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Permanent trapping of an oscillating, nonwetting droplet is observed in a converging-diverging
microchannel when aqueous, viscoelastic fluids are injected. Classical theories based on the balance
between capillary and viscous forces suggest that the droplet size should decrease with increasing flow
rates of a displacing Newtonian fluid, and the droplet should be completely displaced at high injection
rates. However, droplets in viscoelastic fluids cannot be removed by increasing flow rates due to the
oscillation. The oscillation amplitude linearly increases with the Deborah number (De), which further
inhibits the droplet’s passing through the constriction, “permanently.” Our microfluidic experiments show
that the onset of oscillation is determined by a critical De, which is near 1. We derive a linear relationship
for the trapped droplet length with Ec1=3, where Ec is the elastocapillary number, by introducing the elastic
force into the force balance in addition to the capillary and viscous forces.
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Viscoelastic fluids are non-Newtonian fluids that act as
both viscous fluids and elastic solids simultaneously [1],
which play key roles in many natural and industrial fields
including biological systems [2,3], food industry [4], and
subsurface engineering problems [5,6]. Compared with
Newtonian fluids, chaotic flow behaviors can be found in
viscoelastic fluids even in the inertia-less limit (Reynolds
number, Re < 1). These chaotic behaviors include asym-
metric vortices in a converging-diverging channel [7–10],
secondary flows in the Taylor-Couette flow [11,12], and
curved streamlines in driven cavity flow [13]. These
phenomena are commonly referred to as “elastic instabil-
ity” or “elastic turbulence” [14–18].
Efforts on the elastic instabilities have been mainly

focused on single-phase flow of viscoelastic fluids through
evaluation of curved streamlines. Pakdel and McKinley
[13] and McKinley et al. [19] found that there exists an
onset of elastic instability and characterized it by proposing
a group of new dimensionless criteria consisting of the
Deborah number (De) and the Weissenberg number (Wi)
for various simple flow geometries. McKinley’s criteria
have been also applied to explain the elastic instabilities
observed in microfluidic porous networks [20,21].
Walkama et al. [21] further demonstrated that introducing
a small disorder into the porous geometry can suppress the
elastic instabilities because the induced preferential flow
paths promote shear over extensional deformation.
There have also been a few studies on the free surface

elastic instabilities, which do not involve curved stream-
lines, such as the jet breakup during filament stretching

[22–24] and the liquid sheet instability [25,26]. However,
only limited studies addressing the instability behaviors
in disperse multiphase flows of viscoelastic fluids are
available in the literature. Clarke et al. [27,28] discovered
fluctuations of residual oil droplets in a glass, porous
micromodel when displaced by viscoelastic solutions. Our
recent work [29] provided numerical evidence of droplet
oscillation by viscoelastic fluids and demonstrated that
viscoelastic oscillation can help mobilize droplets from
their originally trapped positions.
The purpose of this Letter is to show a new way for the

manipulation of droplets by demonstrating experimentally
and quantifying the newfound droplet trapping and oscil-
lation in viscoelastic fluids. The experiments are performed
in a converging-diverging microfluidic channel, which is a
simple but important geometry to investigate many funda-
mental flow processes, such as droplet generation and
snap-off [30–32]. Specifically, we show that (i) the linear
relationship between the critical trapped droplet length and
Ca−1=3 (Ca is the capillary number) for Newtonian fluids
proposed by Xu et al. [33] only holds for viscoelastic
fluids below a critical De; (ii) the elastocapillary number
(Ec ¼ De=Ca), originally named by McKinley [34] for
inertialess flows of free surface viscoelastic fluids, can be
applied to analyze the viscoelastic oscillation; and (iii) the
relationship between De and the oscillation amplitude can
be quantified.
The viscoelastic oscillation is a strongly coupled phe-

nomenon involving a balance of the elastic (Fels) and viscous
forces (Fvis) in addition to the capillary force (Fcap). All the
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experiments presented here are in the inertialess limit [14]
(the maximum Reynolds number for all cases in this study is
Re ¼ 0.2 < 1), therefore, the main dimensionless groups
governing this process are defined as

De ¼ τU
L

∝
Fels

Fvis
; ð1aÞ

Ca ¼ ηU
γ

∝
Fvis

Fcap
; ð1bÞ

Ec ¼ De
Ca

¼ τγ

ηL
; ð1cÞ

where τ is the viscoelastic relaxation time, η is the dynamic
viscosity of the displacing fluid, γ is the interfacial tension,U
is the characteristic velocity, and L is the characteristic
length. The Deborah number (De) represents the ratio of
elastic to viscous forces, the capillary number (Ca) repre-
sents the ratio of viscous to capillary forces, and the
elastocapillary number (Ec) accounts for the combined
importance of elastic and capillary forces, compared to
the viscous force.
The microfluidic experimental platform and geometry of

the single converging-diverging channel is shown in
Fig. S1 [35], which contains two main channels (50 mm
in length, 300 μm in width, and 45 μm in depth) connected
by a throat (300 μm in length, 60 μm in width, and 15 μm
in depth). We compare the displacements of a Newtonian
fluid (FN0: tetradecane) through this microchannel by both
viscoelastic and inelastic fluids (Table S1 [35]). The
viscoelastic fluids (FVE1 to FVE4) include two hydrolyzed
polyacrylamide (HPAM) polymer solutions and two

polyethylene oxide in polyethylene glycol solutions of
varying molecular weight and concentration, and therefore
different relaxation times. The inelastic fluids include both
Newtonian fluids (FN1∶50% glycerol solution, and
FN2∶brine) and shear-thinning fluids (FS1∶0.075% scle-
roglucan solution, and FS2∶0.1%, 8M Mw HPAM solu-
tion). See also Supplemental Material [35] for more details
about the microfluidic geometry and fluid properties.
The dry microchannel is initially saturated with brine

to ensure a completely water-wet condition. Then the
Newtonian fluid FN0 (droplet) is slowly (1 μL=h) injected
to fully displace the brine. The displacing, wetting fluid is
then injected at a low flow rate (0.2 μl=h). Since the
microchannel is completely water wet, a droplet is
generated upstream of the throat and trapped due to
capillary forces. The injection rate (and thus the capillary
number) is then incrementally increased until the droplet
is either pushed through or the droplet size no longer
decreases (usually results in oscillation upstream of the
throat). Snapshots of the droplet at each steady state
are recorded for image analysis to obtain the effective
droplet length L (the area of the droplet divided by the
width of the main channel) as the characteristic length.
The mean velocity at the inlet (U ¼ flow rate divided by
cross-sectional area of the main channel) is taken as the
characteristic velocity.
Typical snapshots for the trapped droplet (FN0) during

displacements by different fluids at various flow rates are
shown in Fig. 1. For all inelastic cases, the droplet length
decreases with increasing flow rate, and the droplet
completely passes through the throat at high flow rates
(Ca > 4 × 10−5). While for all viscoelastic cases, the
droplet no longer decreases in length at high flow rates

FIG. 1. Viscoelastic fluids induce droplet oscillation. Typical snapshots for the trapped droplets during displacements by (a) Newtonian
fluid FN1 at flow rates from 1.5 μL=h to 6 μL=h, (b) shear-thinning fluid FS1 at flow rates from 0.1 μL=h to 0.35 μL=h, (c) viscoelastic
fluid FVE4 with a lower relaxation time (τ ¼ 0.41 s) at flow rates of 50 μL=h and 200 μL=h, and (d) viscoelastic fluid FVE1 with a higher
relaxation time (τ ¼ 2 s) at flow rates of 70 μL=h and 160 μL=h. The red arrows in (c) and (d) indicate the moving direction of the
oscillating droplets.
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(De > 1), but instead oscillates in the main channel
upstream of the throat and is trapped permanently. The
droplet is pushed toward the throat, then changes direction
toward the inlet until it stops and changes direction again
toward the throat. No oscillation occurs for displacements
by inelastic fluids (including shear-thinning fluids FS1 and
FS2). Comparing the displacements using fluids FS1 and
FVE1 that the oscillation only occurs in the latter case, we
can exclude the shear-thinning behavior of non-Newtonian
fluids as a factor for oscillation since both fluids have
similar shear-thinning rheology (Fig. S2 [35]) but only
fluid FVE1 is viscoelastic. We also reverse the process by
using the Newtonian fluid FN0 as the bulk fluid to displace
a viscoelastic droplet (FVE3), showing completely displace-
ment and no oscillation of the droplet (Fig. S5 [35]).
Therefore, we further confirm that it is the viscoelasticity of
the displacing fluids that results in the droplet oscillation.
Streamline analysis by the particle image velocimetry (PIV)
measurement (Fig. S6 [35]) and our numerical simulation
[29] also proved that the oscillation is caused by elastic
instability and turbulence. See also Fig. S4 [35] for
displacements by all other fluids and Supplemental
Material movies [35] for the dynamic viscoelastic oscil-
lation processes.
For inelastic fluids, Xu et al. [33] showed the displace-

ment is only determined by the force balance of viscous and
capillary forces (derived byWong et al. [44,45]) as follows:

Fvis ∝ ηUL; ð2aÞ

Fcap ∝ ηUCa−1=3: ð2bÞ

Therefore, a linear relationship between L̃ and Ca−1=3
was derived, where L̃ is the dimensionless form of the
effective droplet length L as L̃ ¼ L=w (w ¼ 300 μm is the
main channel width). As shown in Fig. 2, for all inelastic
displacements, the size of the droplet decreases as Ca
increases, and data agree with this relationship. For
viscoelastic displacements, we find the data also overlap
with the inelastic data at low flow rates (De < 1), but the
results deviate from the linear trend near the onset of
viscoelastic oscillation.
Figure 2 also indicates that the final length (L∞) of the

oscillating droplets at high velocities varies for different
viscoelastic experiments. To determine the impact of fluid
properties and flow conditions on the final droplet length,
the critical condition for the onset of oscillation [Fig. 3(e)]
must be determined, as L∞ no longer changes once the
oscillation starts.
We track the evolution of the distance [Fig. 3(a)] between

the droplet center to the throat entrance for all the
viscoelastic displacements, and Fig. 3(b) shows the dis-
placement by viscoelastic fluid FVE4 at the flow rate of
250 μL=h (De ¼ 6.9). By applying a high pass fast Fourier
transform (FFT) filter, the data of Fig. 3(b) are further

analyzed and converted to Fig. 3(c), which indicates
that each oscillation follows a wave with a constant
amplitude A. These amplitudes are plotted against De in
Fig. 3(d), showing an increasing trend with De, nearly
linearly, with some scatter:

Ã ¼ mðDe − DecritÞ; ð3Þ

where Ã ¼ A=L∞ is the dimensionless amplitude and the
slope m is dependent on the converging-diverging geom-
etry and is 0.177 in our experiments. See also Supplemental
Material [35] for more details on the derivation of Eq. (3)
based on the theory of simple harmonic motion. Figure 3(d)
further indicates the critical condition for the onset of
viscoelastic oscillation, which is determined by De as Decrit
is around 1 in our experiments.
At the onset of oscillation (critical condition), all three

forces are balanced as

Fvis ¼ Fcap þ Fels: ð4Þ

According to Eqs. 1(a) and (2), we have

Fvis ¼ φηUcritL∞; ð5aÞ

Fcap ¼ ψηUcritCa
−1=3
crit ; ð5bÞ

Fels ¼ χDecritFvis ¼ χηUcritDecritL∞; ð5cÞ

where φ, ψ , and χ are geometric coefficients. Then by
substituting Eq. (5) into Eq. (4), we obtain

L̃∞ ∝ Ca−1=3crit =ð1 − αDecritÞ; ð6Þ

FIG. 2. The dimensionless length of the trapped droplet L̃ with
respect to Ca−1=3. The dash line is a linear fit to the inelastic data
according to Xu et al. [33].
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where α ¼ χ=φ, L̃∞ is the final dimensionless length of the
oscillating droplet, nondimensionalized by the main width
(w ¼ 300 μm). L̃∞ ¼ L∞=w. Equation (6) can be rewritten
by introducing the elastocapillary number [Eq. 1(c)]:

L̃∞ ∝
De−1=3crit

1 − αDecrit
Ec1=3: ð7Þ

Since Decrit (∼1) and α (a geometric coefficient) are both
constants, we obtain a linear relationship between L̃∞ and
Ec1=3. Our data for the viscoelastic fluids also demonstrate
this relationship as shown in Fig. 4 [where the slope ε
should be proportional to the coefficient in Eq. (7), and is
0.26 in our experiments], which indicates that the final
oscillation length of the droplet is only determined by the
fluid properties and is independent of flow rate.
In this Letter, we experimentally show oscillation and

permanent trapping of a nonwetting droplet in a converg-
ing-diverging microfluidic channel induced by elastic
instability. We demonstrate this phenomenon occurs only
if the displacing fluid is viscoelastic. There exists a critical
De for the onset of viscoelastic oscillation, which is found
to be around 1 in our experiments. The oscillation ampli-
tude is found to increase with De linearly beyond the
critical De. Because of viscoelastic oscillation and trapping,
the linear relationship between the critical trapped droplet
length and Ca−1=3 originally derived for Newtonian

displacements is no longer valid for viscoelastic displace-
ments. This is because the elastic force must be considered
in addition to the capillary and viscous forces. Analysis of
the force balance at the onset of oscillation (critical De), we
discover a linear relationship between the final trapped
droplet length and Ec1=3, which emphasizes the importance
of the elastocapillary number (Ec) for inertialess multiphase

FIG. 3. The effect of Deborah number De on the oscillation amplitude. (a) Definition of the distance d between the droplet mass center
to the throat entrance. (b) The evolution of the dimensionless distance d̃ ¼ d=L∞ for viscoelastic fluid FVE4 at the flow rate of 250 μL=h
(De ¼ 6.9) as an example. The time t is nondimensionalized by L∞=U as t̃ ¼ tU=L∞. (c) A 0.02 Hz high pass fast Fourier transform
(FFT) filter on the data of Fig. 3(b) to obtain the oscillation amplitude. The dashed lines denote the average dimensionless amplitude Ã.
(d) The dimensionless oscillation amplitude Ã of the droplet with respect to De. The dashed line is a linear fit to all the data. (e) The
forces excerted on the droplet at the onset of oscillation (the droplet is about to detach from the throat entrance) for the displacement by
viscoelastic fluid as an illustration.

FIG. 4. The dimensionless length of the oscillating droplet L̃∞
with respect to Ec1=3. The insets are snapshots of the droplets
during oscillation.
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flows of viscoelastic fluids. This discovery presents a novel
consequence of viscoelastic instability for a viscoelastic
fluid in the presence of another fluid, and provides new
possibilities for trapping and manipulation of droplet in
microstructures.
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