transforma-
tions between two media with arbitrarily close properties.
Any trajectory on the dispersion cone characterizing wave
bending and frequency conversion can be implemented
using this concept [Fig. 1(d)]. Frequency conversions can
be achieved by cascading elementary vertical steps to form
a staircaselike transformation with a priori no limitation. A
simple permutation of space and time interfaces can change
a blueshift into a redshift, going up or down the trans-
formation staircase. The commutated product, changing
T2→1S1→2 to S2→1T1→2, corresponds to the time-reversed
transformation. Since the transformations are linear, the
previous considerations can easily be extended to wave
packets with arbitrary frequency spectra.
We implemented this concept with electrostriction-

controlled water waves. When a flat electrode is mounted
above the grounded conductive water surface, the applied
electric field exerts an attractive force on the liquid surface
that changes the velocity of the water wave [26]. This
creates well-controlled space and time varying properties.
Figure 2(a) shows the experimental setup consisting of a
container filled with tap water [27]. Transparent FTO
electrodes are suspended horizontally at a distance d above
the water. The electric potential V can be tuned in the range
of 0 to 10 kV using electrical switches. Plane waves are
produced by a shaker exciting horizontally a paddle. The
wave field is measured from top-view images using the
deformation of a checkerboard pattern placed below [28].
For a given wave number k, the voltage-dependent refrac-
tive index nðk; VÞ satisfies

nðk; VÞ ¼ ½1 − χ0ðkÞV2�−1
2 with

χ0ðkÞ ¼ ϵ=½ρc2ðkÞd2 tanhðkdÞ�: ð1Þ

cðkÞ is the wave velocity given by the gravity-capillary
dispersion relation at V ¼ 0, ϵ is the dielectric permittivity
of air, and ρ is the density of the liquid [26]. Figure 2(b)
shows the dispersion relation (1) for V ¼ 0 kV (medium 1)
and for V ¼ V0 (medium 2) as well as the frequency up-
conversion transformation step consisting of a space inter-
face S1→2 followed by a time interface T2→1. The space
interface is located at the edge of the electrode where
the refractive index varies typically over a width ∼d.

Figure 2(c) shows the experimental normalized kymograph
of a wave packet crossing the interface S1→2 as it enters
under the electrode set at V0 to produce a change of
refractive index Δn ≈ 0.5 [27]. The wave vector is shifted
by Δk ≈þ200 m−1 while its frequency spectrum remains
unchanged [Fig. 2(d)]. The wave packet propagating under
an electrode can also cross a time interface T2→1 when the
voltage V0 is switched off, resulting in a sudden change
Δn ≈ −0.5 [27]. The frequency spectrum is blueshifted by
Δν ≈þ4 Hz while the k-spectrum remains unchanged
[Fig. 2(f)]. The complete elementary transformation step
consisting of a succession of interfaces S1→2 and T2→1

[Fig. 2(g)] shifts both the frequency and the wave vector
[Fig. 2(h)] to satisfy the dispersion relation of medium 1.
The kymographs show transformation steps as space-time
tessellation. Medium 2 appears as square patterns which
size depends on the space-time extension of the wave
packet [27].
The experimental setup can be modified to perform

frequency conversion cascades [Fig. 3(a)]. The wave packet
undergoes multiple transformation steps T2→1S1→2 as it
propagates under successive electrodes. The wavelength λ
of the wave packet decreases of after each step [Fig. 3(b)
compared to a free propagating reference, Fig. 3(c)]. These
contractions are associated to the blueshift in frequency
satisfying ν ¼ ðc=λÞ [Fig. 2(b)] [27]. The frequency spec-
trum is shifted by Δν ≈ 2 Hz at each step [Fig. 3(d)]. The
opposite redshift cascade can also be achieved by the time
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FIG. 3. Experiment of the frequency conversion cascade.
(a) Schematic of the space-time cascade experimental setup (top
view) with 3 electrodes controlled by independent electrical
switches. The plane wave packet with ν ≈ 10 Hz undergoes 3
successive elementary transformation steps T2→1S1→2 as it passes
under each electrode initially set at V0 and switched off synchron-
ized with the wave propagation (see insets). (b) Snapshots of the
initial wave packet (t ¼ 0.0 s) and of the successive frequency
shifts after each transformation step at t ¼ 0.4, 1.25, and 2.0 s [27].
Color encodes wave amplitude in arb. units. (c) Snapshots of the
same propagating wave packet taken in the absence of voltage
(reference). (d) Frequency spectra of the snapshots (b) showing a
blueshift Δν ≈ 2 Hz for each transformation step. (e) Frequency
spectra associated with the time reversed process for an initial wave
packet of ν ≈ 16 Hz redshifted by successive elementary trans-
formation steps S2→1T1→2 [27].
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reversed operation with successive time-flipped steps
S2→1T1→2 [Fig. 3(e)] [27].
Other geometries are more suitable when the number of

transformation steps increases. Cavities, such as a unidi-
rectional triangular geometry [Fig. 4(a)] or a Fabry-Pérot
cavity, allow a single active medium to perform all the
transformation steps. The time interface is synchronized
when the circulating wave packet is in the active medium.
Since the extension of the wave packet is limited, it is
completely independent of the cavity modes in contrast to
time-varying resonator experiments [9,12,13,30]. Because
of the limited efficiency of water wave reflection, an
amplification loop must be used to send the wave packet
back into the active medium [Fig. 4(b)]. With damping
compensation, a cascade of up and down frequency
conversion can be achieved over a range of more than 4
octaves with 23 elementary steps [Fig. 4(c)].
As in most time-varying experiments, electrostriction-

driven interfaces have an impedance mismatch creating
reflected waves. These small amplitude waves can be further
reduced by antireflection coating [17] or by using smoother
interfaces [29]. In the space-time cascade, the duration of
time interfaces is limited only by the residence time of the
wave packet in the active medium. This is an asset for
implementation with other types of waves such as in optics.
We now focus on the role of the impedance mismatch

on the wave amplitude transmission yield through an
elementary transformation step. Impedance mismatch
results in the creation of the reflected wave packet at the
(either space or time) interface. However, energy and
momentum conservations differ depending on the type
of interference. In the case of spatial interface, the energy

flux of an incident wave packet is conserved but splits into
the transmitted wave packet and the reflected one. Hence,
the transmitted energy flux after the interface is always
lower than the incident one without impedance matching.
Temporal interfaces on the other hand do not conserve
energy flux as they break the time translational invariance.
The sum of energy flux of the transmitted and reflected
wave packets is not equal to the energy of the incident one
and can be smaller or larger. For an elementary step
transformation composed of sharp space and time inter-
faces, the total transmitted energy of the wave packet
normalized by the incident one satisfies the simple relation
Γ ¼ ω0=ω, independent of the order of the interfaces (see
Supplemental Material) [8,27]. In terms of momentum,
spatial interfaces do not conserve momentum. The sum of
the reflected and transmitted momentum does not equal the
incoming one. For time interface, the momentum is
conserved due to the spatial translation symmetry and
the sum of the sign-opposed momentum of the reflected
and transmitted wave packet equals that of the incident
momentum. For an elementary step transformation, the
total transmitted momentum of the wave packet normalized
by the incident one also satisfies Γ ¼ ω0=ω. The total
transmitted energy is thus independent of the impedence
mismatch. However, the later induces a reflected wave at
the space interface and the production of two counter-
propagating additional waves at the time interface. The loss
in transmission at the space interface is related to the gain at
the time interface resulting in an impedance independent
result (see Supplemental Material [27]).
The ratio Γ ¼ ω0=ω for an elementary step naturally

leads to an interpretation in terms of number of photons
with energy ℏω before the conversion and ℏω0 after. Far
from interfaces, the number of incoming photons N ∝ E=ω
is equal to the number of outgoing transmitted photons
N0 ∝ E0=ω0. The loss of photons by reflection due to the
spatial interface is compensated by the gain at the temporal
interface. These results are valid provided that both space
and time interfaces are sharp. Breaking this symmetry by
smoothing one interface could enable us to engineer the
output yield and amplify or damp the transmitted wave
packet.
The space-time cascade requires us to texture the

propagating medium in space and time with a characteristic
size given by the wave packet. It thus differs from the
widespread regime of parametric excitation for which the
modulation of the medium property is typically of the order
of the wave frequency. Unlike parametric excitation, energy
gain or loss can occur even in the case of impedance
matching as the intrinsic properties of the wave packet are
modified undergoing a series of noncommutable space-
time transformation steps.
Interestingly, a gain process in impedance-matched

modulated medium has recently been described for waves
propagating in luminal materials, in which the index

(a)

(b)

(c)

vin, kin vout, kout

FIG. 4. Frequency conversion cascade confined within a cavity.
(a) Example of a cavity with a triangle geometry to perform
multiple passes under the same electrode. The circulating wave
packet is limited to the size of active medium (ST) with no links
to the cavity modes. (b) Experimental implementation in a
modified Fabry-Pérot cavity with an amplification loop to
compensate for the poor reflection efficiency of water waves.
(c) Up and down frequency conversion cascades and dispersion
curves from Eq. (1) in semilogarithmic scale for an initial wave
packet at ν ¼ 16 Hz. (inset: close-up).
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modulation moves at or close to the velocity of light.
A redistribution of the lines of force in space can lead to net
energy gain of the propagating wave [31]. Electrostriction
offers a versatile spatiotemporal control that would allow us
to experimentally implement this original amplification
mechanism in a simple and controllable way, as well as
other more complex spatiotemporal modulations.
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