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The equilibration between quantum Hall edge modes is known to depend on the disorder potential and
the steepness of the edge. Modern samples with higher mobilities and setups with lower electron
temperatures call for a further exploration of the topic. We develop a framework to systematically measure
and analyze the equilibration of many (up to 8) integer edge modes. Our results show that spin-selective
coupling dominates even for non-neighboring channels with parallel spin. Changes in magnetic field and
bulk density let us control the equilibration until it is almost completely suppressed and dominated only by
individual microscopic scatterers. This method could serve as a guideline to investigate and design
improved devices, and to study fractional and other exotic states.

DOI: 10.1103/PhysRevLett.128.056802

Quantum Hall devices remain paradigmatic for research
on topological systems [1]. The Hall regime is accessed
with a quantizing magnetic field perpendicular to a two-
dimensional electron gas (2DEG) [2,3]. Dissipationless
nonequilibrium currents flow in one-dimensional chiral
channels along the edge of the system in response to an
external voltage [4–7], experiencing inter-edge-state scat-
tering in the presence of a background disorder potential
[8–14]. Equilibration phenomena among nonequilibrium
edge currents are not yet fully understood despite the rich
history of past experiments on semiconducting devices.
Haug and co-workers found length-dependent equilibra-

tion in spin-degenerate quantum Hall systems with top
gates acting as partially transmitting barriers [6,9,15],
but did not report about spin-related effects. Later,
Müller found that in the presence of a background disorder
potential, spin-orbit interactions mediate the equilibration
between spin-polarized edge modes by allowing charge
carriers to flip their spin [11,16]. The continuous advance-
ments in material technologies thus motivated a revival of
equilibration experiments [17–20].
Local probe experiments by Weis et al. already showed

the complexity of the microscopic reconstruction of the
edge potential [21–24]. Further details on the edge could be
revealed assuming that the presence of an incompressible
region of a specific filling factor between two channels
implies weak equilibration.
Quantum Hall edge state equilibration experiments

gradually expanded to the fractional regime too, often
finding nontrivial edge reconstructions and current distri-
butions [25–27]. Graphene is another mature platform
for quantum Hall experiments unraveling the role of
valley and spin degrees of freedom in equilibration phe-
nomena [28–31].

In this Letter, we address the question of inter-edge-
mode scattering in state-of-the-art devices using electronic
transport experiments. The design that we use is inspired
by historically well-known experiments, where edge chan-
nels can be reflected and transmitted with barrier gates to
obtain well-controlled out-of-equilibrium population of
edge modes [15,16,32–34]. We study how the excitation
of selected integer edge modes is redistributed as they co-
propagate and extract the strength of pairwise coupling
among many channels (up to 8). We find that the spin of the
modes determines the equilibration at low enough fields,
spin selectively coupling even distant channels in contrast
with many findings from the past [6,8,11,12]. For larger
fields the equilibration is almost completely suppressed
and mesoscopic impurities dominate the weak equilibration
between spin-split channels.
Our device is an MBE-grown [Al]GaAs heterostructure

equipped with a patterned back gate located roughly 1 μm
below the plane of the 2DEG [35,36]. We lithographically
defined top gates as indicated in Fig. 1(a). While the back
gate tunes the whole device, we locally control the electron
density with the injector and detector gates, creating
tunable barriers in front of the injector and detector
contacts. An additional gate located between the barriers
on the side of the device pushes the 2DEG away from the
physical edge of the mesa and creates a smooth electrostatic
edge. A dilution refrigerator lowers the device temperature
to≲ 30 mK. From previous characterization, we expect the
2DEG to thermalize with the lattice in our setup [37,38].
At integer filling factors of the 2DEG, an external

magnetic field B induces edge conduction with the chirality
indicated in Fig. 1(a). Following the Landauer-Büttiker
formalism [40,41], the number of channels transmitted by
each barrier depends on the local filling factors
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νI;D ¼ hnI;D
eB

≤ νB; ð1Þ

where νI and νD are the filling factors of the 2DEG under
the injector and detector gates, respectively, when we fix
the local densities to nI and nD. We tune the system such
that νI , νD and the bulk filling factor νB have integer values
to perform the experiments in a controlled way and
suppress bulk equilibration [19]. We can route channels
carrying different electrochemical potentials to flow along
the co-propagation path [Leq in Fig. 1(a)]. Measuring the
longitudinal resistance across this path [6,11] or the
potential of the detector with respect to ground (our case),
will yield information about the strength of the equilibra-
tion processes among the channels.
We measure the two-terminal conductance G2T as a

function of the barrier voltage VI while an ac current Iac
flows from the injector to ground and the other barrier is
fully transparent. Figure 1(b) shows the result measured at
νB ¼ 5. Plateaus of constant conductance matching integer

multiples of e2=h are found as the barrier gate voltage
decreases, (white dashed lines). Each diagonal feature
corresponds to a fixed number of channels transmitted
through the barrier region. We repeat the same experiment
with the detector gate and for different bulk filling factors
to observe the transmission characteristics of both barriers
(not shown).
After flowing through the injector barrier, the transmitted

channels will have a different electrochemical potential μI
compared to the reflected modes on the other side of the
barrier, coming from the grounded contact [cf. red versus
yellow and white lines in Fig. 1(a)]. However, measuring
the transverse voltage Vxy between the detector and ground
will reveal no details about intermode coupling along the
path if all channels equilibrate in the detector (νD ¼ νB)
[42]. The contact settles at the electrochemical potential

μD ¼ 1

νD

XνD

i¼1

μi; ð2Þ

where μi is the potential of an individual channel i when
entering the detector. In the integer regime, all channels
have transmission of one and contribute equally to the
potential of the contact. When the detector barrier allows
only selected modes to be transmitted (νD < νB), measure-
ments of the transverse resistance will yield

RðνDÞ
xy ¼ Vxy

Iac
¼ h

e2
μD
νIμI

¼ h
e2

1

νIνD

XνD

i¼1

μi
μI

: ð3Þ

The total equilibration between the channels does not
depend on the specific tuning of the barriers, but rather on
the edge potential along the propagation path, on the
mesoscopic disorder background and on the length of co-
propagation. Equilibration among channels under the detec-
tor gate does not affect the measurements [42]. If the external
current is completely injected in the outermost channel
(νI ¼ 1), an out-of-equilibrium population of spin-polarized
electrons is built up. This channel can equilibrate either with
other channels of the same spin polarization, or with
channels of the opposite spin, if spin flips are involved.
We devised a measurement protocol to extract the

electrochemical potential of the channels at the detector.
We measureRνD

xy for different values of νD while the injector
barrier is tuned to νI ¼ 1. A system of equations of the form
of Eq. (3) with values 1 ≤ νD ≤ νB describes the measure-
ments [see Fig. 2(a)]. We can solve the system to find
the normalized electrochemical potentials of the channels
μ̃i ¼ μi=μI , with the initial conditions μ̃01 ¼ 1, and μ̃0j ¼ 0

for j ≠ 1.
Figures 2(b)–2(f) show the results of the analysis for

different νB and in a range of magnetic fields and bulk
densities. In Fig. 2(b)–2(d), we observe that electrons
preferentially equilibrate with states of the same spin,

(a)

(b)

FIG. 1. (a) Schematic device structure and measurement setup,
not to scale. A current Iac ¼ 500 pA flows through the device
between injector and ground contacts, at potentials μI and μ ¼ 0,
respectively. Two top gates act as barriers downstream of the
injector (violet gate) and upstream of the detector (yellow gate)
contacts. They are controlled via two dc voltage sources VI and
VD (not shown). A side gate (green) laterally depletes the 2DEG
along a length Leq ¼ 35 μm. (b) Two-terminal conductance
measured through the device as a function of the left barrier
gate voltage VI . The right barrier gate is grounded [39]. The
magnetic field B and bulk density nB, controlled with the back
gate, are stepped together to ensure constant bulk filling factor
νB ¼ 5. Diagonal dashed lines indicate regions of constant
conductance, corresponding to a quantized local filling factor
νI below the injector gate.
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leaving channel 1 to occupy states in modes 3 and 5.
Channels labeled with even numbers were mostly
decoupled from the only initially excited channel and their
potential is closer to the bottom of our energy scale.
In particular, when νB ¼ 8 or 6, two bundles of channels

with opposite spin are resolved and well separated in
energy. Even though the clear separation between the
two bundles is not visible for the case of νB ¼ 7, also
here the system favors spin-selective equilibration. The
presence of reproducible fluctuations is likely due to
impurities occurring on mesoscopic length scales, modu-
lating the coupling between the modes [43].
If the three spin-up channels in Fig. 2(b) completely

equilibrate while the others do not participate, we expect
to find μ̃1;3;5 ¼ 1=3 ≃ 0.33, a case nearly reached at the

highest densities. Conversely, if all channels equilibrate,
then μ̃i ¼ 1=8 ¼ 0.125 for all of them, which is nearly the
case at the lowest densities.
As the number of channels in the bulk decreases with

increasing external magnetic field, so does the coupling
between them. Figure 2(e) (νB ¼ 5) shows that electrons in
channels 1 and 3 are not fully equilibrating along Leq,
contrary to the cases with νB > 5. We observe that the
coupling becomes weaker for larger B, but spin-selective
equilibration still remains the favored process. In Fig. 2(f)
(νB ¼ 4) the coupling weakens to the point where
μ̃1 ≈ μ̃01 ¼ 1 for the whole range. Few mesoscopic features
increase the coupling between the two modes in the lowest
Landau level, which requires some spin-flip mechanism.
Spin-selective equilibration is not observed in this case.

(b)

(c) (d)

(e)

(a)

(f)

FIG. 2. (a) Equilibration measurement performed at the star-shaped symbol in Fig 1(b). The red circles indicate the data points
required to calculate a set of μi following Eq. (3). (b)–(f) Electrochemical potential μ̃i of the modes for integer bulk filling factors
νB ¼ 8–4 after the equilibration path. Matching labels indicate the spin and index of the channels. The back gate voltage VBG
(controlling nB) and the magnetic field B are simultaneously stepped to fix νB during each experiment, similar to Fig. 1(b). The shaded
regions in (a)–(d) indicate the range where coupling parameters have been extracted [see text and Fig. 3(c)–3(f)]. The data in (a) and
(e) cannot be directly compared since they were collected at different times.
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Performing the same experiments over a distance
L0
eq ¼ 535 μm reveals full equilibration irrespective of

the spin alignment, although the innermost channel remains
decoupled [42].
The density profile at the edge, sketched in the spirit of

Ref. [44] in Fig. 3(a), guides us in understanding the results
of Fig. 2. The edge channels represent discrete conducting
regions located where the density has a nonzero gradient.
Incompressible stripes with a fixed filling factor separate
compressible regions that form at the edge as a result of
screening and interactions in the presence of an external B
field [44–47]. Decreasing νB at constant density, by
increasing B, means that a smaller number of channels
spans the density profile, pushing the innermost channels
further into the bulk [21,26,48]. Increasing B and nB while
keeping νB constant instead results in wider incompressible
stripes and a larger separation between the channels. The
magnetic length lB, and, consequently, the spatial extent of
the wave function of the edge modes, decreases for stronger
fields. Since charge transfer between channels requires
wave function overlap, a larger distance and stronger
confinement can quickly suppress the tunneling probability
amplitude.
Electrons can, in principle, tunnel from one channel to

any other, conserving or flipping their spin. The energy
transfer between modes can be approximated with a system
of rate equations of the form [42]

dμi
dx

¼ −
1

2

X

j≠i
γijðμi − μjÞ: ð4Þ

Here the potentials μi are intended to be position dependent
along the equilibration path between injector and detector.
The terms γij ¼ γji model a uniform coupling between
channels i and j [see Fig. 3(b)]. These parameters encap-
sulate any equilibration process in our model, giving
us a quantity related to the average equilibration lengths
leq
ij ¼ γ−1ij between channels i and j. We can numerically

calculate the whole set of γij by performing an equal
amount of independent measurements at the detector, each
time setting the barrier filling factors to integer values such
that νI ≤ νD and νI; νD < νB [42].
Starting with νB ¼ 8 in Fig. 3(c), we observe that spin-

conserving coupling terms dominate, while spin-flip terms
can be more than 1 order of magnitude smaller. Spin-
selective tunneling couples not only the spatially closest
channels with parallel spin (channels 1 and 3), but also
terms like γ15 and γ26 are much larger than spin-flip terms
coupling nearest neighbors. This shows that it is more
likely for electrons to tunnel a larger distance without
flipping their spin rather than tunneling through a thinner
barrier undergoing a spin-flip event.
Increasing the field and decreasing νB at constant density

progressively decouples the channels. In Figs. 3(d) and 3(e)

(a) (c)

(d)

(e)

(f)
(b)

FIG. 3. (a) Density profile at the edge of the 2DEG. The unperturbed curve (gray dashed line) was calculated following Ref. [45]. The
reconstructed density profile is sketched on top with colored shaded regions indicating the compressible stripes. (b) Pictorial
representation of channels flowing along one edge of the device. A vertical axis labels the coupling terms represented as horizontal
dashed arrows. Even though in our model we consider pairwise coupling terms γij between all channels, the sketch shows only terms
involving the two outermost channels (1 in blue and 2 in orange). (c)–(f) Coupling parameters for different bulk filling factors.
The arrows indicate the spin alignment of the channels coupled by each term. The values reported here are averaged in the grey shaded
areas in Fig. 2(b)–2(e). The central magnetic field for each shaded area is reported in the figure. The corresponding density range
nB ¼ 1.91–2.03×1015 cm−2 is the same for each plot.
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we observe a reduction of the long-distance coupling terms
γ15 and γ26. The spin-selective coupling terms γ13 and γ24
appear to increase with the magnetic field, but the extrac-
tion of a precise value is difficult in the extreme cases and
due to mesoscopic fluctuations [42]. In Fig. 3(f) the trend
continues and also short-range spin-selective coefficients
decrease. Finally, for νB ≤ 4, all the integer channels are
mostly decoupled, either too far removed towards the bulk
or limited by the frequency of spin-flip events.
In this Letter, we analyzed our data based on the well-

established edge channel picture of the integer quantum
Hall effect, finding that channels with parallel spin selec-
tively couple with each other, while flipping the spin of
electrons is much less likely. At low enough fields, spin-
conserving tunneling even couples modes separated by
several compressible and incompressible stripes instead of
only neighboring channels with parallel spin. In general,
the equilibration process is influenced by experimental
parameters, like magnetic field and temperature [49], and
by sample properties, such as material quality and hetero-
structure design. Controlling the transfer of particles
between channels could lead to the use of edge modes
as spin rails to transport well-defined magnetic moments in
quantum computation experiments [50–52]. The presence
of spin-selective signatures at low field would help to
integrate such a technology with others that do not tolerate
or require high fields.
In the fractional regime, a precise knowledge of the

equilibration length is sought after to improve experiments
involving interferometers and other confined systems
[53,54], anyonic statistics [55,56], the thermal conductance
of exotic states [57–59] and the complex edge re-
construction associated with fractional states like 2=3
[60,61] and 5=2 [62,63]. Investigating the fractional quan-
tum Hall regime is a natural next step and we believe
that the techniques established in this Letter could comple-
ment investigations of edge reconstruction and the for-
mation of stripes with fractional filling factor in a variety
of materials [27].
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