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We use the infinite volume reconstruction method to calculate the charged and neutral pion mass
difference. The hadronic tensor is calculated using lattice QCD and then combined with an analytic photon
propagator, and the mass splitting is calculated with exponentially suppressed finite-volume errors. The
calculation is performed using six gauge ensembles generated with 2þ 1-flavor domain wall fermions, and
five ensembles are at the physical pion mass. Both Feynman and Coulomb gauges are adopted in the
calculation and agree well when the lattice spacing approaches zero. After performing the continuum
extrapolation and examining the residual finite-volume effects, we obtain the pion mass splitting
Δmπ ¼ 4.534ð42Þstatð43Þsys MeV, which agrees well with experimental measurements.
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Introduction.—One of the central goals in high energy
physics is understanding the nature of the matter that we
observe in the Universe. As one of the four known funda-
mental interactions, the strong interaction binds together
quarks and gluons into hadrons and most of the hadron mass
arises in turn from the binding energy; the individual quarks
provide only a very small portion of the mass. Precision
calculation based on the lattice formulation of quantum
chromodynamics (QCD), the theory of the strong interaction,
can manifest its success by computing the various hadron
spectra, which agree well with experimental measurements
[1]. When the precision reaches percent or subpercent level,
another fundamental force, electromagnetic interaction, is
urged to be considered in theoretical calculations, although
its effects are suppressed by a factor of the fine-structure
constant αEM ≈ 1=137. Inclusion of the electromagnetic
corrections does not only provide precise hadron spectros-
copy [2–12], but also plays an important role in studies of
leptonic and semileptonic decays of hadrons [13–19], which
dramatically expands the horizon of lattice QCD studies.
Among various hadrons, pions play a unique role in the

development of theoretical particle and nuclear physics.
Pions were first proposed by Yukawa in 1935 as the carrier
particles of the strong nuclear force [20]. As Nambu-
Goldstone bosons [21,22], pions result from the spontaneous

breakdown of chiral symmetries of QCD effected by quark
condensation and serve as the active degrees of freedom
sensitive to chiral dynamics [23–25]. Additionally, the
anomalous decay rate of the neutral pion led to the discovery
of Adler-Bell-Jackiw anomaly of quantum electrodynamics
(QED) [26,27], which revealed for the first time the violation
of classical symmetry by quantum corrections. It can be
concluded that the thorough study of the nature of the pions is
a key to our better understanding of QCD and the strong
interaction. In this Letter, we focus on the study of the mass
splitting between the charged and neutral pions, which
represents the interplay between two fundamental inter-
actions, the strong and the electromagnetic. For two reasons,
the pion mass splitting is ideal for a lattice QCD calculation
and for an exploratory study of new methodology. First,
pions are the lightest hadrons and their correlation functions
have very good statistical signals. Second, the isospin
breaking effects of the up and down quark mass difference
are suppressed by a factor of ðmu −mdÞ2=Λ2

QCD ∼ 10−4 with
mu=d as the up and down quark mass and ΛQCD ≈ 350 MeV
as the nonperturbative QCD scale, leaving the electromag-
netic effects as the leading contribution to the pion mass
splitting. Thus, the ambiguity in separating the isospin
breaking effects from the electromagnetic interaction and
the quark mass difference becomes irrelevant in this study.
One can simply perform the lattice QCD calculation in the
isospin symmetric limit and compute the four-point corre-
lation functions for the QED self-energy diagrams.
In practice we adopt the infinite-volume reconstruction

(IVR) method proposed in Ref. [28], which allows us to
calculate electromagnetic corrections to stable hadron
masses with only exponentially suppressed finite-volume
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effects. Upon its development, this method has been
successfully applied and extended to various electroweak
processes involving photon or massless leptonic propaga-
tors [18,29–32]. This is the first time that we apply this
methodology to the calculation of the pion mass splitting.
The calculation includes the complete diagrams with both
connected and disconnected quark-field contractions. We
employ two gauge fixings for the photon propagator and
confirm that the lattice results are consistent in the continuum
limit. We utilize the random field sparsening technique
proposed in Ref. [33], which allows us to improve the
precision of the correlation functions significantly with only
a modest cost of computational resources. By using five
gauge ensembles generated with Nf ¼ 2þ 1 domain wall
fermions at physical pion mass and one additional ensemble
at mπ ≈ 340 MeV, we obtain the pion mass splitting with a
percent-level uncertainty, which is about 5–10 times smaller
than previous lattice QCD calculations [5,7,9,34,35]. (See
Table I. References [34,35] present the pioneering quenched
calculations, and thus the results are not included in Table I.)
For the first time in the literature, we have clearly resolved
and included the contribution from the quark disconnected
diagram to the pion mass splitting [see Eq. (17) and the
diagram below that equation]. This diagram is related to the
π0 − η − η0 mixing and has also been calculated in Ref. [36].
Infinite-volume reconstruction method.—The hadron

mass extraction relies on the calculation of the hadron
QED self-energy for a stable hadronic state N via the
following infinite-volume Euclidean space-time integral:

ΔM ¼ I ¼ 1

2

Z
d4xHμ;νðxÞSγμ;νðxÞ; ð1Þ

where the hadronic part Hμ;νðxÞ ¼ Hμ;νðt; x⃗Þ is given by

Hμ;νðxÞ ¼
1

2M
hNð0⃗ÞjT½JμðxÞJνð0Þ�jNð0⃗Þi; ð2Þ

where jNðp⃗Þi indicates a hadronic stateN with massM and
spatial momentum p⃗, Jμ ¼ 2eūγμu=3− ed̄γμd=3− es̄γμs=3
is the electromagnetic current, and Sγμ;ν is the photon
propagator whose form is analytically known. In
Ref. [28], we introduced the IVR method to relate the
infinite-volume integration of infinite-volume hadronic

matrix elements Hμ;ν to a finite lattice volume integration
of finite-volume matrix elements HL

μ;ν with only exponen-
tially suppressed finite-volume errors. This is accomplished
with the following three steps:
(1) We pick ts to separate the infinite-volume integral

into two parts,

I ¼ I ðsÞ þ I ðlÞ; ð3Þ
where I ðsÞ and I ðlÞ are the “short distance” (jxtj < ts) and
“long distance” (jxtj ≥ ts) contributions, respectively. (2)
For sufficiently large ts, I ðlÞ is dominated by the lightest
single particle intermediate states and can be calculated
using the hadronic matrix elements at fixed time separation
ts. The excited-state effects ignored in this step are
exponentially suppressed by large ts. (3) The next step
is to approximate Hμ;ν using HL

μ;ν and restrict the integra-
tion region to the finite lattice volume. This step only
introduces exponentially suppressed finite-volume errors
since we only need to use HL

μ;νðxÞ for jxtj ≤ ts ≲ L.
The final formula obtained in Ref. [28] is expressed in

terms of lattice-calculable quantities,

I ðsÞ ≈ I ðs;LÞ ¼ 1

2

Z
ts

−ts
dt

Z
L=2

−L=2
d3x⃗HL

μ;νðx⃗ÞSγμ;νðx⃗Þ; ð4Þ

I ðlÞ ≈ I ðl;LÞ ¼
Z

L=2

−L=2
d3x⃗HL

μ;νðts; x⃗ÞLμ;νðts; x⃗Þ; ð5Þ

where Lμνðts; x⃗Þ is an infinite-volume QED weighting
function, defined as

Lμ;νðts; x⃗Þ ¼
Z

d3p
ð2πÞ3 e

ip⃗·x⃗

Z
∞

ts

dte−ðEp⃗−MÞðt−tsÞ: ð6Þ

In this Letter, we use ts ¼ L=2 for our final result to ensure
both the excited states and finite-volume errors introduced
in steps 2 and 3 described above are exponentially sup-
pressed as we increase the lattice size L.
Gauge-specific expressions: We also present the relevant

expressions for the photon propagator Sγμ;νðxÞ and QED
weighting function Lμ;νðts; x⃗Þ in Feynman and Coulomb
gauges,

Sγ;Feynμ;ν ðxÞ ¼ δμ;ν

Z
d4p
ð2πÞ4

eipx

p2
¼ δμ;ν

4π2x2
; ð7Þ

LFeyn
μ;ν ðts; x⃗Þ ¼

δμ;ν
2π2

Z
∞

0

dp
sinðpjx⃗jÞ

2ðpþ Ep −MÞjx⃗j e
−pts ; ð8Þ

Sγ;Coulμ;ν ðxt; x⃗Þ ¼
δμ;tδν;t
4πjx⃗j δðxtÞ þ

ð1 − δμ;tÞð1 − δν;tÞ
2ð2πÞ3

×
Z �

δμ;ν −
pμpν

p⃗2

�
e−jp⃗jxtþip⃗·x⃗

jp⃗j d3p ð9Þ

TABLE I. Previous lattice calculations of mπ� −mπ0 are
compared to this Letter. Note mπ� is the charged pion mass
mπ0 is the neutral pion mass

Reference mπ� −mπ0 (MeV)

RM123 2013 [5] 5.33ð48Þstatð59Þsysa
R. Horsley et al. 2016 [7] 4.60ð20Þstat
RM123 2017 [9] 4.21ð23Þstatð13Þsys
This Letter 4.534ð42Þstatð43Þsys
aConverted from m2

π� −m2
π0

¼ 1.44ð13Þð16Þ × 103 MeV2.
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¼ δμ;tδν;t
4πjx⃗j δðxtÞ þ

ð1 − δμ;tÞð1 − δν;tÞ
ð2πÞ2

×
Z

∞

0

e−pxt

jx⃗j
�
δμ;ν

�
sinðpjx⃗jÞ þ cosðpjx⃗jÞ

pjx⃗j −
sinðpjx⃗jÞ
p2jx⃗j2

�

þ xμxν
jx⃗j2

�
− sinðpjx⃗jÞ − 3 cosðpjx⃗jÞ

pjx⃗j þ 3 sinðpjx⃗jÞ
p2jx⃗j2

��
dp;

ð10Þ

LCoul
μ;ν ðts; x⃗Þ ¼ 0: ð11Þ

At the origin (x ¼ 0), the continuum photon propagator is
divergent. In our lattice calculation, we regularize this
divergence with the following choice:

Sγ;Feynμ;ν ð0Þ ¼ δμ;ν
1

a8

Z
a

−a
dx

Z
a

−a
dy

Z
a

−a
dz

Z
a

−a
dt

×
ða − jxjÞða − jyjÞða − jzjÞða − jtjÞ

4π2ðx2 þ y2 þ z2 þ t2Þ ð12Þ

¼ δμ;ν 2.76963=ð4π2a2Þ; ð13Þ

Sγ;Coult;t ð0Þ ¼ 1

a7

Z
a

−a
dx

Z
a

−a
dy

Z
a

−a
dz

×
ða − jxjÞða − jyjÞða − jzjÞ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ð14Þ

¼ 5.63371=ð4πa2Þ: ð15Þ

Relevant diagrams.—Contributions to the charged and
neutral QED pion mass splitting are derived from the
following hadronic matrix element:

H�;0
μ;ν ðxÞ ¼ 1

2Mπ
hπ�;0ð0⃗ÞjT½JμðxÞJνð0Þ�jπ�;0ð0⃗Þi; ð16Þ

where πð0⃗Þ represents a pion with zero momentum. Only
two contractions contribute to this matrix element [5]. One
yields (where S represents the light quark propagator)

C1
μ;νðx − yÞ ¼ hTrðSðx; tsrcÞγ5Sðtsrc; xÞγμÞ

× TrðSðy; tsnkÞγ5Sðtsnk; yÞγνÞiQCD; ð17Þ

which is related to the following quark disconnected
diagram:

The other possible contraction yields (up to the insertion
of a photon propagator)

C2
μ;νðx − yÞ ¼ hTrðγμSðx; tsrcÞγ5Sðtsrc; yÞ

× γνSðy; tsnkÞγ5Sðtsnk; xÞÞiQCD; ð18Þ

which is represented by the following quark connected
diagram:

To ensure projection onto the pion state, we fix the time
separation between the pion interpolating operators and the
closest electromagnetic current operators to be tsep ¼ tsnk −
xt ¼ yt − tsrc for both diagrams (assuming xt ≥ yt). The
values of tsep for each ensemble are listed in Table II.
Coulomb gauge fixed wall source is used for the pion
interpolating operators. Combining these diagrams yields
the hadronic contribution to the mass shift, which is
represented by

H�
μ;νðxÞ−H0

μ;νðxÞ

¼L3
Z2
Ve

2

2

C1
μ;νðxÞþC1

ν;μð−xÞ−C2
μ;νðxÞ−C2

ν;μð−xÞ
CAW
π ðjxtjþ2tsepÞ

; ð19Þ

where

CAW
π ðtþ 2tsepÞ ¼ Cπð2tsepÞe−Mπ t

× ð1 − e−MπðT−4tsepÞÞ;
Cπðt2 − t1Þ ¼ hTrðSðt2; t1ÞÞγ5Sðt1; t2Þγ5ÞiQCD: ð20Þ

Local lattice vector current operators are used in the
contraction, and the corresponding renormalization factor
ZV is included in the above formula. We have taken the
around the world effects into account when calculating
the pion correlation function in Eq. (20). In principle, both

TABLE II. List of the ensembles used in the calculations and
their properties. They are generated by the RBC and UKQCD
Collaborations [37]. Note we use a partially quenched quark mass
for 48I and 64I ensembles. The unitary pion mass for both 48I
and 64I ensembles is 139 MeV. We use unitary quark masses for
all the other ensembles.

Volume a−1 (GeV) L (fm) Mπ (MeV) tsep (a)

48I 483 × 96 1.730(4) 5.5 135 12
64I 643 × 128 2.359(7) 5.4 135 18
24D 243 × 64 1.0158(40) 4.7 142 8
32D 323 × 64 1.0158(40) 6.2 142 8
32Dfine 323 × 64 1.378(7) 4.6 144 10
24DH 243 × 64 1.0158(40) 4.7 341 8
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the isospin breaking due to the up and down quark mass
difference and the QED effects described above contribute
to the pion mass difference. For many hadronic observ-
ables, the corrections due to the up and down quark mass
difference are at the same order as the QED corrections.
Therefore, we treat O½ðmd −muÞ=ΛQCD� corrections to be
of the same perturbative order as corrections of order
OðαQEDÞ. For pion mass splitting, the O½ðmd−muÞ=ΛQCD�
effect is zero [5]. Therefore, to order OðαQED; ðmd −muÞ=
ΛQCDÞ, the two diagrams discussed above represent the only
contributions to the pion mass splitting.
Numerical results.—Calculation of the hadronic function

HL
μνðxÞ was performed on six ensembles generated by the

RBC and UKQCD Collaborations. The names and attrib-
utes of the ensembles are shown in Table II. The properties
of these ensembles are studied in detail in Ref. [37]. In
particular, the lattice spacing and other basic parameters of
the ensemble are determined by matching the lattice
calculation of the masses of pion, kaon, and the Ω baryon
to their experimental values. We use all-modes averaging
[38,39], zMöbius [40], and compressed eigenvector defla-
tion [41] methods to accelerate the calculation of the pro-
pagators. Figure 1 shows the mass shift Δmπ ≡mπþ −mπ0

as a function of ts in the Feynman and Coulomb gauges for
the 24D and 32D ensembles. It can be seen from the
plots that the finite-volume effects are very small, as the
differences between 24D and 32D are barely visible. Also,
for ts ≳ 1.5 fm, the final results have a very mild depend-
ence on ts, suggesting the excited states contribution
beyond ts, which is exponentially suppressed and ignored
in the IVR method, is indeed quite small. In the following
analysis, we stick to

ts ¼ L=2: ð21Þ

With this choice, the finite-volume effects at fixed ts and
the excited intermediate states’ contribution beyond ts
are both exponentially suppressed by the spatial lattice
size L, and we will refer to the sum of these two effects
as the finite-volume effects in the following analysis.
In Feynman gauge, the difference between 32D and
24D is −0.035ð16Þ MeV. This is consistent with a scalar
QED calculation, which yields −0.022 MeV [28]. In
Coulomb gauge, the difference between 32D and 24D is
0.002(17) MeV.
The results for each ensemble are presented in Table III.

In the table, we also show the Coulomb potential con-
tribution to the pion mass difference. This contribution
comes from the time component of the Coulomb gauge
photon propagator Sγ;Coult;t in Eq. (10).
Extrapolation to the physical point.—We perform

the continuum extrapolation for the Iwasaki ensembles
(48I and 64I) and the Iwasaki-DSDR (I-DSDR) ensembles
24D, 32Dfine, and 24DH separately using the following
formula (mπ;phys ¼ 135 MeV):

mπΔmπða2; mπÞ ¼ mπ;physΔmπð0; mπ;physÞ
× ½1þ c1a2 þ c2ðmπ

2 −m2
π;physÞ�: ð22Þ

When using domain wall fermions in lattice calculations,
lattice artifacts, which scale as OðaÞ or Oða2nþ1Þ, are

FIG. 1. The pion mass shift calculated using the 24D and 32D
ensembles is shown as a function of ts for (top) Feynman gauge
and (bottom) Coulomb gauge.

TABLE III. Contributions to the pion mass shift are shown by
ensemble. The fourth column displays the Coulomb potential
contribution. The statistical uncertainty is shown in parenthesis.

Feyn (MeV) Coul (MeV) Coul-t (MeV)

48I 4.283(21) 4.375(25) 1.884(13)
64I 4.415(14) 4.459(15) 1.875(6)
24D 3.632(10) 3.823(12) 1.872(6)
32D 3.598(12) 3.825(13) 1.866(7)
32Dfine 4.002(18) 4.109(21) 1.863(12)
24DH 2.406(37) 2.509(12) 1.498(8)
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absent [37,42]. We choose to include an Oða2Þ term to
account for the lattice artifact. We also include a naive
pion mass dependence term in this extrapolation formula to
accommodate the small pion mass difference in the I-DSDR
ensembles. This pion mass dependence term does not effect
our main result, which is taken from the continuum extrapo-
lation of the Iwasaki ensembles exactly at the physical pion
mass. The extrapolation results of the Iwasaki 48I and 64I
ensembles are shown in Fig. 2, where separate fits were
conducted for Feynman and Coulomb gauges.
To estimate the discretization systematic error for the

fitted value of Δmπð0; mπ;physÞ, we perform two slightly
different fits by (1) using the same fitting formula Eq. (22),
but excluding the contribution from x ¼ 0 for all ensem-
bles. and (2) using a different fitting formula, which
includes an additional Oða4Þ term,

mπΔmπða2; mπÞ ¼ mπ;physΔmπð0; mπ;physÞ
× ½1þ c1a2 þ c1jc1ja4
þ c2ðmπ

2 −m2
π;physÞ�; ð23Þ

where the magnitude of theOða4Þ term is assumed to equal
to the square of the Oða2Þ term as an estimate of the
remaining systematic effects.
We obtain the differences between the results of the

above fits and the original fits. The maximum of the two
differences is used as the estimation of the remaining
discretization systematic error.
After continuum extrapolation, we use the differences

between 32D and 24D to correct the finite-volume effects.
The absolute size of the correction is used as the estimation
of the remaining finite-volume systematic error. The
continuum extrapolated, finite-volume corrected results
are shown in Tables IV and V. The discretization and
finite-volume systematic errors are combined in quadrature.
As expected, the continuum extrapolations from the
I-DSDR ensembles (Table V) have larger discretization
systematic errors due to larger lattice spacings. Therefore,
we use the continuum extrapolation from the Iwasaki
ensembles (Table IV) as our main results.
As a byproduct of the calculation, we plot the Coulomb

potential contribution as a function of spatial separation at

FIG. 2. Feynman and Coulomb gauge mass shifts are shown as
a function of a2 for the Iwasaki ensembles 48I and 64I.

TABLE IV. The continuum results from the two Iwasaki
ensembles 48I and 64I. Finite-volume corrections calculated
with the difference of the 32D and 24D ensembles are already
included. The second column and third column show the quark
disconnected (Disc) and connected (Conn) diagrams’ contribu-
tions, respectively. The bottom row shows the Coulomb potential
contribution. The statistical and systematic errors are shown,
respectively, in the first and second set of parentheses.

Disc (MeV) Conn (MeV) Total (MeV)

Feyn 0.051(9)(22) 4.483(40)(28) 4.534(42)(43)
Coul 0.052(2)(13) 4.508(46)(42) 4.560(46)(41)
Coul-t 0.018(1)(4) 1.840(22)(39) 1.858(22)(41)

TABLE V. Similar to Table IV but extrapolated to the con-
tinuum limit with the coarser I-DSDR ensembles 24D, 32Dfine,
and 24DH.

Disc (MeV) Conn (MeV) Total (MeV)

Feyn 0.035(12)(21) 4.671(49)(99) 4.706(50)(106)
Coul 0.050(3)(13) 4.703(57)(158) 4.753(58)(160)
Coul-t 0.016(2)(4) 1.931(32)(157) 1.947(32)(160)

FIG. 3. The Coulomb potential contribution to the pion mass
difference. The curve is the partial sum, ICðxÞ ¼ 1

2

R
dt×R

jy⃗j≤x d
3y⃗HL

t;tðt; y⃗ÞSγt;tðt; y⃗Þ. Error bars are statistical only. We
use the results from the 48I and 64I ensembles to obtain the
continuum limit and include the finite-volume corrections from
the 32D and 24D difference.
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t ¼ 0 in Fig. 3. This plot provides some indication of the
size and the shape of the pion.
Conclusion.—We have used the IVR method to calculate

the pion mass splitting to orderOðαQED; ðmu −mdÞ=ΛQCDÞ
on the lattice. The calculation is directly performed at the
physical pion mass (mπ ¼ 135 MeV), with different lattice
spacings and lattice sizes. Both the connected and the
disconnected diagrams are included. We have obtained the
continuum and infinite-volume limit results with Feynman
gauge: Δmπ ¼ 4.534ð42Þð43Þ MeV, where the quantities
in the first and second sets of parenthesis correspond,
respectively, to the statistical and systematic uncertainties.
We have also performed the same calculation using the
Coulomb gauge. Results in both gauges are consistent with
each other and with the experimental value 4.5936(5) MeV
[43]. Such high precision agreement demonstrates the
success of both lattice QCD and the IVR methods. We
plan to use the IVR method in future lattice QCDþ QED
spectroscopy calculations.

We would like to thank the RBC and UKQCD
Collaborations for the ensembles they have supplied and
useful discussion many of the members therein have
provided. We also thank Professor F.-K. Guo for the useful
communications. L. C. J. acknowledges support by DOE
Office of Science Early Career Award No. DE-SC0021147
and DOE Award No. DE-SC0010339. X. F. is supported
in part by NSFC of China under No. 12125501,
No. 12070131001, No. 12141501, and No. 11775002
and National Key Research and Development Program
of China under No. 2020YFA0406400. We developed the
computational code based on the Columbia Physics System
([44]) and Grid ([45]). The computation is performed under
the ALCC Program of the US DOE on the Blue Gene/Q
(BG/Q) Mira computer at the Argonne Leadership Class
Facility, a DOE Office of Science Facility supported under
Award No. DE-AC02-06CH11357. Computations for this
work were carried out in part on facilities of the USQCD
Collaboration, which are funded by the Office of Science of
the U.S. Department of Energy.

*xu.feng@pku.edu.cn
†ljin.luchang@gmail.com
‡michaeljosephriberdy@gmail.com

[1] A. S. Kronfeld, Twenty-first century lattice gauge theory:
Results from the QCD Lagrangian, Annu. Rev. Nucl. Part.
Sci. 62, 265 (2012).

[2] T. Blum, T. Doi, M. Hayakawa, T. Izubuchi, and N. Yamada,
Determination of light quark masses from the electromag-
netic splitting of pseudoscalar meson masses computed with
two flavors of domain wall fermions, Phys. Rev. D 76,
114508 (2007).

[3] T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi, S.
Uno, and N. Yamada, Electromagnetic mass splittings of the
low lying hadrons and quark masses from 2þ 1 flavor
lattice QCD þ QED, Phys. Rev. D 82, 094508 (2010).

[4] T. Ishikawa, T. Blum, M. Hayakawa, T. Izubuchi, C.
Jung, and R. Zhou, Full QEDþ QCD Low-Energy Con-
stants through Reweighting, Phys. Rev. Lett. 109, 072002
(2012).

[5] G. M. de Divitiis, R. Frezzotti, V. Lubicz, G. Martinelli, R.
Petronzio, G. C. Rossi, F. Sanfilippo, S. Simula, and N.
Tantalo (RM123 Collaboration), Leading isospin breaking
effects on the lattice, Phys. Rev. D 87, 114505 (2013).

[6] S. Borsanyi et al., Ab initio calculation of the neutron-
proton mass difference, Science 347, 1452 (2015).

[7] R. Horsley et al., Isospin splittings of meson and baryon
masses from three-flavor lattice QCDþ QED, J. Phys. G
43, 10LT02 (2016).

[8] R. Horsley et al., QED effects in the pseudoscalar meson
sector, J. High Energy Phys. 04 (2016) 093.

[9] D. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, F.
Sanfilippo, S. Simula, and N. Tantalo, Leading isospin-
breaking corrections to pion, kaon and charmed-meson
masses with twisted-mass fermions, Phys. Rev. D 95,
114504 (2017).

[10] P. Boyle, V. Gülpers, J. Harrison, A. Jüttner, C. Lehner, A.
Portelli, and C. T. Sachrajda, Isospin breaking corrections to
meson masses and the hadronic vacuum polarization: A
comparative study, J. High Energy Phys. 09 (2017) 153.

[11] S. Basak et al. (MILC Collaboration), Lattice computation
of the electromagnetic contributions to kaon and pion
masses, Phys. Rev. D 99, 034503 (2019).

[12] R. Horsley et al. (CSSM, QCDSF, UKQCD Collabora-
tions), Isospin splittings in the decuplet baryon spectrum
from dynamical QCDþ QED, J. Phys. G 46, 115004
(2019).

[13] N. Carrasco, V. Lubicz, G. Martinelli, C. T. Sachrajda, N.
Tantalo, C. Tarantino, and M. Testa, QED corrections to
hadronic processes in lattice QCD, Phys. Rev. D 91, 074506
(2015).

[14] V. Lubicz, G. Martinelli, C. T. Sachrajda, F. Sanfilippo, S.
Simula, and N. Tantalo, Finite-volume QED corrections to
decay amplitudes in lattice QCD, Phys. Rev. D 95, 034504
(2017).

[15] D. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, C. T.
Sachrajda, F. Sanfilippo, S. Simula, and N. Tantalo, First
Lattice Calculation of the QED Corrections to Leptonic
Decay Rates, Phys. Rev. Lett. 120, 072001 (2018).

[16] M. Di Carlo, G. Martinelli, D. Giusti, V. Lubicz, C. T.
Sachrajda, F. Sanfilippo, S. Simula, and N. Tantalo, Light-
meson leptonic decay rates in lattice QCDþ QED, Phys.
Rev. D 100, 034514 (2019).

[17] X. Feng, M. Gorchtein, L.-C. Jin, P.-X. Ma, and C.-Y. Seng,
First-Principles Calculation of Electroweak Box Diagrams
from Lattice QCD, Phys. Rev. Lett. 124, 192002 (2020).

[18] N. H. Christ, X. Feng, J. Lu-Chang, and C. T. Sachrajda,
Electromagnetic corrections to leptonic pion decay from
lattice QCD using infinite-volume reconstruction method,
Proc. Sci., LATTICE2019 (2020) 259.

[19] P.-X. Ma, X. Feng, M. Gorchtein, L.-C. Jin, and C.-Y. Seng,
Lattice QCD calculation of the electroweak box diagrams
for the kaon semileptonic decays, Phys. Rev. D 103, 114503
(2021).

[20] H. Yukawa, On the interaction of elementary particles I,
Proc. Phys. Math. Soc. Jpn. 17, 48 (1935).

PHYSICAL REVIEW LETTERS 128, 052003 (2022)

052003-6

https://doi.org/10.1146/annurev-nucl-102711-094942
https://doi.org/10.1146/annurev-nucl-102711-094942
https://doi.org/10.1103/PhysRevD.76.114508
https://doi.org/10.1103/PhysRevD.76.114508
https://doi.org/10.1103/PhysRevD.82.094508
https://doi.org/10.1103/PhysRevLett.109.072002
https://doi.org/10.1103/PhysRevLett.109.072002
https://doi.org/10.1103/PhysRevD.87.114505
https://doi.org/10.1126/science.1257050
https://doi.org/10.1088/0954-3899/43/10/10LT02
https://doi.org/10.1088/0954-3899/43/10/10LT02
https://doi.org/10.1007/JHEP04(2016)093
https://doi.org/10.1103/PhysRevD.95.114504
https://doi.org/10.1103/PhysRevD.95.114504
https://doi.org/10.1007/JHEP09(2017)153
https://doi.org/10.1103/PhysRevD.99.034503
https://doi.org/10.1088/1361-6471/ab32c1
https://doi.org/10.1088/1361-6471/ab32c1
https://doi.org/10.1103/PhysRevD.91.074506
https://doi.org/10.1103/PhysRevD.91.074506
https://doi.org/10.1103/PhysRevD.95.034504
https://doi.org/10.1103/PhysRevD.95.034504
https://doi.org/10.1103/PhysRevLett.120.072001
https://doi.org/10.1103/PhysRevD.100.034514
https://doi.org/10.1103/PhysRevD.100.034514
https://doi.org/10.1103/PhysRevLett.124.192002
https://doi.org/10.22323/1.363.0259
https://doi.org/10.1103/PhysRevD.103.114503
https://doi.org/10.1103/PhysRevD.103.114503
https://doi.org/10.11429/ppmsj1919.17.0_48


[21] Y. Nambu, Quasiparticles and gauge invariance in the theory
of superconductivity, Phys. Rev. 117, 648 (1960).

[22] J. Goldstone, Field theories with superconductor solutions,
Nuovo Cimento 19, 154 (1961).

[23] S. Weinberg, Phenomenological Lagrangians, Physica
(Amsterdam) 96A, 327 (1979).

[24] J. Gasserand and H. Leutwyler, Quark masses, Phys. Rep.
87, 77 (1982).

[25] J. Gasserand and H. Leutwyler, Chiral perturbation theory to
one loop, Ann. Phys. (N.Y.) 158, 142 (1984).

[26] S. L. Adler, Axial vector vertex in spinor electrodynamics,
Phys. Rev. 177, 2426 (1969).

[27] J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ
model, Nuovo Cimento A 60, 47 (1969).

[28] X. Feng and L. Jin, QED self energies from lattice QCD
without power-law finite-volume errors, Phys. Rev. D 100,
094509 (2019).

[29] X.-Y. Tuo, X. Feng, and L.-C. Jin, Long-distance contri-
butions to neutrinoless double beta decay π− → πþee, Phys.
Rev. D 100, 094511 (2019).

[30] X. Feng, Y. Fu, and L.-C. Jin, Lattice QCD calculation of
the pion charge radius using a model-independent method,
Phys. Rev. D 101, 051502(R) (2020).

[31] N. H. Christ, X. Feng, L.-C. Jin, and C. T. Sachrajda, Finite-
volume effects in long-distance processes with massless
leptonic propagators, Phys. Rev. D 103, 014507 (2021).

[32] X.-Y. Tuo, X. Feng, L.-C. Jin, and T. Wang, Lattice
QCD calculation of K → lνll0þl0− decay width, arXiv:
2103.11331.

[33] Y. Li, S.-C. Xia, X. Feng, L.-C. Jin, and C. Liu, Field
sparsening for the construction of the correlation functions
in lattice QCD, Phys. Rev. D 103, 014514 (2021).

[34] R. Gupta, G. Kilcup, and S. R. Sharpe, One loop lattice
vacuum energy, Phys. Lett. 147B, 339 (1984).

[35] R. Gupta, G. Guralnik, G. Kilcup, A. Patel, S. R. Sharpe,
and T. Warnock, The hadron spectrum on a 183 × 42 lattice,
Phys. Rev. D 36, 2813 (1987).

[36] Z. R. Kordov, R. Horsley, W. Kamleh, Z. Koumi, Y.
Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz, H.
Stüben, R. D. Young, and J. M. Zanotti (CSSM/QCDSF/
UKQCD Collaboration), State mixing and masses of the π0,
η and η0 mesons from nf ¼ 1þ 1þ 1 lattice QCDþ QED,
Phys. Rev. D 104, 114514 (2021).

[37] T. Blum et al. (RBC and UKQCD Collaborations), Domain
wall QCD with physical quark masses, Phys. Rev. D 93,
074505 (2016).

[38] T. Blum, T. Izubuchi, and E. Shintani, New class of
variance-reduction techniques using lattice symmetries,
Phys. Rev. D 88, 094503 (2013).

[39] E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung, and
C. Lehner, Covariant approximation averaging, Phys. Rev.
D 91, 114511 (2015).

[40] G. Mcglynn, Algorithmic improvements for weak
coupling simulations of domain wall fermions, Proc. Sci.,
LATTICE2015 (2016) 019.

[41] M. A. Clark, C. Jung, and C. Lehner, Multi-grid Lanczos,
EPJ Web Conf. 175, 14023 (2018).

[42] R. Arthur et al. (RBC and UKQCD Collaborations),
Domain wall QCD with near-physical pions, Phys. Rev.
D 87, 094514 (2013).

[43] P. Zyla et al. (Particle Data Group), Review of particle
physics, Prog. Theor. Exp. Phys. (2020), 083C01.

[44] https://github.com/RBC-UKQCD/CPS.
[45] https://github.com/paboyle/Grid.

PHYSICAL REVIEW LETTERS 128, 052003 (2022)

052003-7

https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1007/BF02812722
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/0370-1573(82)90035-7
https://doi.org/10.1016/0370-1573(82)90035-7
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/PhysRevD.100.094509
https://doi.org/10.1103/PhysRevD.100.094509
https://doi.org/10.1103/PhysRevD.100.094511
https://doi.org/10.1103/PhysRevD.100.094511
https://doi.org/10.1103/PhysRevD.101.051502
https://doi.org/10.1103/PhysRevD.103.014507
https://arXiv.org/abs/2103.11331
https://arXiv.org/abs/2103.11331
https://doi.org/10.1103/PhysRevD.103.014514
https://doi.org/10.1016/0370-2693(84)90129-1
https://doi.org/10.1103/PhysRevD.36.2813
https://doi.org/10.1103/PhysRevD.104.114514
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.88.094503
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.22323/1.251.0019
https://doi.org/10.22323/1.251.0019
https://doi.org/10.1051/epjconf/201817514023
https://doi.org/10.1103/PhysRevD.87.094514
https://doi.org/10.1103/PhysRevD.87.094514
https://doi.org/10.1093/ptep/ptaa104
https://github.com/RBC-UKQCD/CPS
https://github.com/RBC-UKQCD/CPS
https://github.com/paboyle/Grid
https://github.com/paboyle/Grid

