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A thin-walled tube, e.g., a drinking straw, manifests an instability when bent by localizing the curvature
change in a small region. This instability has been extensively studied since the seminal work of Brazier
nearly a century ago. However, the scenario of pressurized tubes has received much less attention.
Motivated by rod-shaped bacteria such as E. coli, whose cell walls are much thinner than their radius and
are subject to a substantial internal pressure, we study, theoretically, how this instability is affected by this
internal pressure. In the parameter range relevant to the bacteria, we find that the internal pressure
significantly postpones the onset of the instability, while the bending stiffness of the cell wall has almost no
influence. This study suggests a new method to infer turgor pressure in rod-shaped bacteria from bending
experiments.
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Introduction.—As can be intuited from everyday expe-
rience, a thin-walled cylindrical tube such as a drinking
straw subject to bending reaches a critical curvature at
which instability occurs, localizing most of the curvature
change into a narrow region [Figs. 1(a) and 1(b)]. This
instability has been extensively studied since the seminal
work of Brazier nearly a century ago [1]. Brazier calcu-
lated, approximately, the external torque needed to bend
the tube to a given curvature of its long axis, and found
that the dependence is nonmonotonic with a maximal
value. Localization of the curvature change is expected
at the curvature where the torque reaches a maximum.
This instability is characterized by its dependence on the
geometry rather than material nonlinearity. Another can-
didate for instability of a thin-walled tube is the wrinkling
effect. When the lateral compressive stress reaches a critical
value the system will develop periodic structures on the
surface to minimize elastic energy [2,3]. Under increasing
overall curvature, the wrinkles grow and trigger localization
of the overall curvature. An extensive study of the com-
petition between wrinkling and the Brazier instability for
thicker metal shells which undergo plastic deformation
prior to experiencing the bending instability has been given
by Kyriakides and Corona in their book on buckling of
undersea pipelines [4].
As the tube is bent, whenever the Brazier or the

wrinkling instability is reached, the stress localizes, result-
ing in the characteristic kinks shown in Figs. 1(a) and 1(b).
It is not apparent a priori which of the two instabilities will
occur first and this will be addressed. Further, we shall
show that the structural instability can be used to infer the
mechanical properties of the system, e.g., turgor pressure,
for rod-shaped bacteria.
Model.—Here, we consider a pressurized capped cylin-

drical tube of radius R, thickness t, and length L ≫ R with
inner pressure larger than the external pressure by p. We

bend the pressurized shell to a longitudinal curvature κ with
no axial constraint. Away from the capped ends, each
cross section behaves identically, and we take one cross
section in the ðx; yÞ plane as a representative in Fig. 1(d).
The incremental material response measured from the
cylindrical pressurized state is taken to be linear though
the cylindrical swelling due to p may involve nonlinear
elastic deformation, depending on the constitutive model.

FIG. 1. Buckling of (a) a straw, (b) a birthday balloon, and
(c) an E. coli cell in a mother machine. (d) Geometry notation.
A deformed cross section is shown here. The points on the
curve can be described by rðsÞ ¼ xðsÞiþ yðsÞj as a vector
pointing from the coordinate origin to it. s is the distance
measured along the curve. μ is corresponding dimensionless
parameter μ ¼ s=R. β is the angle between the x axis and the
vector tangent to the curve in the deformed configuration. ϕðμÞ
is the rotation angle, i.e., ϕðμÞ ¼ β − μ.
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For rod-shaped bacteria such as E. coli, the elasticity of the
cell wall is believed to be nonisotropic, presumably due to
the preferential organization of the stiffer glycan strands in
the circumferential direction and softer peptides along the
longitudinal direction. Note also that the stresses on a
pressurized cylinder are such that the circumferential stress
is twice as large as the axial one, which for finite strains will
also lead to nonisotropy. Therefore, we use the general
orthotropic relation for stress and strain increments in the
axial and circumferential directions (Supplemental
Material, Sec. I [5]). For mathematical convenience and
clarity, the deformation occurring during bending after p
has been applied is assumed to be inextensional in the
circumferential direction. This is similar to the hypothesis
used by Euler in his elastica framework. The deformation
occurring during bending is then fully characterized by the
rotation function ϕðμÞ defined in Fig. 1(d), the imposed
curvature κ of the axial line element lying along y ¼ 0, and
the axial strain change Δε0 of that line element.
Prior to bending, the resultant membrane stresses are

N0
θ ¼ pR andN0

z ¼ pR=2, and the bending moments in the
tube wall are negligible. The change in the energy due to
bending of the system under fixed p includes the sum of the
changes in bending energy, stretching energy, and potential
energy of pressure [17]. Under the circumferential inex-
tensibility assumption, the circumferential membrane strain
remains unchanged upon bending. The contribution to the
bending energy in the wall of the tube associated with axial
curvature ΔKz ≈ −κ is negligible compared to the axial
stretching energy and is ignored. With ΔΦ as the change in
energy per unit length from the straight pressurized state,
we have (Supplemental Material, Sec. I [5]):

ΔΦ ¼
Z

2πR

0

�
N0

zΔεz þ
1

2
ΔNzΔεz þ

1

2
ΔMθΔKθ

�
ds

− pΔV: ð1Þ
Here, Δεz ¼ Δε0 þ κy is the change of axial strain, ΔKθ ¼
dϕ=ds is the circumferential curvature change, ΔV is
volume change per unit length, ΔNz ¼ SzΔεz is the incre-
ment of resultant membrane stresses, and ΔMθ ¼ DθΔKθ
is the increment of shell wall bending moments. Sα ¼
Eαt=ð1 − νθzνzθÞ and Dα ¼ Sαt2=12 (α can be z or θ) are
determined by material elastic properties. For imposed κ,
ΔΦ can be expressed in terms of Δε0 and ϕðμÞ
(Supplemental Material, Sec. I [5]):

ΔΦ ¼ 1

2
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2π

0

�
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�
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�
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þ SzðΔε0 þ κyÞ2
�
Rdμ
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�
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2π

0

ydμ

�

− pR2

Z
2π

0

x
R
ð1þ Δε0 þ κyÞ sinðμþ ϕÞdμ: ð2Þ

For the convenience of calculation and presentation, it is
useful to define and use nondimensional parameters. The
equations can be rendered dimensionless in multiple

ways. We can define a dimensionless geometry-
material parameter in this system: α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDθ=SzR2Þ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEθ=12EzÞ

p ðt=RÞ. Note that for thin tubes, α ≪ 1. For E.
coli cells, 0.001 < α < 0.01 (Supplemental Material,
Sec. II [5]). For thin shells, it is common to use the
following dimensionless variables:

Φ̄¼ R
Dθ

ΔΦ; p̄¼pR3

Dθ
; κ̄¼ κR

α
; M̄¼ M

αSzR2
; ð3Þ

in which M is the external torque needed to bend the tube.
The “shell” normalization is employed under the tacit
assumption that p̄ is of order unity [18]. However, for
E. coli, p̄ ¼ Oð104Þ (Supplemental Material, Sec. II [5]).
Consequently, in this pressure range it is more natural to
use the following “balloon” normalization favoring the
stretching stiffness:

Φ̂¼ ΔΦ
SzR

; p̂¼ pR
Sz

; κ̂ ¼ κR; M̂ ¼ M
SzR2

: ð4Þ

Note that p̂ ¼ α2p̄ such that for the E. coli cells p̂ is of
order unity (Supplemental Material, Sec. II [5]). In the
results to follow we will illustrate both the shell and balloon
normalizations. While the dimensionless quantities are
different from one another, the form of the underlying
governing equations is the same.
The state of the system for any imposed κ can be

determined by minimizing ΔΦ with respect to the rotation
function ϕðμÞ and Δε0. Δε0 can also be determined by a
force-balance equation (Supplemental Material, Sec. III [5]).
To further proceed, ϕðμÞ is discretized using a Fourier series
representation. Symmetry of the system about the y axis
requires ϕðμÞ ¼ −ϕð2π − μÞ, and the boundary condition:
xð2πÞ ¼ xð0Þ ¼ 0 must be enforced. These lead to

ϕðμÞ ¼
XN
n¼1

an sinðnμÞ;

0 ¼
Z

2π

0

cos½μþ ϕðμÞ�dμ: ð5Þ

For the special case of zero pressure, one can develop an
approximate analytical solution for an by expanding the
integrands of xðμÞ ¼ R

R μ
0 cosðμ0 þ ϕÞdμ0 and yðμÞ ¼

R
R μ
0 sinðμ0 þ ϕÞdqμ0 using Taylor expansions of ϕ

(Supplemental Material, IV [5]). In the shell nondimension-
alization,

an ¼ −
κ̄2

4ðn− 1Þ2n2 an−2; a1 ¼ 0; a2 ¼ −
κ̄2

8
: ð6Þ

The dominant coefficient a2 is required to have a small
absolute value in our solution. This solution agrees with
Brazier’s result for zero pressure.
For nonzero positive pressure, we use the ansatz ϕðμÞ ¼

a2 sinð2μÞ as an approximation whose accuracy will be
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verified by numerical solutions shown later. Following
the same Taylor expansion approximation, we obtain
(Supplemental Material, Sec. IV [5]):

a2 ¼ −
κ̄2

8ð1þ p̄=3Þ ¼ −
κ̂2

8ðα2 þ p̂=3Þ : ð7Þ

This allows us to compute the overall torque-curvature
relation and the dependence of the maximal torque on the
pressure. To compute the torque-curvature relation we use
M ¼ ð∂ΔΦ=∂κÞ which gives for the two normalizations
(Supplemental Material, Sec. V [5]):

M̄ ¼ π

�
κ̄ −

κ̄3

8ð1þ p̄=3Þ
�

or M̂ ¼ π

�
κ̂ −

κ̂3

8ðα2 þ p̂=3Þ
�
:

ð8Þ
The critical curvature κB for the Brazier instability occurs at
the maximum of external torque M:

κ̄B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
þ 8

9
p̄

r
or κ̂B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
α2 þ 8

9
p̂

r
: ð9Þ

Equation (9) reveals that the pressure can greatly postpone
the onset of the Brazier instability. Interestingly, a2 at the
maximal torque is a constant −1=3 independent of material
properties and the inner pressure. In other words, the shape
of the cross section at the critical state is always the same
for the Brazier instability. At the maximal torque, the tube
cross section is squeezed in the y direction by about 22%
and its second moment is reduced by about 40%.
An accurate estimate of the onset of the wrinkling

instability is obtained by making use of the formula for
the axisymmetric buckling of a pressurized circular cylin-
drical shell of radius ρ and thickness t subject to a
compressive axial stress σ. For a shell with the present
incremental orthotropic properties, the critical compressive
stress σc and the associated axial wavelength l of the
sinusoidal wrinkling mode are

σct ¼
2

ρ

ffiffiffiffiffiffiffiffiffiffi
DzSθ

p
; l ¼ 2π

�
Dz

Sθ
ρ2
�

1=4
: ð10Þ

These formulas apply approximately to the wrinkling
instability of the tube under bending if one identifies the
critical stress with the maximal compressive stress in the
ovalized tube, and ρ is the circumferential radius of
curvature at the position of maximal compression. The
validity of the approximation stems from the fact that the
wrinkling mode has a wavelength proportional to

ffiffiffiffi
ρt

p
which is short compared to the radius of the tube. Detailed
calculations in the shell buckling literature [3] have shown
that the critical stress given by Eq. (10) underestimates the
local compressive stress at the onset of wrinkling in a thin
elastic shell under bending by only a few percent. The
thinner the shell, the more accurate the approximation. In

summary, the onset of the wrinkling instability is attained
when the curvature κ is sufficiently large so that N0

z þ
ΔNz ¼ −σct according to the critical stress in Eq. (10).
Employing the balloon normalization [Eq. (4)] with the
expressions for a2 [Eq. (7)] and Δε0, one can obtain the
following dimensionless equation for the overall curvature
κ̂w at the onset of wrinkling (Supplemental Material,
Sec. VI [5]):

8

�
α2 þ p̂

3

��
p̂
2
þ 2α − κ̂w

�
þ
�
2κ̂w
3

− 4α

�
κ̂2w ¼ 0; ð11Þ

with the associated torque given by Eq. (8). Two special
limits are worth noting. If p̂ ¼ 0, Eq. (11) becomes
κ̄3w − 6κ̄2w − 12κ̄w þ 24 ¼ 0, with the smallest positive solu-
tion κ̄w ¼ 1.320. Thus, for the unpressurized tube, wrink-
ling occurs before the Brazier instability κ̄B ¼ ffiffiffiffiffiffiffiffi

8=3
p

≈
1.633. The other limit applies when the pressure is in the
“balloon range” and the tube is thin (α ≪ p̂) such that α is
negligible in Eq. (11), leading to κ̂3w − 4p̂κ̂w þ 2p̂2 ¼ 0.
We therefore obtain κ̂w ¼ ðp̂=2Þ þOðp̂2Þ.
Numerical results.—The torque-curvature relation

[Eq. (8)] for the two normalizations is plotted in Fig. 2
for various relevant dimensionless pressures where they can
be compared with numerical results based on minimization
of the energy functional ΔΦ in Eq. (2) (Supplemental
Material, Sec. VII [5]). Included in Fig. 2 on each of the
torque-curvature curves are solid dots marking the onset of
the wrinkling instability computed numerically. They agree
well with the crosses, which are the wrinkling curvatures
predicted [Eq. (11)]. Over the entire range of pressures, in
shell normalization or balloon normalization, wrinkling
precedes attainment of the maximal moment, increasingly
so as the pressure increases. Note that in the balloon regime
wrinkling occurs on the initial linear segment of the torque-
curvature curve for which M̂ ≈ πκ̂. The validity of the
incremental formulation is limited to relatively small
incremental strains, not greater than 0.2. The maximal
axial strains due to bending are of the order of κR. Note that
for p̂ ¼ 0.4 the critical wrinkling curvature is κwR ≈ 0.2.
Thus, the wrinkling predictions are expected to be valid in
the range p̂ < 0.4.
A method to measure turgor pressure.—Our results can

be utilized to provide a novel protocol for measuring turgor
pressure in bacteria [Fig. 1(c)] (see Supplemental Material,
Sec IX [5]), a task which has proved challenging over
decades [6]. Previous works have shown that one may grow
filamentous bacteria with large length to diameter ratios
and bend them either with optical tweezers [7] or with force
generated by viscous drag due to fluid flow [8]. According
to our results and for the relevant parameter range for
E. coli, as long as the wrinkling instability is not reached
cell bending will be approximately linear in the torque and
independent of pressure, as validated experimentally [8].
This torque-curvature relationship also provides a way to
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infer Sz as we discuss in detail in Supplemental Material,
Sec. I [5]. Note, however, that here the incremental
modulus Sz can depend on p. If the osmolarity of the
media surrounding the cell is suddenly increased (by, e.g.,
adding sugar) the turgor pressure drops abruptly [19], while
the torque on the cell remains unperturbed. If the new
turgor pressure is sufficiently low such that the wrinkling
instability is reached—as quantified by Eq. (11)—the cell
would immediately buckle. Therefore, by repeating this
experiment for varying degrees of the hyperosmotic shock,
the turgor pressure can be accurately measured. In fact,
preliminary results using this protocol have shown it is
feasible to achieve cell buckling upon osmotic shock for
wild-type filamentous E. coli [20]. A priori one might have

envisioned that an alternative way to infer turgor pressure is
from the M-κ curve as indicated by Eq. (8). However, for
the parameters of E. coli, the M-κ curve shows barely any
nonlinearity before the instability point, as shown in Fig. 2.
Discussion.—In this work we revisited the long-standing

problem of the Brazier effect, albeit for the understudied yet
highly relevant scenario of a pressurized tube. While in
structural mechanics applications the relevant pressure
regimes are typically assumed to be associated with shells,
where the pressure is sufficiently small in comparison with
the bending rigidity, microbes such as bacteria are found to
be in a qualitatively different “balloon” regime with
tremendous pressures outside the scope of previous theo-
retical work. By treating the problem using an elastica
framework we were able to obtain analytical formulas for
the two potential instabilities that may arise when bending
such highly pressurized tubes: one associated with a
maximum in the torque-curvature relation, and the other
associated with the onset of wrinkling at a critical com-
pressive stress. We corroborated our results numerically,
finding good agreement between the approximate theory
(assuming a particular mode of deformation dominates) and
the precise numerics.
Within our theoretical approach, we found that the

torque-curvature relations are well approximated by a linear
dependence with a pressure-independent slope, and a cubic
curvature contribution that strongly depends on the pres-
sure as ½1=ð1þ pR3=3DθÞ�. Thus, for high pressures this
factor scales inversely with the pressure. This flattening of
the torque-curvature relation can be associated to the
ovalization of the cross sections, that become approxi-
mately elliptical as the tube is bent. The high pressure
resists this effect and tends to maintain a circular cross
section. Indeed, the dominant mode of deformation of the
cross section scales as sinð2μÞ, and its magnitude follows
the same functional dependence on p as the nonlinear term
in the torque-curvature relation. Interestingly, Calladine
solved the related problem of deformation of a pressurized
straight shell subject to periodic loading, and found that the
effect of pressure is to repress the cross-section deformation
via precisely the same functional form described above
[18]. For a particular model of elasticity known as the Varga
model, the Brazier effect was numerically studied under the
assumption that bending rigidity is negligible [21]. Our
analytical results suggest that bending rigidity is indeed
unimportant in the “balloon regime” and provides a
quantitative criterion for it.
Another point of biological relevance regards the exist-

ence of the turgor pressure in wild-type E. coli. We note that
using Eq. (11), in the absence of turgor pressure the cells
would buckle at the remarkably small curvature of
0.6%ð1=RÞ; in other words, the cell wall would collapse
upon any minor mechanical perturbation. The turgor
pressure therefore plays an important role in stabilizing
the shell, though this point has been largely overlooked in
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FIG. 2. Comparison of analytical and numerical results for
torque-curvature relation and onset of wrinkling for typical elastic
properties of E. coli (Supplemental Material, Sec. II, α ≈ 0.005
[5]). (a) Shell normalization for low pressures. (b) Balloon
normalization for high pressures. The dashed lines are given
by the formulas in Eq. (8), while the solid lines are based on
the numerical minimization of ΔΦ (Supplemental Material,
Sec. VII [5]). The black cross is the onset of wrinkling predicted
by Eq. (11). The color dots indicate the onset of wrinkling
computed numerically. The critical curvatures for systems with
different α are shown in Supplemental Material, Sec. VIII [5].
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the biological literature. For the E. coli parameters, the
critical curvature for the wrinkling instability is predicted
to be of the order of the inverse cell radius, allowing the cell
to undergo severe mechanical deformations. This is con-
sistent with the remarkable flexibility of growing cells to
adapt to narrow microfluidic constrictions [22].
In summary, we have provided here an analysis of the

Brazier instability in thin, pressurized tubes, and fully
characterized the dramatic role of pressure in suppressing
the instability. This can be naturally used as a tool for
measuring turgor pressure in bacteria, as well as other rod-
shaped cell-walled organisms including plants.
In particular, the alga Chara corallina falls well within

the regime we study here, despite having tremendously
different length scales involved (see Supplemental
Material, Sec. II [5]). Our results pave the way to future
studies on pressurized shells. In particular, while here the
analysis is performed at the level of linear incremental
constitutive laws (though geometrical nonlinearities are
fully accounted for), it would be interesting to see how the
results would carry over to the case of neo-Hookean elastic
models, or more elaborate models of bacterial cell walls.
Our assumption of cross section inextensionality while
bending the pressurized cylinder has enabled us to obtain
analytical, closed-form solutions for the instability. This
assumption has been used and verified in many relevant
mechanical problems [23]. Nonetheless, it would be
interesting to explore the accuracy of this assumption in
future work. Furthermore, it would be useful to find how
sensitive the onset of the instability is to imperfections, as
has been studied in the context of other elastic instabilities
of pressurized shells, albeit with external pressure larger
than the internal one, leading to implosions [28,29].
Finally, it would be interesting to explore—analytically,
numerically and experimentally—the development of the
onset of wrinkling into an instability, as was studied in
other systems in previous works [30,31].
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