
Exact Emergent Quantum State Designs from Quantum Chaotic Dynamics

Wen Wei Ho 1 and Soonwon Choi 2

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 12 November 2021; accepted 18 January 2022; published 11 February 2022)

We present exact results on a novel kind of emergent random matrix universality that quantum many-
body systems at infinite temperature can exhibit. Specifically, we consider an ensemble of pure states
supported on a small subsystem, generated from projective measurements of the remainder of the system in
a local basis. We rigorously show that the ensemble, derived for a class of quantum chaotic systems
undergoing quench dynamics, approaches a universal form completely independent of system details: it
becomes uniformly distributed in Hilbert space. This goes beyond the standard paradigm of quantum
thermalization, which dictates that the subsystem relaxes to an ensemble of quantum states that reproduces
the expectation values of local observables in a thermal mixed state. Our results imply more generally that
the distribution of quantum states themselves becomes indistinguishable from those of uniformly random
ones, i.e., the ensemble forms a quantum state design in the parlance of quantum information theory. Our
work establishes bridges between quantum many-body physics, quantum information and random matrix
theory, by showing that pseudorandom states can arise from isolated quantum dynamics, opening up new
ways to design applications for quantum state tomography and benchmarking.
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Introduction.—Universality, the emergence of features
independent of precise microscopic details, allows us to
simplify the analysis of complex systems and to establish
important general principles. Quantum thermalization pre-
scribes a scenario where such universal behavior arises
from generic dynamics of isolated quantum many-body
systems. It is widely accepted that quantum chaotic many-
body systems—that is, systems with spectral correlations
described by random matrix theory (RMT) [1,2]—will
locally relax to maximally entropic thermal states con-
strained only by global conservation laws [3]. Physically,
this arises because of the extensive amounts of entangle-
ment generated between a local subsystem and its comple-
ment, which acts like a bath. Ignoring the state of the bath,
the subsystem acquires a universal, mixed form, described
by a generalized Gibbs state. Understanding this univer-
sality has led to the development of the eigenstate thermal-
ization hypothesis (ETH) [4,5], and has also spurred
intense research into mechanisms for its breakdown such
as many-body localization [3,6] and quantum many-body
scarring [7,8].
Here we take a perspective different from the standard

treatment of quantum thermalization and ask: what happens
if (some) information about the bath is explicitly kept track
of instead of discarded—how then does one describe
properties of a local subsystem? Will there be any kind
of universality in this setting? Such a consideration is of
fundamental interest, as it would illuminate the role of
the bath in quantum thermalization beyond the conven-
tional paradigm. It is also natural given the capability of

present-day quantum simulators, which allow access to
correlations not only within a subsystem, but also between
the subsystem and its complement.
To this end we consider here the projected ensemble,

introduced in Refs. [9,10]. This is a collection of pure states
supported on a local subsystem A, each of which is
associated with the outcome of a projective measurement
of the complementary subsystem B in a fixed local basis.
Such an ensemble contains strictly more information than
the conventionally studied reduced density matrix ρA,
which is recovered from the first moment of the ensemble’s
distribution; higher moments further characterize statistical
properties of the ensemble in increasingly refined fashions,
such as the spread of projected states over Hilbert space.
In this Letter, we present exact results on universal

properties exhibited by the projected ensemble, obtained
from a class of quantum chaotic many-body dynamics
without global conservation laws: we rigorously show that
its statistics becomes completely independent of micro-
scopic details over time. Concretely, we focus on the
nonintegrable, periodically kicked Ising model and prove
in the thermodynamic limit (TDL) that the projected
ensemble evolves toward a maximally entropic distribution,
i.e., all its moments agree exactly with those of the uniform
ensemble over Hilbert space. In the parlance of quantum
information theory (QIT), such an ensemble is said to form
a quantum state design [11–14]. Intriguingly, this happens
in finite time in quench dynamics.
Our results demonstrate a new kind of emergent

random matrix universality exhibited by quantum chaotic
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many-body systems at infinite temperature: at late times, a
local subsystem A is characterized by an ensemble of states
indistinguishable from random ones not only within
expectation values of observables (á la standard quantum
thermalization [3]), but also within any statistical properties
of the states themselves. In other words, there is no protocol
performable on A which can information-theoretically
differentiate the projected states from uniformly random
ones. Theoretical and experimental evidence have been
given conjecturing the appearance of such universality
across wide classes of physical systems and states
[9,10]; our results complement these by furnishing an
exactly solvable model where this conjecture can be
proven.
We note that the kicked Ising model we study exhibits

RMT spectral statistics for all times, as proven in Ref. [15];
the result involved a necessary averaging over a small but
nonvanishing amount of disorder. In contrast, our work
demonstrates how universal randomness can also arise
naturally within the dynamics of a single instance
of a clean Hamiltonian and wave function, induced by
measurements.
Projected ensembles and quantum state designs.—The

projected ensemble is defined as follows [9,10]. Consider a
single generator state jΨi of a large system of N qubits
(generalization to a qudit system is immediate), and a
bipartition into subsystems A and BwithNA andNB qubits,
respectively. We assume the state of B is projectively
measured in the local computational basis, so that one
obtains a bit-string outcome zB ¼ ðzB;1; zB;2; � � � ; zB;NB

Þ ∈
f0; 1gNB and its associated pure quantum state on A,

jψðzBÞi ¼ ðIA ⊗ hzBjÞjΨi=
ffiffiffiffiffiffiffiffiffiffiffiffi
pðzBÞ

p
; ð1Þ

with probability pðzBÞ¼hΨjIA⊗ jzBihzBjΨi; see Fig. 1(a).
The set of (generally nonorthogonal) projected states over
all 2NB outcomes with respective probabilities, forms the
projected ensemble E ≔ fpðzBÞ; jψðzBÞig.
The statistical properties of E are characterized by

moments of its distribution. Concretely, the kth moment
is captured by a density matrix

ρðkÞE ¼
X

zB

pðzBÞðjψðzBÞihψðzBÞjÞ⊗k ð2Þ

acting on the k-fold tensor product spaceH⊗k
A , whereHA is

the Hilbert space of A. The first moment k ¼ 1 (mean)
contains information about the expectation value of any

physical observable in A, as ρð1ÞE equals ρA. Higher
moments k ≥ 2 capture properties beyond, in particular,
quantifying the variance, skewness, etc. of the distribution
of projected states over HA. We note that understanding
statistical properties of ensembles of quantum states or
unitaries (specifically quantifying the degree of random-
ness) forms the basis of many applications in quantum

information science such as cryptography, tomography, or
machine learning, as well as sampling-based computa-
tional-advantage tests for near-term quantum devices
[16–29]. Equation (2) probes analogous information for
the projected states of a small subsystem, where now the
ensemble is of states correlated to measurement outcomes
of the bath. We emphasize such higher moments have
begun to be experimentally probed in quantum simulators
[9], highlighting the need to better understand their
universal properties.
We focus in this Letter on generator states arising from

quench dynamics of systems without explicit conservation
laws. As quantum thermalization dictates that the first
moment should acquire a universal form ρð1ÞE ∝ IA over
time, it is natural to conjecture that higher moments become
similarly “maximally mixed” [9,10]. To quantify this, we
appeal to the notion of quantum state designs in QIT
[11–14], which measures the similarity of E to an ensemble
of uniformly (i.e., Haar)-random states on A [30], whose
kth moment is given by

ρðkÞHaar ¼
Z

ψ∼Haarð2NA Þ
dψðjψihψ jÞ⊗k: ð3Þ

The agreement of moments is captured by the trace distance

ΔðkÞ ¼ 1
2
kρðkÞE − ρðkÞHaark1; ifΔðkÞ vanishes (is ϵ small), then E

is said to form an exact (ϵ approximate) quantum state k-
design. Below, we study a local, quantum chaotic model
where the projected ensemble from quench dynamics can
be exactly calculated, and analyze the degree to which state
k-designs are formed, with time and number of qubits
measured.
Model and results.—We consider a 1D chain of N spin-

1=2 particles (or qubits) evolving under dynamics gener-
ated by the Floquet unitary

UF ¼ Uh e−iHIsingτ: ð4Þ

(a) (b)

FIG. 1. (a) Projected state jψðzBÞi on A arises from a projective
measurement of subsystem B in the local z basis, with meas-
urement outcome zB. Here the generator state is an initial product
state jþi⊗N evolved by unitary U. (b) Distribution over Hilbert
space of projected states jψðzBÞi, each occurring with probability
pðzBÞ, illustrated for NA ¼ 1. The projected ensemble E forming
a quantum state design in the TDL implies the states cover the
Bloch sphere uniformly.
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Here Uh ¼ expð−ihPN
i¼1 σ

y
i Þ is a global y rotation, while

HIsing ¼ J
P

N−1
i¼1 σziσ

z
iþ1 þ g

P
N
i¼1 σ

z
i þ ðb1σz1 þ bNσ

z
NÞ is

the Ising model with nearest-neighbor interaction strength
J and longitudinal field g, applied for time τ ¼ 1. σxi , σ

y
i , σ

z
i

are standard Pauli matrices at site i. The last term in
HIsing are boundary terms with strengths we fix to
b1 ¼ bN ¼ π=4, introduced solely for technical simplifi-
cations. See Ref. [30] for discussions of the case with
periodic boundary conditions.
Equation (4) describes unitary evolution by a 1D

periodically kicked Ising model, which is known to be
nonintegrable for generic values of ðJ; h; gÞ, and possesses
no global conservation laws. We fix J; h ¼ π=4 and allow
arbitrary g excluding exceptional points g ∉ Zπ=8. We
calculate the projected ensemble E on subsystem A com-
prised of the first NA contiguous qubits, measuring the
remaining NB qubits in the computational z basis from the
generator state jΨðtÞi ¼ Ut

Fjþi⊗N , where jþi is the x
polarized state (see Supplemental Material [30] for a
discussion on other initial states). Here t ∈ Z is the number
of applications of UF.
Our central result is that for a fixed subsystem A,

evolution under the kicked Ising model for a sufficiently
long but finite time followed by measurements on an
infinitely-large complementary subsystem B, essentially
effects random rotations on A, so that the projected states
are statistically indistinguishable from Haar-random ones,
see Fig. 1(b). Precisely, we have:
Theorem 1: For t ≥ NA and g ∉ Zπ=8, the projected

ensemble E forms an exact quantum state design in the

thermodynamic limit: for any k, limNB→∞ρ
ðkÞ
E ¼ ρðkÞHaar.

The proof of our claim combines several tools used in
quantum chaos and QIT, outlined here. First, we leverage a
so-called dual-unitary property of UF enjoyed at the
special values of J; h picked [15,36]: the unitary repre-
sented as a tensor-network can be interpreted as unitary

evolution not only along the temporal, but also the spatial
direction (Fig. 2). In the dual picture, measuring NB
qubits induces an ensemble of quantum circuits enumerated
by measurement outcomes, which act on t fictitious
qubits. Each projected state (1) arises from a particular
circuit evolution, followed by a map to the space of NA
qubits [discussed in Eq. (8)]. We show the ensemble of
circuits, when infinitely deep (corresponding to the TDL),
is statistically indistinguishable from Haar-random
unitaries—i.e., it forms a unitary design [11–14], allowing
us to establish that the projected states are correspondingly
uniformly distributed over Hilbert space.
We now flesh out the above steps. We first introduce the

following elementary diagrams:

ð5Þ

The former represents the Hadamard gate, while the latter is
a tensor evaluating to nonzero values, e∓ig, if and only if all
three indices zi ∈ f0; 1g agree, z1; z2; z3 ¼ 0ð1Þ, respec-
tively. These tensors can be contracted with one another, or
with quantum states (see Ref. [30] for details). Using this
notation, evolution by Ising interactions and transverse
fields can be cast (up to irrelevant global phases) as

ð6Þ

Additionally, a measurement at site i is represented by a
contraction with an outcome state jzB;ii, yielding two
possibilities

ð7Þ

(a) (b)

FIG. 2. (a) Tensor-network representation of an (unnormalized) projected state jψ̃ðzBÞi for the kicked Ising model, given measurement
outcome zB. Each black node carries factor g, see Eq. (5). The red box is proportional to the Floquet unitary UF, which acts on the spin
chain with initial state jþi⊗N . There are t applications of UF. (b) The same state can be obtained from evolution in the spatial direction
(right to left) of the initial state jþi⊗t on the “dual chain,” by products of unitaries UðzB;iÞ (blue box), where zB;i ∈ f0; 1g, illustrated
here as the particular product Uð1ÞUð1ÞUð0Þ � � �Uð1Þ. UðzB;iÞ is generated also by a kicked Ising model; however, the strength of the
longitudinal field at temporal site t depends on zB;i (see main text). There is a final linear mapW (pink box) sending the resulting t qubit
state to a state supported on A.
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Combined together, our diagrams allow a particularly
compact tensor-network representation of the (unnormal-
ized) projected state jψ̃ðzBÞi ¼ ðIA ⊗ hzBjÞUt

Fjþi⊗N

[Fig. 2(a)]. We note this tensor-network state is closely
related to the one representing the 2D cluster state that
forms a universal resource for measurement-based quantum
computation [30,31].
Figure 2(a) demonstrates the dual-unitary property of UF

evidently: there is a self-similarity of the diagram read
bottom-up (temporally) or right-left (spatially). Precisely,
Fig. 2(b) illustrates jψ̃ðzBÞi can be equivalently interpreted as
evolution of an initial state jþi⊗t on t qubits (“dual chain”)
by quantum circuits UðzBÞ≔ UðzB;1ÞUðzB;2Þ � � �UðzB;NB

Þ,
followed by a linear mapW transforming the resulting state
to one on NA qubits:

jψ̃ðzBÞi ¼
1
ffiffiffi
2

p
NB

WUðzBÞjþi⊗t: ð8Þ

Here,UðzB;iÞ takes two forms:Uð0Þ; Uð1Þ, depending on the
measurement outcome zB;i ∈ f0; 1g. Both are identical in
form and have parameters J; h; g; b1 similar to the Floquet
unitary (4), upon interpreting the site index i to run along the
t-site dual chain, except with differing boundary fields
bt ¼ π=4ð3π=4Þ if zB;i ¼ 0ð1Þ. Equation (2) can thus be
rewritten as a sum over all circuit evolutions:

ρðkÞE ¼
X

zB

1

2NB

½WUðzBÞðjþihþjÞ⊗tUðzBÞ†W†�⊗k

½hþj⊗tUðzBÞ†W†WUðzBÞjþi⊗t�k−1 : ð9Þ

We now observe that for t ≥ NA,W is expressible asW ¼ffiffiffi
2

p ðt−NAÞhþj⊗ðt−NAÞV [37], where V is a unitary on C2t

whose particular form is unimportant aswewill argue below.
This assertion can be straightforwardly verified diagram-
matically [30]. We further observe that Eq. (9) can be
thought of as the average behavior of a function taking as
input a circuit UðzBÞ, with output ½ð� � �Þ⊗k=ð� � �Þk−1�,
sampled uniformly over all 2NB possible circuits indexed
by zB. Our task therefore falls to examining the statistics of
the (uniform) ensemble of unitaries EU ≔ fUðzBÞg. We
show that this discrete set EU in fact samples the (continu-
ous) space of unitaries on C2t uniformly in the TDL
NB → ∞, stated in Theorem 2.
We can thus in Eq. (9) replace in the TDL the sum over

states UðzBÞjþi⊗t, which by virtue of Theorem 2 become
uniformly distributed over Hilbert space, with an integral
over Haar-random states. This step is justified more rigor-
ously in the Supplemental Material [30]. The unitary V
entering in the decomposition ofW can then be absorbed in
the integral via invariance of the Haar measure, leading to

lim
NB→∞

ρðkÞE ¼
Z

Ψ∼Haarð2tÞ
dΨ

ðjΨþihΨþjÞ⊗k

hΨþjΨþik
× 2t−NAhΨþjΨþi;

where jΨþi ¼ hþj⊗ðt−NAÞjΨi. Finally, Lemma 4 of Ref. [10]
specifies that random variables ½ðjΨkihΨkjÞ⊗k=hΨkjΨkik�
and 2t−NA hΨþjΨþi are independent, allowing us to distrib-
ute the integral: the former equals (3) while the latter
evaluates to 1, giving our claimed result. ▪
Figure 3 numerically illustrates the emergence of quan-

tum state designs for various Floquet times and projected
subsystem size NB. We find that E forms an exact state
k-design for k ¼ 1 when NB ≥ NA ¼ t (i.e., reduced
density matrix is maximally mixed), as expected from
the results of Ref. [32], while it converges exponentially
fast with NB for higher k’s.
Statistics of unitary ensemble EU.—In Theorem 1, we

used the following nontrivial result describing the distri-
bution of unitaries UðzBÞ in the TDL:
Theorem 2: For g ∉ Zπ=8, all moments k of

EU and the Haar-random unitary ensemble agree in
the TDL: limNB→∞

P
zBð1=2NBÞUðzBÞ⊗k ⊗ UðzBÞ�⊗k ¼R

U∼Haarð2tÞ dUU⊗k ⊗ U�⊗k. That is, EU in the TDL forms
an exact unitary design.
Recall an element of EU is a quantum circuit, e.g.,

Uð1ÞUð0ÞUð0ÞUð1Þ � � �, which is interpretable as an in-
stance of evolution by a randomly kicked Ising model on t
qubits, where the randomness arises only from the boun-
dary longitudinal field at site t taking two possible values g
and gþ π=2 with equal probability, between every kick.
Thus, Theorem 2 amounts to saying that unitaries generated
by a kicked Ising model with time dependent but ultra-
localized randomness, suffice to form arbitrarily good
approximations of Haar-random unitaries after long enough
times. In contrast, many previous works concerning the
emergence of such unitary designs in dynamics assume
global (i.e., an extensive number of) system parameters that
are random in time [18,38,39], and so the randomly kicked
Ising model constitutes an example where the degree of
randomness required is arguably minimal. The proof of
Theorem 2, presented in the Supplemental Material [30], is
technical, but essentially amounts to showing that basic
unitaries Uð0Þ, Uð1Þ (and their inverses) form a universal
gate set, such that any unitary on C2t can be reached from
their products [40].
Discussion.—Our main result, Theorem 1, establishes

the first provable example of a new kind of emergent
random matrix universality exhibited by quantum chaotic

(a) (b)

FIG. 3. Trace distance ΔðkÞ of kth moment of projected
ensemble to a Haar random ensemble versus (a) time and
(b) projected subsystem size NB, for g ¼ π=9 and NA ¼ 3.
For (a), NB ¼ 100. For (b), t ¼ NA ¼ 3.
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many-body systems, conjectured by Refs. [9,10]. It repre-
sents a deep form of quantum thermalization characterized
by a maximally entropic distribution of pure states of a
subsystem induced by the bath, suggesting a generalization
of the ETH to account for such features. An open question
is how such universality is modified in the presence of
globally conserved quantities, like energy. For k ¼ 1,
quantum thermalization already specifies a universal form
at late times: a Gibbs ensemble at a definite temperature.

What are the universal ensembles, if any, that ρðkÞE for k ≥ 2

tend toward? From a technical standpoint, our work asserts
the projected ensemble forms a quantum state design
in the limit when infinitely many qubits are measured;
understanding the rate of convergence with large but finite
system sizes would be very interesting (see Supplemental
Material [30] for a preliminary discussion).
The appearance of quantum state designs in a physical

system has also quantum information science applications,
in particular for tasks like state tomography, benchmarking,
or cryptography, which employ ensembles of random
unitaries or states [16–29,42]. For example, by applying
random unitaries, projectively measuring, and processing
the classical data, one can in certain cases reconstruct an
approximate description of a system’s state in a protocol
called classical shadow tomography [26]. Our results
suggest that one can replace the direct application of a
random unitary, which requires fine control, with simple
projective measurements following quantum chaotic
dynamics to effectively realize random rotations on a
subsystem, potentially amounting to a hardware-efficient
method to implement the tomographic protocol.
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