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Suspended microparticles subjected to ac electrical fields collectively organize into band patterns
perpendicular to the field direction. The bands further develop into zigzag shaped patterns, in which the
particles are observed to circulate. We demonstrate that this phenomenon can be observed quite generically
by generating such patterns with a wide range of particles: silica spheres, fatty acid, oil, and coacervate
droplets, bacteria, and ground coffee. We show that the phenomenon can be well understood in terms of
second order electrokinetic flow, which correctly predicts the hydrodynamic interactions required for the
pattern formation process. Brownian particle simulations based on these interactions accurately recapitulate
all of the observed pattern formation and symmetry-breaking events, starting from a homogeneous particle
suspension. The emergence of the formed patterns can be predicted quantitatively within a parameter-free
theory.
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Systems driven far from equilibrium can self-organize
into spatiotemporal dissipative structures and thereby
undergo spontaneous symmetry breaking [1,2]. Such
dynamic behavior has been observed in electrokinetic
experiments with clay particles [3], polystyrene micro-
spheres [4], and also with λ-DNA [5]. When an alternating
electric field is applied, particles form chains along the field
direction, which move towards each other, align in parallel
and develop extended band patterns roughly perpendicular
to the field direction. The particle chains within the bands
undergo dynamic breakup, resulting in the formation of
triangular band structures wherein the particles circulate.
Originally, Jennings attributed the chain breakup to

dipolelike repulsion forces arising from electrophoretic
particle oscillations [3]. Hu et al. explained the particle
circulation with electrorotation caused by mutual polari-
zation of the particles [4]. Further experimental studies
following this interpretation were conducted by Lele et al.
[6] and Mittal et al. [7]. For observations with λ-DNA,
Isambert and co-workers assumed that hydrodynamic
interactions were generated by local conductivity gradients
caused by electrophoretic salt depletion [5], resulting in
liquid shearing under the influence of an external electric
field. All of these models explained the dynamics within
the band structures, but did not address their formation in
the first place.
In the present Letter, we verify the generic emergence of

the same characteristic patterns for a wide range of
colloidal particles. We demonstrate that the observed
phenomena can be naturally explained with an electro-
kinetic fluid flow [8–10] around the particles. A Brownian
particle simulation accounting for the hydrodynamic and
dipole-dipole pair interactions reproduces the key aspects
of the band pattern formation, such as spontaneous

symmetry breaking, inclination of the bands, and particle
circulation within these bands. For silica spheres, we
experimentally investigate the emergence of patterns as a
function of salt concentration and ac field frequency. The
observed dependence can be predicted without any free
parameters from the weakly nonlinear multi-scale theory of
Schnitzer, Yariv, et al. [8,11].
Experiments.—We conducted our experiments with

aqueous suspensions of various micrometer-scale particles,
including fluorocarbon (FC) oil and lauric acid droplets,
coacervates made from poly(allylamine) and adenosine
triphosphate (ATP), monodisperse silica particles (radius
a ≈ 650 nm), E. coli bacteria, and ground coffee (exper-
imental details and particle size distributions are given in
the Supplemental Material [12]). The suspensions were
loaded into microscope observation chambers with plati-
num electrodes placed at opposite inlets [see Fig. 1(a)].
After letting the colloids sediment for 10 min, we applied
an in-plane ac electric field and recorded the resulting
dynamics on the bottom of the chamber with an inverted
microscope. We applied electric fields with amplitudes
between 17 and 56 mV=μm, which is on the order of the
thermal voltage (φth ≔ kBT=e ≈ 25.69 mV) for μm sized
particles. The applied frequency was set to 500 Hz for all
samples except for bacteria, where it was 250 Hz.
We found that similar band patterns formed in all our

samples (Fig. 1). Particle chain formation occurred within
the first second after the electric field was switched on,
while horizontal band structures emerged within the first
minute. The band structures continued to grow and merge
until the electric field was switched off. The time course of
the pattern formation process is exemplarily shown for
silica particles in Fig. 1(b), and can be clearly observed in
the videos in the Supplemental Material [12]. Snapshots of
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the patterns taken 100 s after the electric field was turned on
are shown in Fig. 1(c). We observed distinct zigzag patterns
for coacervates, FC oil, and silica particles, and less
dominant patterns for the polydisperse lauric acid droplets.
For the bacteria we found only chain formation at
f ¼ 500 Hz, while at f ¼ 250 Hz the typical band patterns
emerged, but less pronounced zigzag structures. The
sample containing the polydisperse ground coffee particles
showed more irregular behavior, but chain formation and
also the onset of band formation could be clearly observed.
The angle between the zigzag bands and the electric field
axis was roughly 60° [highlighted in Fig. 1(b)].
Theoretical background.—The initially observed for-

mation of particle chains is well known [3,4,6,7] and is
caused by induced dipole-dipole interactions. When the
external ac electric field is described as the real part of the
complex phasor EðtÞ ¼ E0eiωtêz with angular frequency
ω ¼ 2πf, the time-averaged dipole-dipole force on a
particle at position r exerted by another residing at the
coordinate origin is given as

FdipðrÞ ¼ 6πϵjKdj2E2
0a

2hðrÞ; ð1Þ

with the complex dipole coefficient Kd, the permittivity of
water ϵ and the substitution hðrÞ ≔ ½ð1 − 3cos2θÞ=r4�êr −
½ð2 cos θ sin θÞ=r4�êθ (θ is the zenith angle in spherical
coordinates, and r is given in units of the particle radius a).
The formation of large scale patterns is driven by

hydrodynamic interactions, which are caused by electro-
kinetic flow around the particles. The corresponding
Poisson-Nernst-Planck-Navier-Stokes system of nonlinear
partial differential equations can only be solved approxi-
mately [20–32]. For the dc case, Schnitzer, Yariv, et al.
[8,11] recently developed a weakly nonlinear electrokinetic

theory, in which the dimensionless electrokinetic flow ũ ≔
u=u�, with u�¼f½ðkBTÞ2ϵ�=ðe2aηÞg, is expanded in powers
of the dimensionless electric field ξ ¼ ½ðeaÞ=ðkBTÞ�E0:

ũ ¼ ξũ1 þ ξ2ũ2 þ ξ3ũ3 þ � � � : ð2Þ
From the dc solution one can extrapolate to the time-
averaged ac solution, where one can use the fact that odd
powers of ξ ∝ E0eiωt have a zero time average, which
leaves ũ2 as the leading order electrokinetic flow. An
explicit expression for ũ2 can be deduced from the stream
function given in Ref. [8], which results in

u ¼ 1

2
u�ξ2ũ2 ¼ u�ξ2

γ

2
ðg − hÞ; ð3Þ

where gðrÞ ≔ ½ð1 − 3cos2θÞ=r2�êr is a radial field and γ is a
dimensionless microscopic parameter (see below and
Ref. [8]). Notably, this well-known flow pattern [9,10]
can be explicitly observed around large coacervate droplets
via the trajectories of smaller droplets [Fig. 2(c), see also
Supplemental Material, video [12] ], which follow the
streamlines of the electrokinetic flow shown in Fig. 2(b).
The derivation of the individual terms in Eq. (2) is quite

involved [8,11], but the mechanism can be understood
qualitatively from the scheme in Fig. 2: a negatively
charged particle immersed in an electrolyte is surrounded
by a diffuse charge layer (Debye layer), in which positive
counterions are accumulated and co-ions are almost com-
pletely depleted. Outside the Debye layer the salt solution is
electrically neutral. The asymmetry in ionic concentrations
results in an ion-selective surface conductivity and surface
current jþDu, which is characterized by the ion-selective
Dukhin number Du [11].
In the electroneutral region, the electric field drives

Ohmic counterionic and co-ionic currents jþE and j−E parallel

(a) (b)

(c)

FIG. 1. (a) Schematic representation of the experimental setup. Aqueous particle suspensions are subjected to ac electrical fields inside
of a microscopic observation chamber. (b) Snapshots of a suspension of 1.3 μm diameter silica particles in an ac electric field
(E0 ¼ 17 mV=μm, f ¼ 500 Hz) at different time points. The formation of zigzag-shaped band patterns is clearly visible. In the fully
formed bands (t ¼ 77 s) the particles circulate as indicated. (c) Band formation and zigzag patterns in suspensions of various colloids.
The images are taken ≈100 s after the electric field was turned on.
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to the field lines. Along field lines entering the Debye layer,
flux balance requires a diffusion flux jdiff which counter-
balances the co-ion current j−E. jdiff can only result from a
variation of the neutral salt concentration n in the vicinity of
the colloid, which in Fig. 2(a) is depicted as a gray cloud
with varying intensity. The electrokinetic properties of the
Debye layer are determined by the zeta potential ζ, which
depends on the surface charge and the extension of the
Debye layer κ−1, which in turn depends on n via
κ−1 ¼ ð2e2n=ϵkBTÞ1=2. The variation of n outside the
Debye layer causes a locally varying perturbation ζ1 of
the equilibrium zeta potential ζ0, i.e., ζ ¼ ζ0 þ ζ1, visual-
ized as an expansion of the Debye layer on one side and a
compression on the other side of the particle.
The free charges in the Debye layer are subject to a

Coulomb force due to the tangential component of the
electric field Eθ, which gives rise to fluid motion according
to the electrokinetic slip boundary condition veo ¼ ζEθ.

The first and second order velocity components vð1Þeo and

vð2Þeo connected to ζ0 and ζ1 are indicated in Fig. 2(b). For

alternating electric fields vð1Þeo has a zero time average, while

vð2Þeo has a nonvanishing time average, resulting in a fluid
flow around the particle.
Brownian dynamics simulation.—In the overdamped

limit, a direct force Ftot
i exerted on particle i results in

particle drift with velocity ½Dp=ðkBTÞ�Ftot
i , where Dp is the

diffusion constant of the particle. To include hydrodynamic
interactions with the flow field utoti ðrÞ, which is caused by
other particles (j ≠ i) in the fluid, we use Faxen’s correc-
tion for the drift velocity:

vi ¼
Dp

kBT
Ftot
i þ

�
1þ 1

6
Δ
�
utoti : ð4Þ

The direct force on particle i is obtained as the sum
of dipolar and a repulsive interactions FrepðrijÞ, i.e.,

Ftot
i ¼ P

j≠i ½FdipðrijÞ þ FrepðrijÞ�, where rij ¼ ri − rj
denotes the difference vector between particles i and j.
Ignoring geometric interactions, the velocity field caused
by the particles j ≠ i is to zeroth order given as the sum
utoti ¼ P

j≠i uðrijÞ. Together with Eqs. (1) and (3) and by
recognizing that Δg ¼ −6h and Δh ¼ 0, the drift velocity
[Eq. (4)] becomes

viðriÞ¼ u�
X
j≠i

�
ξ2
�
γ

2
gðrijÞþðjKdj2− γÞhðrijÞ

�
þνkðrijÞ

�
;

ð5Þ

where the repulsion νkðrijÞ is discussed in Sec. 3 of
Ref. [12]. The movement of the particles can then be
described by the N-particle Langevin equation,

adri ¼ vidtþ
ffiffiffiffiffiffiffiffiffi
2Dp

p
dWi; ð6Þ

where dW is the increment of a Wiener process.
We numerically solved this stochastic differential equa-

tion with periodic boundary conditions and random initial
particle configurations (Sec. 3 of Ref. [12]). As we
observed the emergence of stripe patterns exclusively at
the channel bottom, we restricted our simulation to two
dimensions by constraining the dipole-dipole force and
fluid flow to the plane y ¼ 0, which captures both geometry
and scaling of the physical interactions qualitatively cor-
rectly. As shown in Fig. 3, a simulation based on Eq. (6)
with 1521 particles, γ ¼ 0.088, jKdj2 ¼ 0.23, and a particle
number density matched to our silica particle experiments
recapitulates all stages of the observed pattern formation
process (cf. Fig. 1 and the Supplemental Material, video
[12]; see Sec. 3 of Ref. [12] for a simulation with
polydisperse particles.)
Parameter dependence.—To gain further insight into the

physical mechanisms underlying the pattern formation
process, we explored its dependence on ac field frequency
and salt concentration. We prepared aqueous suspensions
of silica particles at 0.0375% (w/v) with NaCl concen-
trations ranging from 5 to 2500 μM, and recorded micros-
copy videos with a relatively weak electric field amplitude
of 10.6 mV μm−1 at frequencies ranging from 250 to
25 kHz. To analyze our data, we defined the “pattern
visibility” p in an image as the discretized version of
p ¼ R

A j½∂=ð∂zÞ�ðG � IÞðx; zÞjdxdz, where A is the area of
the image, G is a Gaussian with a standard deviation of
15 pixels (corresponding to 6 μm), Iðx; zÞ is the image
intensity, and � denotes convolution. The order parameter
pðtÞ is time dependent and measures density fluctuations
along the z direction at a scale defined by G. We computed
pðtÞ for every frame of our microscopy videos and used it
to determine a typical timescale τp for the emergence of
stripe patterns [examples of pðtÞ are shown in the
Supplemental Material, Sec. II [12]]. In Fig. 4(a), τ−1p is

(a) (b) (c)

FIG. 2. (a) A charged particle in an electric field (black field
lines) surrounded by counterions (red cloud) with ion fluxes
(outlined arrows) along one field line. The neutral salt concen-
tration is drawn as a gray cloud (darker regions correspond
to higher concentrations). (b) Time averaged electrokinetic
flow arising from Coulomb forces acting on the Debye layer.
(c) Experimentally observed fluid motion around a large coac-
ervate (superposition of a 3.8 s long video with enhanced contrast
for moving particles). Bright areas correspond to trajectories of
smaller coacervates.

PHYSICAL REVIEW LETTERS 128, 058002 (2022)

058002-3



plotted as a measure for the speed of pattern formation for
various frequencies and salt concentrations.
As electrokinetic fluid flow appears to drive the pattern

formation process, we expect τ−1p to scale with the
magnitude of the fluid flow, which is set by γ. The
microscopic parameter γ is related to the physics of the
Debye layer, whose details are specified by the curvature
parameter δ ≔ ðκaÞ−1 and the dimensionless equilibrium
zeta potential ζ̃0 ¼ ζ0=φth [8,11]. The latter is linked to the
dimensionless surface charge density σ̃ ≔ ½σ=ðϵκφthÞ� by
the Grahame equation σ̃ ¼ 2 sinh ζ̃0=2. The ionic transport
around colloidal particles is characterized by the Dukhin
number Du, which measures the relative strength of surface
to bulk conductivity [33–35]. By considering the surface
conductivity of counter-ions only, an ion-selective Dukhin
number [8,11] given by Duσ ≔ δσ̃ð1þ 2μþÞ can be defined
with the ionic drag coefficient μþ ≔ ½ðϵφ2

thÞ=ðηDþÞ� and
the counterion diffusion constant Dþ [8,11].
In Fig. 4(b), we show the variation of these dimension-

less numbers for the ionic conditions of our experiment,
where we set the surface charge to the known value for
silica particles σ ¼ −0.0027 C=m2 [36]. Comparison with
Fig. 4(a) indicates that patterns can be observed only up to a
characteristic ionic strength where jζ̃0j (blue dot) is Oð1Þ.
For higher ionic strengths, jζ0j < φth, the physics of the
Debye layer can be neglected altogether. Further, pattern
formation is fastest when the zeta potential is “logarithmi-
cally large” compared to the curvature parameter, i.e., jζ̃j ¼
OðjlnðδÞjÞ (orange dot) and where surface conduction
becomes dominant over bulk conduction, i.e., Duσ ¼
Oð1Þ (green dot).
Finally, in Fig. 4(c) we compare γ (Ref. [8]) with the

observed pattern formation speed τ−1p , for which we scaled
τ−1p such that its maximum at f ¼ 250 Hz corresponds to
the maximum value of γ. For the lowest experimental
frequencies, we find excellent agreement between τ−1p and
γ, and even for higher frequencies τ−1p qualitatively shows
the same behavior, albeit with a reduced amplitude.
Notably, the appearance of patterns for salt concentrations
below 1 mM as well as the maximum pattern formation

(a)

(b)

(c)

FIG. 4. (a) Observed pattern formation speed τ−1p in arbitrary
units per time. Red circles indicate the experimental data points
with a heat map generated by linear interpolation on the
logarithmic grid. (b) Dimensionless characteristic numbers for
electrokinetics lead to characteristic scales for the ionic strength
(or, equivalently, Debye length), see main text for details. (c) The
low-frequency pattern formation speed τ−1p can be quantitatively
predicted without fit parameters using the second-order velocity
scale γ derived by Schnitzer and Yariv in Ref. [8].

FIG. 3. Simulated dynamics with γ ¼ 0.088 and jKdj2 ¼ 0.23. Snapshots of a large scale simulation of the patterning process. The
different stages of the experimentally observed patterning process from Fig. 1(b) are nicely reproduced. The particles circulate again as
indicated.
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speed at around 50 μM are nicely predicted by γ, when
σ ¼ −0.0027 C=m2 is used. Further, we find that the value
of γ chosen for our simulation (Fig. 3) has a physically
reasonable magnitude. While no general nonlinear ac
theory is available to date (a special case has recently
been treated in Ref. [37]), we find that the decrease of the
amplitude falls in the range of the characteristic frequency
fcr ¼ ð2=πÞ½ðDþD−Þ=a2ðDþ þD−Þ� ¼ 1.2 kHz of the
variation of neutral salt n, which is known from other
linear ac theories [30,32,38–41]. As also expected from this
model, both fcr and τ−1p are reduced in experiments with
higher viscosity (cf. Sec. 3.5 of Ref. [12]).
It remains to be explained why similar patterns emerge

for widely different particle types even though the model
predicting the hydrodynamic flow strictly applies only for
hard spheres with a surface charge—except for the silica
particles, the shape and interfacial structure of the inves-
tigated colloids is generally more complex (see also
Sec. 3.8 of Ref. [12]). First, the geometry of the hydro-
dynamic flow is somewhat expected as it is the second
order term of the general axisymmetric solution of the
overdamped Navier-Stokes equation outside of a sphere
[8,42,43]. Further, we expect the underlying mechanism to
be generic to surface charge-stabilized colloidal dispersions
[44], for which accumulation of counterions and depletion
of co-ions close to the colloidal surface gives rise to an ion-
selective surface conduction even for more complex surface
compositions. Qualitatively, patterns are thus generally
expected at low ionic strengths (< 1 mM) and low frequen-
cies (f < 1.2 kHz) as predicted by the hard sphere model,
and as used in the experiments of Fig. 1.
In conclusion, we experimentally verified the generic

occurrence of a pattern formation process that had been
previously observed when different types of colloids in
aqueous suspension were subjected to ac electrical fields.
We identified the physical mechanisms underlying the
pattern forming process as dipole-dipole interactions and
second order electrokinetic fluid flow, and confirmed the
emergence of collective behavior in a many particle
simulation. We found that Schnitzer-Yariv’s weakly non-
linear electrokinetic theory gives a parameter-free quanti-
tative explanation of the pattern formation process, which
only requires a surface charge on the colloidal particles,
providing a satisfactory unifying explanation for the
observed macroscopic patterns and their underlying physi-
cal mechanism.
Apart from its fundamental scientific interest, the

described effect could be utilized for applications in
microfluidics and microrobotics. For instance, it should
be possible to use the described electrokinetic flow to
realize microfluidic pumps and mixers, as previously
proposed based on induced charge electro-osmosis [45–
50]. Further, our insights should be helpful for the develop-
ment of electrically manipulated microswimmers, which
were previously envisioned [51] and implemented [52–57]

based on inorganic (metallo-dielectric) Janus particles. Our
experimental results with oil droplets, coacervates, lauric
acid, and even bacteria demonstrate that similar swimmers
consisting solely of soft and biological material are
feasible.
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