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A unique feature of the complex band structures of moiré materials is the presence of minivalleys, their
hybridization, and scattering between them. Here, we investigate magnetotransport oscillations caused by
scattering between minivalleys—a phenomenon analogous to magnetointersubband oscillations—in a
twisted double bilayer graphene sample with a twist angle of 1.94°. We study and discuss the potential
scattering mechanisms and find an electron-phonon mechanism and valley conserving scattering to be
likely. Finally, we discuss the relevance of our findings for different materials and twist angles.
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Two-dimensional moiré materials are formed by stacking
van der Waals materials such that the layers couple and an
in-plane superlattice emerges. The superlattice formed
depends on the twist (and lattice mismatch) between the
layers. Graphene is a typical van der Waals material and has
a honeycomb lattice build up from two hexagonal sub-
lattices. The wave functions of the two valleys K and K0 in
reciprocal space are sublattice polarized at the Dirac point
[1]. Similarly, for trigonal moiré lattices, such as twisted
graphene [2,3], the wave functions of the minivalleys κ and
κ0 are polarized on the twisted layers when the interlayer
coupling is weak. Even though this is a generic property of
trigonal moiré lattices, little is known about the scattering
of charge carriers between these minivalleys.
We focus on twisted graphene since recently a plethora

of correlated states has been observed [4–10], and in view
of these correlations, scattering in twisted graphene is a
highly interesting topic. Specifically, we choose to work
with twisted double bilayer graphene (TDBG) with weak
coupling between the layers, because this offers excellent
control over the minivalley occupation, and high quality
electron transport. This system resembles that of a weakly
coupled double quantum well, where the two minivalleys
around κ and κ0 play the roles of the two subbands. Since
the wave functions of the minivalleys are mostly bilayer
polarized, a dual gate geometry provides independent
control over the density in the two minivalleys, and with
that, their energetic alignment [11].
A common way to obtain the leading scattering mecha-

nism is analyzing the temperature dependence of the
electrical resistivity [12]. Measurements of the resistivity
inmagic-angle twisted bilayer graphene have shown a linear
temperature dependence, suggestive of electron-phonon

scattering [13,14] or strange metallic behavior [15,16].
As the scattering between minivalleys is not necessarily
the leading scattering mechanism, we introduce a more
targeted approach.When applying a magnetic field, Landau
levels are formed in both minivalleys separately. The
energetic (mis)alignment of the modulated densities of
states in the two minivalleys leads to oscillations in the
interminivalley scattering. This oscillating interminivalley
scattering is reflected in electrical transport through an effect
analogous to magneto intersubband oscillations (MISO)
[17,18]. In the following, we will refer to these magneto
interminivalley oscillations asMISO, since they encapsulate
the same physical phenomenon. The method we present is
transferable to other moiré materials with a well developed
Landau level spectrum as well as control of the energetic
alignment of the minivalleys.
Here, we report measurements of MISO in TDBG with a

twist angle of 1.94° and investigate the interminivalley
scattering in the regime of hole-like states (n < 0). We
introduce the band structure and tunability of the TDBG
device by analyzing its Shubnikov–de Haas oscillations
(SdHO) as a function of density and displacement field.
Then we investigate two regions where MISO are particu-
larly pronounced. First, toward the Lifshitz transition [19],
we study MISO as a function of temperature and displace-
ment field and discuss the scattering mechanism. Second, at
the onset of the second minivalley, we discuss implications
of the underlying scattering mechanism based on the
observed valley degeneracy lifting. Finally, we discuss
the impact of our findings with regard to different materials
and twist angles.
We fabricate a Hall bar device [Fig. 1(a)] from TDBG

sandwiched between two hexagonal boron nitride layers.
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A four-terminal current-bias setup is used to obtain the
longitudinal resistance Rxx and Hall resistance Rxy, utiliz-
ing standard lock-in techniques with IAC ¼ 100 nA.
Crucially, we are able to control the density n and
displacement field D separately in the device through
voltages applied to the top gate (VTG) and bottom gate
(VBG) (see Supplemental Material [20]). We investigate the
device in a 4He cryostat with a base temperature of
T ¼ 1.2 K, and implemented temperature control. The
device is identical to the one investigated in Ref. [27].
For details on the device fabrication and data analysis, see
Supplemental Material [20].
The band structure of TDBG with a twist angle of 1.94°

is presented in Fig. 1(b). The bands in the mini-Brillouin
zone show local minima, maxima, and band gaps around
the two minivalleys κ and κ0. Without an applied displace-
ment field D the minivalleys are occupied equally (region
A). In contrast, when a displacement field is applied, the
energetic alignment of the minivalleys Δ is altered [11].
Independently tuning the Fermi energy now allows one to

only occupy the bands centered around κ0 [Fig. 1(c)], and
reach asymmetric minivalley occupations (region B).
The tunability of our device with respect to the occu-

pation of different minivalleys in the hole bands is inves-
tigated using SdHO. In Fig. 1(d) we show Rxx as a function
of displacement field D and total density n measured
at constant magnetic field B ¼ 2 T and temperature
T ¼ 1.2 K. We observe a single set of SdHO in the regions
masked with bronze and gray in Fig. 1(d), indicating the
occupation of a single minivalley. This corresponds to the
Fermi energy being tuned into the band gap of either
minivalley [Fig. 1(c)]. The blue region in Fig. 1(d)
corresponds to the configuration where both minivalleys
κ and κ0 are occupied, giving rise to a pattern of two sets of
SdHO. Similar pattern has been observed due to interlayer
Landau level pinning [26]. We reproduce this pattern within
a simple model by considering screening effects of the
bilayers as presented in Supplemental Material [20].
Finally, we highlight the Lifshitz transition [19] in
Fig. 1(d) by drawing the contour (dashed line) where
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FIG. 1. (a) Schematic overview of the device, including setup to measure the longitudinal and Hall voltage (Vxx and Vxy), and an out-
of-plane magnetic field B. Cross section of the device featuring the graphite, hexagonal boron nitride (HBN), TDBG, aluminium-oxide
(AlOx), and gold (Au) layers, and the top and bottom gates (VTG and VBG) indicated. (b),(c) Calculated band structure of TDBG (1.94°)
for displacement fieldD ¼ 0 andD ¼ 0.1 V=nm, respectively. Minivalleys κ and κ0 are indicated as well as the regions A and B. (d) Rxx
as a function of density n and D at temperature T ¼ 1.2 K and B ¼ 2 T. Regions A and B are indicated. The overlayed colors bronze
and gray indicate single minivalley regimes. The LT is highlighted by the dashed line. (e),(f) Resistance modulation ΔRxxðn;DÞ at
B ¼ 2 T and T ¼ 10 K and T ¼ 20 K, respectively. The density used in Figs. 2 and 3 is indicated with a black dashed line.
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Rxy ¼ 0. At this line, the topology of the Fermi surface
changes as the Fermi energy crosses the saddle point in the
band structure at the μ point [see Figs. 1(b) and 1(c)] [11].
Interestingly, apart from the SdHO pattern, density

independent resistance minima cutting through the middle
of the hexagons are observed indicated with black arrows in
the region labeled A in Fig. 1(d). Unlike SdHO, which are
strongly thermally damped, these resistance minima are
more pronounced at higher temperatures as seen at T ¼
10 K and T ¼ 20 K in Figs. 1(e) and 1(f). There we plot the
resistance modulation ΔRxx, where we extracted a smooth
background (RBG

xx ) using the Savitsky-Golay filter [30] and
subtracted this from the data (Rxx): ΔRxx ¼ Rxx − RBG

xx (see
Supplemental Material [20]). These oscillations are MISO
[17,18], caused by an oscillating interminivalley scattering
rate. The displacement field tunes the energy offset
between the minivalleys, Δ [indicated in Fig. 1(c)] that
periodically changes the energetic alignment of the Landau
levels in the minivalleys. This results in a periodic
modulation of the interminivalley scattering rate that we
observe as MISO in Figs. 1(d)–1(f).
The unprecedented tunability of our TDBG device

allows us to study MISO at various possible relative
energetic alignments of the minivalleys. In particular, we
observe enhanced MISO in two distinct regions denoted A
and B in Figs. 1(d) and 1(f). Region A is located toward the
Lifshitz transition for moderate values of displacement
fields, and region B at the onset of the second minivalley.
We start discussing region A showing unambiguously

the difference between MISO and SdHO. Line traces of Rxx
as a function of D measured at different temperatures and
constant density n ¼ −2.28 × 102 cm−2 (data measured at
n ¼ −2.78 × 1012 cm−2 is in Supplemental Material [20])
are shown in Fig. 2(a) revealing the suppression of SdHO
with temperature, while MISO persist. At T ¼ 20 K, as in
Fig. 1(f), only MISO are left, whereas at T ¼ 1.2 K, as in
Fig. 1(d), SdHO are dominant and MISO are slightly
visible as well. However, in the intermediate temperature
regime, T ¼ 10 K, the oscillations are commensurate. In
Fig. 1(e), this leads to an apparent phase shift in MISO
because with increasing density there is a shift around n ¼
−2.28 × 1012 cm−2 from commensurate SdH and MISO
regime to MISO dominated regime (see Supplemental
Material [20]).
In order to show that the oscillation spectrum of MISO

also differs from SdHO we present the resistivity modula-
tion ΔRxx as a function of B andD at T¼20K in Fig. 2(b).
Note, displacement field independent Azbel-Brown-Zak
oscillations (ABZO) [27,38] are present in the whole
magnetic field range. For comparison, we plot the results
of a basic MISO model (see Supplemental Material [20])
using dashed lines that highlight the alignment of Landau
levels from different minivalleys. The condition is fulfilled
when the energy spacing of an integer number of Landau
levels fits the energy offset between the minivalleys, i.e.,

when ΔðDÞ ¼ kℏeB=meff where k is an integer and meff ¼
0.06me the effective mass. At T ¼ 20 K we estimate that
only a few Landau levels participate in transport. The
model fits well for moderate D and deviates at higher D,
where we suspect the alignment condition is broken
because meff in the minivalleys becomes dissimilar. This
is in contrast to semiconductors with mostly parabolic band
structure, where larger numbers of Landau levels can
overlap at the same time. Finally, we would like to point
out the MISO fan in Fig. 2(b) is different from SdHO
Landau fans since it has its origin at D ¼ 0 [not at finite D
as for SdHO in Supplemental Material, Fig. 7], and it fans
out in both directions in D.
Generally MISO is considered to be caused by impurity

scattering [18]. One would therefore expect to see maxima
in the resistivity when the Landau levels from both
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FIG. 2. (a) Line traces of the Rxx − Rxx;0 (value of Rxx atD ¼ 0)
versus displacement field D for various temperatures T as
indicated, at constant n ¼ −2.28 × 1012 cm−2 and B ¼ 2 T.
The traces are offset by 35 Ω and the upper four traces are
multiplied by 5 for clarity. Vertical dashed lines mark positions of
MISO as guides to the eye. (b) Resistance modulation ΔRxx as a
function of D and B, taken at n ¼ −2.28 × 1012 cm−2 and
T ¼ 20 K. The black dashed lines represent the result of the
basic MISO model, while gray and bronze dashed lines represent
SdHO originating from κ and κ0 minivalley respectively (see
Supplemental Material [20]).
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minivalleys are aligned. Here, we observed the opposite.
Observing minima at MISO resonances indicates that
phonon-assisted instead of impurity intersubband scattering
is the dominant mechanism [39]. We expect the electron-
phonon scattering to be quasielastic, because in Fig. 2(b)
the experimentally observed phase of the oscillation
matches with the phase of the Landau level alignment in
the basic MISO model. Since we observe the MISO
resonances as resistance minima in the full tempera-
ture range [Fig. 2(a)], we envision scattering by low
energy phonons (e.g., flexural phonons) that have a flat
dispersion [40,41].
Additionally, we measured the temperature dependence

of the resistivity at B ¼ 0 and D ¼ 0, which shows a linear
behavior, indicative of an electron-phonon mechanism.
However, since the amplitude of the MISO is small
compared to the smooth background [e.g., ΔRxx=Rxx;0 ∼
1% at T ¼ 20 K in Fig. 2(a)], the interminivalley scattering
is probably not the dominant scattering mechanism deter-
mining the resistance. In Supplemental Material [20], apart
from a detailed analysis of the temperature dependence of
the data, we present a theoretical model that reveals that
intraminivalley electron-phonon scattering is likely to be
the dominant mechanism.
We continue by analyzing MISO as a function of dis-

placement and magnetic field at T ¼ 5 K in Fig. 3(a),
focusing on the same density as in Fig. 2(b). The hexagonal
pattern is formed by two sets of SdHO originating from
respective minivalleys, as indicated in Fig. 3(a), whose
discontinuous structure is a result of screening effects.
Additionally, displacement field independent ABZO are
present throughout the whole magnetic field range.
Interestingly, insteadof single resistanceminima, asobserved
at the alignment condition of MISO in Fig. 2(b), the MISO
resonances are split into two resistance minima at higher
magnetic fields, as highlighted by the dark blue arrows in
Fig. 3(a),while the SdHOare not split.We extract an effective
Landé g factor of g ≈ 5, pointing toward a splitting of the
valley (K and K0) degeneracy rather than the spin [42].
The possible Landau level alignments taking into

account valley splitting of a single Landau level in each
minivalley are schematically shown in Figs. 3(b)–3(d),
where three typical energetic offsets are sketched. From this
picture one would expect to observe three MISO minima.
However, since we only observe two [configurations b and
c], the interminivalley scattering must have a valley
selection criterion. Note that the MISO splitting is twice
that of the Landau levels, which makes it plausible that the
splitting is not apparent in the SdHO. In Fig. 3(e) we sketch
the mini-Brillouin zones with respective valleys and mini-
valleys. Considering the relative distance in k space it is
more likely that the scattering is valley conserving. In
combination with a quasielastic scattering mechanism, this
implies that the valley splitting in the two graphene bilayers
should be opposite and scattering is only allowed when the

same valleys line up, as sketched in Figs. 3(b) and 3(c).
Future theoretical work is needed to confirm this possible
mechanism.
After analyzing the region of enhanced MISO in region

A of Fig. 1(d), we shift our attention to the region at the
onset of the second minivalley occupation, denoted by B in
Fig. 1(d). In Fig. 4(a) we plot Rxx as a function of B and n,
at finite displacement field and temperature of T ¼ 1.2 K.
At densities below n ∼ −1.5 × 1012 cm−2, which is the
density onset of the κ minivalley, we measure the Landau
fan of κ0 minivalley highlighted with bronze dashed lines in
Fig. 4(a). Once the Landau levels of the second minivalley
appear, the levels in the already occupied κ0 minivalley
(dotted bronze lines) split as indicated with the bronze
arrow in Fig. 4(a), signaling a transition from fourfold to
twofold degenerate levels [see also inset of Fig. 4(a)]. To
find out which degeneracy (valley or spin) is lifted, we
perform additional measurements, using a different cryo-
stat, for two different angles of the magnetic field with
respect to the normal of device [see Fig. 4(b)]. Since the
splitting depends on B⊥ (and not on jBj), we speculate that
the valley (K and K0) degeneracy in the already occupied κ0
minivalley is lifted.
The lifting of the valley degeneracy once the secondmini-

valley gets occupied can be a result of electron-electron
interactions, as it is not expected to occur due to single
particle effects [43]. A possible electron-electron interaction
at play is the valley exchange effect. Furthermore, due to
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TDBG with labeled valleys (K and K0) and minivalleys (κ and κ0).

PHYSICAL REVIEW LETTERS 128, 057702 (2022)

057702-4



high effective mass at the onset of the second minivalley,
screening effects can improve the mobility leading to better
linewidth of SdHO hence revealing the splitting in the
spectrum. However, since we observe enhanced MISO, i.e.,
stronger scattering, at the onset of the secondminivalley, we
speculate that the observed enhanced interminivalley scat-
tering leading to MISO in region B of Fig. 1(d) is due to an
electron-electron scattering mechanism.
In summary, by using MISO as a targeted measurement

approach, we have investigated interminivalley scattering
in a moiré material. We found two regions of enhanced
MISO, and discussed the likely scattering mechanisms of
electron-phonon scattering with a valley selection rule in
the vicinity of the Lifshitz transition and electron-electron
scattering at the onset of the second minivalley. The
described measurement technique is transferable to other
moiré materials [44,45], given that they adhere to the
prerequisites of a clear Landau level spectrum and suffi-
cient tunability. Furthermore, when decreasing the twist
angle the regions of enhanced MISO merge, the mini-
valleys come closer in k space, and the effective mass is
lowered further as the bands become flatter. We therefore
anticipate interminivalley scattering to increase strongly.
Our observations may give a handle to refine theoretical
models that aim to capture interactions in moiré systems,
such as magic-angle twisted bilayer graphene.

All data used in this Letter are made available on-
line [46].
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