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Capturing non-Markovian dynamics of open quantum systems is generally a challenging problem,
especially for strongly interacting many-body systems. In this Letter, we combine recently developed non-
Markovian quantum state diffusion techniques with tensor network methods to address this challenge. As a
first example, we explore a Hubbard-Holstein model with dissipative phonon modes, where this new
approach allows us to quantitatively assess how correlations spread in the presence of non-Markovian
dissipation in a 1Dmany-body system. We find regimes where correlation growth can be enhanced by these
effects, offering new routes for dissipatively enhancing transport and correlation spreading, relevant for
both solid state and cold atom experiments.
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Introduction.—In open quantum system dynamics, it is
becoming increasingly crucial to consider the effects of
non-Markovian dissipation, i.e., dissipation into a spec-
trally structured environment which remembers past inter-
actions with the system [1], as demonstrated in many recent
quantum devices which are non-Markovian in nature [2–4].
While there has been great progress in treating these
features computationally [5–11], there has so far been
difficulty in generalizing these methods for strongly inter-
acting many-body systems, even in 1D. Here, by hybrid-
izing tensor network and non-Markovian stochastic
techniques, we show how to capture the effects of non-
Markovian dissipation on the generation of long-range
correlations in strongly interacting one-dimensional many-
body systems. As an example, we consider a damped form
of the Hubbard-Holstein model, which introduces elec-
tron-phonon interactions to strongly correlated systems
[12–14]. We find that the growth of pairing correlations
can be enhanced by going beyond the Markovian regime
and that by controlling the properties of the environment
we can tune the correlation spreading in the (electron)
system. Our results demonstrate the capabilities of these
methods to explore dissipative many-body systems
beyond the Born-Markov limit and quantitatively capture
their out-of-equilibrium dynamics, as motivated by
experimental advances with many-body cavity quantum
electrodynamics (QED) [15–17] and with cold atoms
immersed in reservoir gases [18–22].
Large separations of frequency scales in quantum optical

systems coupled to their environment have made theoreti-
cal tools such as the Gorini, Kossakowski, Sudarshan,
Lindblad master equation [23,24] invaluable for quantita-
tively capturing many important experiments. There, the
system and environment are weakly coupled and the

environment is memory less, satisfying the Born-Markov
approximation [25,26]. Reservoir engineering in recent
quantum optics experiments, such as using impurities
immersed in Bose-Einstein Condensates (BEC) to produce
spin-boson models [18–22] or with multimode cavity QED
systems [15–17], has made it possible to go beyond the
Born-Markov regime in systems where microscopic mod-
els can still be derived from first principles. This has
motivated interest in creating theoretical tools to compute
dynamics in these cases. The large size of these systems
makes it necessary to trace out the BEC in the former
scenario and the cavity modes in the latter, which results in
open quantum system descriptions that are generally non-
Markovian [14,27–30]. Simulating these situations is
particularly challenging due to the combination of strong
interactions generating strongly correlated phases, the
many-body system giving rise to an exponentially large
Hilbert space and the non-Markovian features requiring the
use of an equation of motion that is nonlocal in time.
Finding the best way to deal with non-Markovian

dynamics, the most natural kind of open system dynamics
occurring in the solid state from which our example
originates, is an old and difficult problem, and a number
of approaches have been developed over the past decades,
ranging from non-Markovian master equations [26] to non-
Markovian collapse theories [31], collisional models [32],
and stochastic Schrödinger equations [33,34] (see Ref. [1]
for a detailed review). More recently, time-evolving matrix
product operators (TEMPO) [7–9] or hierarchical equations
of motion (HEOM) [5,6] have shown remarkable potential
for systems with a small Hilbert space, but so far have not
been generalized to many-body systems.
To address this challenge here we employ the hierarchy

of pure states (HOPS) [10,11], a non-Markovian quantum
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state diffusion method, which we have combined with
matrix product state (MPS) techniques [35]. We demon-
strate applications for this method by exploring dynamics
in a modified Hubbard-Holstein model [12,13], where we
couple strongly interacting fermions to local harmonic
oscillator modes that are damped, representative of pho-
nons that have dispersion. We show that non-Markovian
dissipation can enhance the short-time dynamical growth of
the pairing correlations where we find a qualitative differ-
ence compared to the Markovian, but also the phononless
cases. This demonstrates that this method allows us to
quantitatively simulate the dynamics of strongly correlated
one-dimensional open many-body systems well into the
non-Markovian and strong coupling regimes.
Dissipative Hubbard-Holstein model.—We consider the

model shown in Fig. 1(a), with fermions in anM site lattice,
described by a many-body system Hamiltonian Ĥs where
each site is coupled to a local phonon mode similar to the
(Hubbard)-Holstein model [12,13]. The total Hamiltonian
is given by

Ĥ ¼ Ĥs þ ω
XM

n¼1

â†nân þ g
XM

n¼1

ðL̂nâ
†
n þ L̂†

nânÞ; ð1Þ

where â†n and ân create and destroy a phonon in the nth
mode and L̂n are system operators acting on site n. We
modify the usual Holstein model by going beyond the
approximation of dispersionless phonons, taking a next
step in better modeling realistic situations with this toy
model [36]. We incorporate these effects by modeling each
phonon mode as a damped harmonic oscillator, such that
we can write the phonon correlation function as

αnðt − t0Þ ¼ hânðtÞâ†nðt0Þi ¼ e−κjt−t0j−iωðt−t0Þ; ð2Þ

where ω and κ are the phonon frequency and damping rate,
respectively.
Non-Markovianquantumstatediffusion.—Non-Markovian

dynamics arise when we trace out part of the system
where we do not have a strong separation of frequency
scales that satisfy the conditions for the Born-Markov
approximation. In principle it is always possible to place
the boundary of the system where the dynamics are
Markovian. In this case, we could take the fermions and
phonon modes as the system [dashed black box in
Fig. 1(a)], with the phonon damping remaining
Markovian [37]. However, in many relevant situations
(such as multimode cavities described above), it becomes
prohibitively expensive computationally to make this
choice because of the large local basis. In this particular
case, we find it much more convenient to trace out the
phonon modes and work with an effective equation of
motion for the Hubbard system only [dashed blue box in
Fig. 1(a)]. For finite κ the resulting correlation function

for the phonon modes, Eq. (2), cannot be approximated
as a delta function, and so we must use the non-
Markovian quantum state diffusion equation for the
dynamics of the reduced system jψðtÞi [1,33],

∂tjψðtÞi ¼ −iĤsjψðtÞi þ g
XM

n¼1

L̂nz�nðtÞjψðtÞi

− g
XM

n¼1

L̂†
n

Z
t

0

dsα�nðt − sÞ δjψðtÞi
δz�nðsÞ

; ð3Þ

where we have introduced a set of stochastic colored noise
terms z�nðtÞ which upon taking an ensemble average give
the correlation function E½znðtÞz�n0 ðt0Þ� ¼ δn;n0αnðt − t0Þ.
HOPS + MPS algorithm.—The insight which leads to

the HOPS algorithm [10,11] is to introduce a set of
auxiliary states which absorb the numerically intractable
functional derivatives δ=δz�nðsÞ,

jψ ð1;nÞðtÞi ¼ DnðtÞjψðtÞi≡
Z

t

0

dsα�nðt − sÞ δjψðtÞi
δz�nðsÞ

: ð4Þ

Deriving an equation of motion for this auxiliary state
requires the introduction of further auxiliary states defined
through jψ ðk;nÞðtÞi ¼ ½DnðtÞ�kjψðtÞi which give rise to a
hierarchical set of equations. In order to write this hier-
archy, we find it convenient to include the hierarchy index
into the basis states and write a total state for the combined
system and auxiliary Hilbert space,

jΨðtÞi ¼
X

k⃗

Ck⃗ðtÞjψ ðk⃗ÞðtÞi ⊗ jk⃗i; ð5Þ

(a)

(b)

FIG. 1. (a) Illustration of the Hubbard model coupled with
strength g to independent identical local phonon modes of
frequency ω and damping rate κ. While the dissipative dynamics
of the system made up of the fermions and the phonons (dashed
black box) is Markovian, the one of the Hubbard system alone
(dashed blue box) is generally non-Markovian. (b) Matrix
product state (MPS) representation of the many-body HOPS
equations [see Eq. (6)], with local dimension d and hierarchy
dimension kmax þ 1 in the usual form but now with an enlarged
local dimension dþ kmax þ 1.
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where the Ck⃗ðtÞ are time-dependent complex numbers

and jk⃗i ¼ jk1; k2;…; kMi ¼ jk1i⊗ jk2i⊗ � � �⊗ jkMi with
each of the kn running from 0; 1;…;∞, as we have a
hierarchy index for each of the M phonon environment
modes. Each hierarchy index is represented as an inde-
pendent boson mode, see Supplemental Material for details
[38]. Note that the jψ ð0ÞðtÞi ⊗ j0i ¼ jψðtÞi is the physical
system state. This allows us to write the equation of motion
for the total state as

∂tjΨðtÞi ¼ −iĤsjΨðtÞi þ
XM

n¼1

½z̃�nðtÞgL̂n − ðκ þ iωÞK̂n

þ gL̂n ⊗ K̂nb̂
†
n − gðL̂†

n − hL̂†
nitÞ ⊗ b̂n�jΨðtÞi:

ð6Þ

Note that we time-dependently modify the colored noise
according to z̃�nðtÞ ¼ z�nðtÞ þ g

R
t
0 dsα

�
nðt − sÞhL̂†

nis with
hL̂†

nis ¼ hψ ð0ÞðsÞjL̂†
njψ ð0ÞðsÞi thus explicitly taking into

account previous states of the system. Note that one has
to consider sufficiently small time steps in the numerical
resolution of the equation so that the time-dependent terms
in Eq. (6) can be approximated as constant in time. In this
way the nonlinear terms z̃�nðtÞ and hL̂†

nit are calculated
using the state before the time increment.
In the above equation we have introduced the bare

operators (omitting the index n) b̂†jki ¼ jkþ 1i, b̂jki ¼
jk − 1i (see Refs. [45,46]) and K̂ ¼ P

k kjkihkj. We ini-
tialize the hierarchy with C0ð0Þ ¼ 1 and Cjkj>0ð0Þ ¼ 0 and
in order to extract observables we use the (normalized)
physical system state OðtÞ ¼ hψ ð0ÞðtÞjÔjψ ð0ÞðtÞi which we
must average over many trajectories with different realiza-
tions of the random numbers z�nðtÞ, similar to conventional
QSD equations [1,25,37].
Formally the hierarchy depth is infinite, but the pop-

ulations of the auxiliary states typically decrease with the
hierarchy indices kn, which makes it possible in practice to
truncate each hierarchy to some index kmax (chosen such
that the results have converged to a given precision) to
render the problem numerically feasible. In general, the
stronger the violation of the Born-Markov approximations
the larger the number of auxiliary states we must retain.
Note that this hierarchy truncation still results in an
exponential number of equations: if each hierarchy index
can run from 0; 1;…; kmax then in total we have ðkmaxþ1ÞM
auxiliary states. This motivates the incorporation of MPS
techniques which allow us to time evolve many-body states
of one-dimensional Hamiltonians without explicitly work-
ing with the full Hilbert space [35]. As each hierarchy only
couples locally with a system operator of site n this allows
us to efficiently write this problem as an MPS simply with
an enlarged local Hilbert space consisting of the physical
local dimension of the system, but now also an effective

local dimension for the auxiliary state of that effective
environment mode [see Fig. 1(b)] modeled as a boson
Hilbert space. This is particularly convenient as we can then
apply standard MPS techniques for time evolution [47].
This does result in an MPS with a large local dimension but
in the following sections we show that it can be used to
make important quantitative predictions with practical
numerical values for the size of the hierarchy dimension
kmax and also the bond dimension of the MPS D (see
Supplemental Material for a detailed error analysis [38]).
Note finally that providing kmax and D are large enough,
Eq. (6) numerically converges to the exact dynamics of the
system (as well as of the environment via monitoring of the
noises as we will discuss below), as it does not directly rely
on any approximation (neither Born nor Markov).
Benchmarking.—We first consider the out-of-equilibrium

dynamics of a Holstein model [12,13]. We use

Ĥs ¼ −J
X

n

ðĉ†nĉnþ1 þ ĉ†nþ1ĉnÞ; ð7Þ

as the system Hamiltonian in Eq. (6), where J describes the
tunneling of the (spinless) electrons. Additionally, we use the
number operator as our system-environment coupling oper-
ators L̂n ¼ n̂n ¼ ĉ†nĉn, and as mentioned we include dis-
sipation on the phonons yielding the damped correlation
functions, Eq. (2).
We begin with the initial state j1; 0; 1; 0;…i and time-

dependently calculate a charge density wave (CDW)
correlations OCDWðtÞ ¼ ð1=MÞPnð−1Þnhn̂nðtÞi. We plot
this in Figs. 2(a) and 2(b) for different coupling strengths g
and phonon dispersions κ. Comparing to the results
obtained in Ref. [48], which analyzes this system in the
limit of dispersionless phonons (κ → 0), we find the same
qualitative behavior, where for g ¼ J the dynamics are
similar to the closed system (g ¼ 0) case where there are
oscillations but the CDW melts into a homogeneous steady
state. Increasing the coupling strength to g ¼ 5J we can see
that the CDW melting is slowed for short times and the
oscillations become completely damped.
Born-Markov limit.—We also compare our results to that

of a conventional quantum state diffusion (QSD) equation
valid in the Born-Markov limit [37]. This is achieved
by setting kmax ¼ 1 and αnðτÞ ¼ δðτÞ (see Ref. [10] and
Supplemental Material [38]) which physically corresponds
to the approximation that the phonon dispersion κ goes to
infinity. From Fig. 2 we see that for strong coupling
(g ¼ 5J) this model completely fails to predict the sup-
pression of the CDW correlations at short times.
Finite temperature.—Within the framework of HOPS it

is also possible to efficiently include finite temperature
effects of the environment (see Ref. [11]). In Figs. 2(c)
and 2(d) we plot the dependence on the CDW correlations
upon increasing the initial temperature of the environment
modes. We see that the suppression of the CDW melting is
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enhanced for increasing temperatures which is due to a
nonzero population of phonons in the initial state, allowing
for a greater effect on the short time dynamics. Including
finite temperature effects in the Born-Markov QSD simply
increases the effective system-environment coupling
strength (see Supplemental Material [38]) which as seen
from Figs. 2(a) and 2(b) predicts an increased decay of the
CDW. Increasing the temperature of the phonon modes in
this model therefore results in further deviations from the
Born-Markov regime, in contrast to the more common
cases where larger temperatures suppress non-Markovian
features [1,14].
Correlation spreading.—We move on and consider the

Hubbard-Holstein model describing two-species fermions
coupled to phonon modes and now with an on-site inter-
action U. Explicitly our system Hamiltonian is given by

Ĥs¼−J
X

n;σ

ðĉ†n;σ ĉnþ1;σþ ĉ†nþ1;σ ĉn;σÞþU
X

n

n̂n;↑n̂n;↓; ð8Þ

where n̂n;σ ¼ ĉ†n;σ ĉn;σ and our system-environment coupling
operators are L̂n ¼ n̂n;↑ þ n̂n;↓. As earlier, we go beyond the
usual case and include phonon dissipation.

In Fig. 3 we begin in the initial product state j ↑;↓;↑;
↓;…i and in (a) we analyze the fermionic pairing corre-
lation functions

Pm ¼ 1

M −m

X

m̃

hĉ†m̃;↑ĉ
†
m̃;↓ĉm̃þm;↓ĉm̃þm;↑i: ð9Þ

For the case where there is no coupling to the phonons
g ¼ 0 we observe a peak in these correlations which
spreads out in time, and beyond this the correlations decay
exponentially which is the usual light cone spreading of
correlations [49–51]. Including coupling to the phonon
modes with g ¼ J we see similar behavior, although the
dissipation damps the amplitude of this peak in time,
gradually suppressing correlations in the steady state. For
finite κ (i.e., non-Markovian environment behavior), we see
a strong enhancement of the correlation length beyond the
light cone at short times (tJ ∼ 0.5, 1) which is qualitatively
different to the case of purely Markovian dissipation
(κ → ∞) where the correlation length is unaffected.
These features of the non-Markovian dynamics can be

understood by realizing that the coupling to the phonons
dresses the electrons [53], modifying the quasiparticle

! !"# $ $"# %
&!"#

!
!"#

$

0 0.5 1 1.5 2

0

0.5

1

0 0.5 1 1.5 2
-0.5

0

0.5

1(b) (c)

(a)

FIG. 3. Dynamics in the dissipative Hubbard-Holstein model
[Eq. (1) with the systemHamiltonian (8), L̂n ¼ n̂n;↑ þ n̂n;↓ and the
environment correlation functions (2)], upon beginning in an initial
CDW state j ↑;↓;↑;↓;…i. (a) The pair correlation function
[Eq. (9)], where we use g ¼ J (g ¼ 0 in black) and compare
different phonon dispersion rates κ ¼ ½g=5; 5g;∞� (dark to light
blue). (b) Dynamics of the average phonon mode occupation,
ha†aiav ¼ ð1=MÞPnha†nani ¼ ð1=MÞPn ðjz̃�nðtÞj2 − 1Þ. (c) The
real (blue) and imaginary (red) part of the phonon coherences
ha†iav ¼ ð1=MÞPnha†ni ¼ ð1=MÞPn z̃

�
nðtÞ. For our hybridized

HOPSþMPS algorithm, we use the parameters kmax ¼ 6,
D ¼ 300, and Jdt ¼ 0.01 where we also have incorporated
conserved quantum numbers into the MPS algorithm [52]. We
average the observables over Ntraj ¼ 100 trajectories. In all cases
we use U ¼ J, ω ¼ 2J, and M ¼ 50 sites.
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FIG. 2. Dynamics in the dissipative Holstein model [Eq. (1)
with the system Hamiltonian (7), L̂n ¼ n̂n and the environment
correlation functions (2)] upon beginning in an initial state
j1; 0; 1; 0;…i. (a),(b) The evolution of the CDW correlations
OCDWðtÞ ¼ ð1=MÞPnð−1Þnhn̂nðtÞi for different coupling
strengths g (g ¼ 0 in black dotted) and phonon dispersion rates
κ ¼ ½g; 2g;∞� (dark to light blue). The Born-Markov limit
(κ → ∞) was calculated using a conventional quantum trajectory
method [37]. (c),(d) Finite temperature analysis for different
coupling strengths g ¼ ½1; 3; 5�J (light to dark blue, g ¼ 0 in
black dotted) and phonon dispersion rates κ. See Ref. [11] on how
to adapt the algorithm for finite temperature environments. In all
cases we average the observables over Ntraj ¼ 100 trajectories
and use ω ¼ J and M ¼ 20 lattice sites. For our hybridized
HOPSþMPS algorithm, we use the numerical parameters
kmax ¼ 8, D ¼ 128, and Jdt ¼ 0.01.
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excitations and shifting the effective fermion-fermion
interaction strength Ueff → U − 2g2=ω. Here, there is a
competition between a generated effective attractive inter-
action and then the dynamical generation of phonons in the
environment, the presence of which can strongly suppress
dynamics and correlation growth resulting in CDW order
[53]. We can see the competition of these effects in Fig. 3(a),
which are made even more clear by analyzing the phonon
mode observables in Figs. 3(b) and 3(c) which we can
directly calculate from HOPS using the time-dependent
colored noise term z̃�nðtÞ in Eq. (6) (see Supplemental
Material [38]). We see that initially the phonon population
is low and so the effective interaction between fermions
dominates, enhancing the growth of pairing correlations,
before the dynamical generation of phonons begins to
dominate, suppressing correlations at later times, which
for smaller κ is larger due to an increased phonon population.
Discussion and outlook.—Our combination of the HOPS

algorithm with MPS techniques opens up the ability to
explore a wide range of new and interesting regimes that
were previously only possible to simulate qualitatively
and/or through invoking some strong approximations. By
considering the dispersive Hubbard-Holstein model we
demonstrated that we can simulate the exact dynamics
of open many-body systems well into the non-Markovian
and strong coupling regimes and we are able to quantita-
tively analyze the dynamical properties of long-range
correlation functions. In particular, we found strong quali-
tative differences in the dynamics of fermionic pairing
correlations between the non-Markovian and Markovian
cases. This work can be generalized to describe micro-
scopic dynamics in a range of experimental settings, such
as impurities immersed in BECs [18–22] or atoms in
multimode cavities [15–17].
Other non-Markovian techniques could be adapted in

order to probe the features investigated in our work, for
example TEMPO [7–9] or HEOM [5,6]. It may similarly be
possible to combine these methods with MPS, as we have
done here with HOPS. The combination is particularly
amenable to our case as it involves the evolution of a single
1D matrix product state to capture the strongly interacting
open system. Alternatively, explicitly retaining the phonon
basis states would result in an equivalent simulation with
Markovian dissipation, allowing for the solution within a
standard Born-Markov QSD [1,37]. However, we find that
the number of phonon basis states required (the local
dimension of the MPS) is generally larger than that required
for the present HOPS algorithm. In addition, HOPS has two
main additional advantages. First, it can simulate phonon
modes initially at finite temperatures and then track the
induced dynamics in real time as demonstrated here,
whereas explicitly retaining the basis states in this case
would further increase the complexity. But second,
improvements and extensions to the MPS representation
can be immediately implemented [48,54–57], allowing us

to generalize this approach and approximate the dynamics
induced by, up to reasonable timescales, environments that
have algebraically decaying correlations [10,11] such as
those that arise from power law spectral densities [1,27,28].

All data underpinning this publication are openly
available from the University of Strathclyde
KnowledgeBase [58].
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