
Synthetic Topological Nodal Phase in Bilayer Resonant Gratings

Ki Young Lee ,1,* Kwang Wook Yoo,1,* Sangmo Cheon ,1 Won-Jae Joo,2

Jae Woong Yoon,1,† and Seok Ho Song 1,‡
1Department of Physics, Hanyang University, Seoul 133-791, Korea

2Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, Korea

(Received 31 August 2021; accepted 3 January 2022; published 2 February 2022)

The notion of synthetic dimensions in artificial photonic systems has received considerable attention as it
provides novel methods for exploring hypothetical topological phenomena as well as potential device
applications. Here, we present nanophotonic manifestation of a two-dimensional topological nodal phase in
bilayer resonant grating structures. Using the mathematical analogy between a topological semimetal and
vertically asymmetric photonic lattices, we show that the interlayer shift simulates an extra momentum
dimension for creating a two-dimensional topological nodal phase. We present a theoretical model and
rigorous numerical analyses showing the two nodal points that produce a complex gapless band structure
and localized edge states in the topologically nontrivial region. Therefore, our results provide a practical
scheme for producing high-dimensional topological effects in simple low-dimensional photonic structures.
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Along with the growing interest in the topological
insulators [1,2], the search for diverse topological phases
of matter has been emerged as a new frontier in the field of
quantum materials. A remarkable discovery is the topo-
logical nodal phases [3] as found in the Dirac or Weyl
semimetals [4,5]. They show topologically nontrivial
regions in their gapless band structures possessing an
exotic surface state on the Fermi arcs. In this regard, the
novel topological notions are found in various wave
systems such as electronic [6], atomic [7], phononic
[8,9], and photonic [10–12] lattices. Importantly, these
systems show additional phenomena associated with non-
Hermitian [13,14] and high dimensional topological phases
[15,16]. Although such phenomena are of fundamental
interest and also hold some potential for practical appli-
cations, they often imply hypothetical potential distribu-
tions that have no counterparts in the existing condensed
matter systems.
Within this context, the concept of synthetic dimensions

[17,18] represents the nonspatial degrees of freedom which
are parametric replacements of actual spatial dimensions of
a system Hamiltonian, offering new schemes for exper-
imentally realizing high-dimension topological phenomena
in simple low-dimensional systems. For instance, three-
dimensional (3D) Weyl points have been reported in 1D
photonic lattices [19], sonic crystals [20,21], and 2D ring-
resonator systems [22] taking geometrical shape factors or
on-site frequency components as synthetic-dimension
parameters. Thus, the use of synthetic dimensions provides
an efficient means to implement fundamental topological
phenomena as well as additional functionalities enabling
one-way frequency conversion [22], topological rainbow
trapping [23], and vortex beam generation [19,24].

In this Letter, we propose bilayer resonant gratings as a
new platform for constructing photonic topological nodal
phases in a synthetic momentum dimension. We show that
the interlayer shift simulates a synthetic wave vector
controlling the complex Berry phase [25] of non-
Hermitian photonic band structures. Previously, the inter-
layer shift has been treated as a Hermitian band-tuning
parameter for the flat or Dirac-crossing dispersion relations
in multilayer photonic systems such as twisted bilayer
photonic crystals [26,27], photonic fishbone lattice [28],
moiré metasurfaces [29–31].
Here, we take a further step toward the non-Hermitian

topological physics, where the characteristic band tuning
effects are understood as natural consequences of the
topological phase transition while the non-Hermiticity
suggests intriguing opportunities for novel probing and
resonance control schemes. We provide complex band
structures of guided-mode-resonance (GMR) states over
a 2D synthetic-momentum space, an analytic theory based
on the photonic analogy of topological semimetals, and
consistent rigorous numerical calculation results. Therein,
the topological phase transition emerges with an edge-state
dispersion connecting two Dirac points. Intriguingly, these
characteristic features clearly appear in the far-field inten-
sity distributions as resonance spectra potentially useful for
a variety of nanophotonic applications in practice.
We consider a bilayer configuration consisting of two

identical 1D dielectric subwavelength gratings as sche-
matically illustrated in Fig. 1. The structure has total
thickness d, fill factor F, period a, and grating bars with
refractive index n1 covered by a low index medium denoted
by its refractive index n2. We introduce the degree S of
lateral interlayer shift between the two layers, which adjusts
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the interlayer interaction with a normalized value from
0 to 1. The unit cell configuration with the lateral shift
maintains the inversion symmetry of the structure as shown
in the right inset of Fig. 1. We assume light incidence in
the zero-order regime below the Rayleigh frequency and
analyze optical responses near the second-order Bragg-
reflection condition for TE0 guided modes of the entire
slab [32,33].
The complex GMR band structures in this bilayer-

grating structure are described by a non-Hermitian eigen-
value problem HGMRjψi ¼ Ejψi, where eigenvalue E is
complex due to leakage radiation of the GMR states toward
the radiation continuum in the background medium.
Considering S as an additional degree of freedom in the
interlayer interaction, the Hamiltonian HGMR is written by
the following form.

HGMR ¼ ðκ þ iγÞ cos 2πSσx − kxvgσy: ð1Þ

Here, κ represents total coupling rate between the
counterpropagating guided modes, and γ denotes the

leakage-radiation rate of the guided modes. κ and γ are
assumed to be positive and real valued in our configuration.
kx is the transverse Bloch wave vector, vg denotes the group
speed of the guided mode, and σj represents the Pauli
matrices. See Supplemental Material for the mathematical
details [34–37].
We note thatHGMR in Eq. (1) is in an exact mathematical

analogy to the 2D topological nodal phase Hamiltonian for
a chiral-symmetric semimetal configuration under the low-
energy continuum approximation [38]. The full band bulk
HamiltonianHTNP in the parametric parallelism withHGMR
can be written as

HTNP ¼ ½vgð1 − cospxÞ − ðκ þ iγÞ cospS�σx
þ vg sinpxσy; ð2Þ

where spatial wave vector px ¼ kx þ π and synthetic wave
vector pS ¼ 2πS constitute a synthetic 2D momentum
space—one momentum dimension with kx and another
synthetic dimension with S. In the presence of the leakage
radiation loss (γ > 0),HTNP results in a complex-valued
band structure in the synthetic px-pS domain as shown in
Fig. 2(a). In particular, the real and imaginary band
structures include the two nodal points at px ¼ 1.0, and
pS ¼ 0.5π or 1.5π (S ¼ 0.25 or 0.75). These nodal points
are the 1D Dirac points (DPs) along px since the non-
Hermiticity disappears by formation of the flat imaginary
bands as denoted by white dashed lines in Fig. 2(a).
The complex band structures in Fig. 2(a) also

reveal the pS-dependent band topology in which the skin
color indicates the relative even-eigenvector strength
jhevenjψi; jwherejeveni ¼ 2−1=2½1 1�T . The band flip by
the eigenvector exchange occurs between the two DPs
(0.25 < S < 0.75), and this region represents the bilayer
photonic lattice in the topologically nontrivial phase.
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FIG. 1. Schematic of an asymmetric bilayer grating for syn-
thetic topological nodal phase. The structure consists of two
identical thin-film photonic lattices with fill factor F, refractive
index n1, period a, and total thickness d. Degree of interlayer
shift between two layers is denoted by S.
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FIG. 2. Complex bulk band features of a topological nodal phase Hamiltonian. (a) Real (left) and imaginary (right) energy band
structures in 2D synthetic space ðpx; pSÞ for HTNP in Eq. (2). Parameters are vg ¼ 1.5, κ ¼ 1, and γ ¼ 0.5. Two Dirac points (DPs) are
denoted by white arrows in the real band. White dashed lines in the imaginary band on the right indicate flat bands along the px axis at
pS ¼ 0.5π and 1.5π. Skin color indicates relative even-mode strength for corresponding eigenvectors. (b) Bloch sphere representation b
of the lower-band eigenvector for geometric picture of the quantized complex Berry phase. Line color indicates cosðpSÞ value.
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This S-dependent non-Hermitian topological phase
is also identified by the quantized complex Berry phase
which is known as a topological invariant for chiral-
symmetric non-Hermitian Hamiltonians such that σzHσz ¼−H. The definition of the complex Berry phase is Q� ¼
i
H hξ�j∂kxjψ�idkx where the subscript � denotes upper
(þ) or lower (−) band, respectively. The left jξi and
right jψi eigenvectors of H are related by the conjugated
pseudo-Hermiticity such that jξi ¼ σxjψi�. Under these
constraints, the complex Berry phase is quantized at
0 and π [25].
In order to directly visualize the geometric picture of the

complex Berry phase transition with the change in S, we
plot the lower-eigenvector path of the Bloch vector b ¼
hψ−jσjψ−i within the first Brillouin zone of kx in Fig. 2(b).
The quantized complex Berry phase is π when the b-path
curve encircles around σz axis, while it takes 0 otherwise.
The line color for the b-path curve indicates the synthetic
dimension value cosðpSÞ and clearly reveals the complex
Berry phase Q− quantized at 0 and π. Therefore, the bulk
Hamiltonian of the bilayer photonic lattice implies the
nontrivial topological phase in the region between the two
DPs (0.25 < S < 0.75), indicating the manifestation of a
gapless topological GMR state for a finite structure with an
open boundary.
We provide a specific numerical example for demon-

strating the manifestation of the topological nodal phase in
the proposed synthetic dimension and associated photonic
states. We design a bilayer structure consisting of two
identical Si-grating layers (n1 ¼ 3.48) covered by a Si3N4

background (n2 ¼ 2.45). We assume an interface between
the bilayer grating and perfect electric conductor (PEC) as
an optical hard wall for accommodating the edge states in
the topologically nontrivial region in the synthetic dimen-
sion. We include 50 periods with the PEC boundary
condition at both sides in the numerical eigenvalue calcu-
lations using the finite-element method.
Figure 3(a) shows the projected complex dispersion

relations of the bilayer Si grating in the normalized fre-
quency a=λ and synthetic parameter S domain. We assume
d ¼ 200 nm, fill factor F ¼ 0.8, and a ¼ 480 nm in this
calculation. The calculation result shows essential character-
istics of the complex band structures predicted by the bulk
Hamiltonian of the topological nodal phase in Eq. (2). It
includes the simultaneous gap closing of the real and
imaginary bands at S ¼ 0.25 and 0.75. The gapless
dispersion indicated by the dark-red curves shows the
emergence of the topological edge states connecting the
two DPs in the topologically nontrivial region of S. Note
that we distinguish the topological edge and trivial Bloch
state bands with color-coded edge localization factor
N−1 R a

0

R d=2
−d=2 jEyðx; yÞj2dx dz indicating the normalized

electric-field energy content in the first period from the
PEC-lattice boundary. For this topological edge state, we
present the field distribution jEyðx; zÞj on the x-z plane at the

strongest localization for S ¼ 0.5 in Fig. 3(b). It shows
typical edge-localization characteristics.
We compare the numerical results with the model

Hamiltonian in Eq. (1) as provided in Sec. 2 and
Fig. S1 of Supplemental Material [34–37]. Although we
find the notable difference in the imaginary band splitting
for the topologically nontrivial phase region due to high-
order diffraction from the sharp index discontinuity at the
edges of the grating bars, the two results show a quanti-
tative agreement for the emergence of the two nodal points
in the complex band structures at S ¼ 0.25 and 0.75,
indicating that the discrepancy does not change the
essential topological physics.
We further investigate the manifestation of the synthetic

topological nodal phase in the resonant reflection spectrum.
In this analysis, we assume a photonic junction consisting
of the two bilayer gratings with different S—one on the left
takes an arbitrary S value while the other on the right
takes a fixed lateral shift at S ¼ 0, as shown in Fig. 4(a). In
Fig. 4(b), we show the calculated reflectance spectrum
under the normal incidence of TE-polarized plane wave in
ða=λ; SÞ domain. We apply the periodic boundary condition
in the x axis such that the supercell unit includes 50 periods.
The result shows the resonant peaks in response to the
excitation of the leaky photonic modes at kx ¼ 0. In
particular, the resonance feature at a=λ ≈ 0.347 for 0.25 <
S < 0.75 represents the photonic Jackiw-Rebbi-state
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FIG. 3. Open boundary complex energy spectra and gapless
topological edge states in bilayer gratings. (a) Projected real (left)
and imaginary (right) dispersion relations in the normalized
frequency and synthetic parameter space. Line color indicates
edge localization factor—edge states are in red and bulk Bloch
states are in black. (b) Spatial distribution of electric field norm
jEyðx; zÞj for the topological edge state at S ¼ 0.5.
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resonance [37] as confirmed by the associated field dis-
tributions in Fig. 4(c). The spectral loci of these Jackiw-
Rebbi-state resonances follow the edge-state dispersion in
Fig. 3(a) as they both are zero-energy states emerging at the
midpoint of the frequency band gap.
In conclusion, we propose a 1D bilayer subwavelength

grating structure for the 2D topological nodal phases in an
efficiently controllable synthetic dimension. The degree
of the interlayer shift provides an additional synthetic-
momentum dimension required for DP formation in a
simple 1D lattice structure. We show that the proposed
synthetic dimension supports fundamental physics related
to the non-Hermitian 2D topological nodal phases involv-
ing the characteristic complex band structures, quantized
complex Berry phase, topological localization, and their
interaction with the radiation continuum. The numerical
results for open boundary dispersions show the complex
gapless dispersion of the topological edge states which
connect the two DPs in the topologically nontrivial region
of the synthetic dimension.
The proposed synthetic-dimension approachuses theband

dynamics enabled by constructive or destructive interference
between the counterpropagating GMR states, which is
clearly distinguished by existing parametric modulation
methods that directly manipulate spatial Fourier coefficients
of the unit-cell configuration [19–22]. This may provide an
efficient scheme for exploring high-dimensional topological
nodal phaseswith the current state-of-the-art nanofabrication
technology [39]. These nonspatial degrees of freedom in
2D bilayer photonic configurations such as layer-mixed

topological heterojunctions [40] and glide symmetric struc-
tures [41] in terms of synthetic dimensions suggest possible
scenarios for 3D topological phenomena including theWeyl
physics.
In addition, we note that control of the interlayer shift

enables formation of the flat-imaginary band as well as
generation of quasibound states in the continuum [42] by
changing the real and imaginary band structures simulta-
neously. This property also suggests that one can efficiently
control radiative loss of a resonant state by a simple
topological parametric change which is not considered in
the conventional chiral and moiré gratings [26–31].
Therefore, associated theoretical and experimental study
may create novel methods for topological Q-factor engi-
neering in thin-film nanophotonics applications [43–45].
The leakage-radiation-induced non-Hermiticity in our

specific case pertains to the conjugated pseudo-Hermiticity
due to the unbroken chiral symmetry. Thereby, the
Hermitian-continuable topological states manifest, not
purely non-Hermitian effects [46]. Nevertheless, the out-
of-plane leakage radiation provides intriguing opportunities
to probe internal topological properties [47] and to develop
topological photonic engineering of far-field optical sig-
nals. Toward this end, we introduce here the manifestation
of a synthetic topological nodal phase in the out-of-plane
leakage radiation domain as characteristic resonance spec-
tra in the optical far field. In further consideration, it is of
great interest to simultaneously include the leakage radi-
ation and intrinsic gain-loss configurations. In such sys-
tems, one may expect novel far-field optical effects
produced by purely non-Hermitian, non-chiral-symmetric
topological phenomena such as parity-time-symmetric
exceptional hypersurfaces [48] and non-Hermitian skin
effects [49,50].
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Science 362, 1153 (2018).

[32] D. Rosenblatt, A. Sharon, and A. A. Friesem, Resonant
grating waveguide structures, IEEE J. Quantum Electron.
33, 2038 (1997).

[33] S. S. Wang and R. Magnusson, Theory and applications of
guided-mode resonance filters, Appl. Opt. 32, 2606 (1993).

[34] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.053002 for math-
ematical details, which includes Refs. [35–37].

[35] Y. Ding and R. Magnusson, Band gaps and leaky-wave
effects in resonant photonic-crystal waveguides, Opt. Ex-
press 15, 680 (2007).

[36] K. Y. Lee, K. W. Yoo, Y. Choi, G. Kim, S. Cheon, J. W.
Yoon, and S. H. Song, Topological guided-mode resonances
at non-Hermitian nanophotonic interfaces, Nanophotonics
10, 1853 (2021).

[37] S. G. Lee and R. Magnusson. Band flips and bound-state
transitions in leaky-mode photonic lattices, Phys. Rev. B 99,
045304 (2019).

[38] C. K. Chiu and A. P. Schnyder, Classification of reflection-
symmetry-protected topological semimetals and nodal
superconductors, Phys. Rev. B 90, 205136 (2014).

[39] Y. Horie, A. Arbabi, S. Han, and A. Faraon, High resolution
on-chip optical filter array based on double subwavelength
grating reflectors, Opt. Express 23, 29848 (2015).

[40] X. D. Chen, X. T. He, and J. W. Dong, All-dielectric layered
photonic topological insulators, Laser Photonics Rev. 13,
1900091 (2019).

[41] Y. Wang, J. Wei You, Z. Lan, and N. C. Panoiu, Topological
valley plasmon transport in bilayer graphene metasurfaces
for sensing applications, Opt. Lett. 45, 3151 (2020).

PHYSICAL REVIEW LETTERS 128, 053002 (2022)

053002-5

https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa7055
https://doi.org/10.1126/science.aaa7055
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys3228
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1038/s41566-019-0453-z
https://doi.org/10.1038/s41377-020-0334-8
https://doi.org/10.1038/nature25011
https://doi.org/10.1364/OPTICA.5.001396
https://doi.org/10.1364/AOP.418074
https://doi.org/10.1103/PhysRevX.7.031032
https://doi.org/10.1103/PhysRevX.7.031032
https://doi.org/10.1103/PhysRevLett.122.136802
https://doi.org/10.35848/1882-0786/ac0c8b
https://doi.org/10.1038/ncomms13731
https://doi.org/10.1103/PhysRevLett.126.113902
https://doi.org/10.1103/PhysRevLett.125.093904
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevLett.126.223601
https://doi.org/10.1103/PhysRevLett.126.136101
https://doi.org/10.1103/PhysRevLett.120.066102
https://doi.org/10.1002/adom.201700034
https://doi.org/10.1002/adom.201700034
https://doi.org/10.1038/s41586-019-1851-6
https://doi.org/10.1038/s41586-019-1851-6
https://doi.org/10.1126/science.aau5144
https://doi.org/10.1109/3.641320
https://doi.org/10.1109/3.641320
https://doi.org/10.1364/AO.32.002606
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.053002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.053002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.053002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.053002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.053002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.053002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.053002
https://doi.org/10.1364/OE.15.000680
https://doi.org/10.1364/OE.15.000680
https://doi.org/10.1515/nanoph-2021-0024
https://doi.org/10.1515/nanoph-2021-0024
https://doi.org/10.1103/PhysRevB.99.045304
https://doi.org/10.1103/PhysRevB.99.045304
https://doi.org/10.1103/PhysRevB.90.205136
https://doi.org/10.1364/OE.23.029848
https://doi.org/10.1002/lpor.201900091
https://doi.org/10.1002/lpor.201900091
https://doi.org/10.1364/OL.393302


[42] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and
M. Soljacic, Bound states in the continuum, Nat. Rev.
Mater. 1, 16048 (2016).

[43] S. G. Lee, S. H. Kim, and C. S. Kee, Metasurfaces with
Bound States in the Continuum Enabled by Eliminating
First Fourier Harmonic Component in Lattice Parameters,
Phys. Rev. Lett. 126, 013601 (2021).

[44] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma,
Y. S. Kivshar, and B. Luk’yanchuk, Optically resonant
dielectric nanostructures, Science 354, aag2472 (2016).

[45] W. J. Joo, J. Kyoung,M. Esfandyarpour, S. H. Lee, H.Koo, S.
Song, Y. N. Kwon, S. H Song, J. C. Bae, A. Jo, M. J. Kwon,
S. H. Han, S. H. Kim, S. Hwang, and M. L. Brongersma,
Metasurface-drivenOLEDdisplays beyond 10,000 pixels per
inch, Science 370, 459 (2020).

[46] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F.
Nori, Edge Modes, Degeneracies, and Topological Numbers

in Non-Hermitian Systems, Phys. Rev. Lett. 118, 040401
(2017).

[47] D. Leykam and D. A. Smirnova, Probing bulk topological
invariants using leaky photonic lattices, Nat. Phys. 17, 632
(2021).

[48] Q. Wang, K. Ding, H. Liu, S. Zhu, and C. T. Chan,
Exceptional cones in 4D parameter space, Opt. Express
28, 1758 (2020).

[49] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F.
Foa Torres, Non-Hermitian robust edge states in one
dimension: Anomalous localization and eigenspace con-
densation at exceptional points, Phys. Rev. B 97, 121401(R)
(2018).

[50] S. Yao and Z. Wang, Edge States and Topological Invariants
of Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803
(2018).

PHYSICAL REVIEW LETTERS 128, 053002 (2022)

053002-6

https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1103/PhysRevLett.126.013601
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.abc8530
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1038/s41567-020-01144-5
https://doi.org/10.1038/s41567-020-01144-5
https://doi.org/10.1364/OE.381700
https://doi.org/10.1364/OE.381700
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803

