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Reverse Bootstrapping: IR Lessons for UV Physics
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S-matrix bootstrap and positivity bounds are usually viewed as constraints on low-energy theories
imposed by the requirement of a standard UV completion. By considering graviton-photon scattering in the
standard model, we argue that the low-energy theory can be used to put constraints on the UV behavior of

the gravitational scattering amplitudes.
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Introduction.—In recent years S-matrix positivity bounds
and bootstrap methods have matured into a powerful tool to
constrain low-energy effective field theories (EFTs). The
original nonlinear S-matrix positivity bounds of the 1970s
were largely concerned with constraints on individual partial
wave coefficients where often experimental data was forth-
coming, or constraints on the amplitude within the
Mandelstam triangle which is only well defined in gapped
theories [1]. The modern use of positivity bounds was
reinvigorated in Ref. [2], based on earlier work [3,4], where
it was emphasized that these act as constraints on EFTs,
including on massless ones once mild assumptions are made.
These constraints are interconnected with causality consid-
erations and for Lorentz invariant nongravitational theories
where causality and locality are precisely defined, there are
now a large number of robust bounds on Wilson coefficients
from EFTs. The linear forward limit bounds of Ref. [2] were
extended away from the forward limit in Ref. [5], and for
particles of arbitrary spins in Refs. [6,7]. These generalized
bounds have been used to provide powerful constraints
on low-energy EFTs, for instance, in Refs. [8-27].
Subsequently, the linear positivity bounds were generalized
to a set of nonlinear constraints in Refs. [28-30] using the
same methodology as Stieltjes moment positivity bounds
derived in Refs. [31-34]. More recently, the full use of
crossing symmetry has tightened these nonlinear statements
[35-40], which strongly overlap with S-matrix bootstrap
bounds [41-44].

The application of these methods to theories with gravity
is, however, less developed since the precise rules for
causality are far less established [45-49]. In Refs. [49,50] it
was argued that based on causality considerations, the usual
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amplitude combinations which are demanded to be positive
could admit a small Planck scale suppressed negativity in
the presence of gravity, and this was confirmed by the novel
impact-parameter bounds of Ref. [51] as well as in
Ref. [52]. This apparent gravitational weakening of posi-
tivity bounds is intimately connected with the fact that
perturbative corrections to the sound speed in gravitational
EFTs can appear to be superluminal [53-62] even though
causality is never violated as these effects are not
resolvable [47-49].

There are two central problems with extending the
usual positivity methods to 2-2 scattering amplitudes when
including gravity:

The first is that massless graviton loops give rise to a
branch cut which extends to t = 0, preventing the con-
tinuation of the partial wave expansion from ¢ < 0 to ¢ > 0,
where the positivity bounds ought to be satisfied (in terms
of the standard s, ¢, and u Mandelstam variables). However,
since the start of the branch cut is associated to light loops,
progress can be made by either directly removing the low-
energy loops in the manner of the improved positivity
bounds [6,10], or applying the bounds to the tree level of
the massless and light states, while loops of the heavy fields
can be included or integrated out (see, e.g., Refs. [27,51]).
Since loops of massless modes are not included, this also
removes any issue with IR divergences that are pertinent in
four dimensions.

The second is the presence of a massless 7-channel pole
associated with gravitational exchange. Since this pole
grows as s2, it is not possible to subtract it and to continue
to use a dispersion relation with two subtractions as is
allowed for nongravitational theories. However, there is no
difficulty in working with a dispersion relation with more
than two subtractions and hence many nontrivial positivity
bounds and S-matrix bootstrap constraints have been
applied by focusing on the higher order EFT operators
(see, for example, Ref. [27] for an excellent recent
discussion).
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The impact-parameter bounds of Ref. [51] evade both
problems by working at ¢ < 0 and looking for a new set of
positive integrals not immediately related to the standard
bounds. The resulting bounds are then consistent with those
conjectured in Refs. [50,63] but controlled by the lightest
massive state integrated out.

One approach to tighten this bound is to assume a Regge
behavior for the UV completion [52,64—67] as given below
in Eq. (8). This behavior arises in weakly coupled string
theory, but it can also be argued for universally, and folding
this information into the bounds of the graviton-photon
scattering either leads to the presence of a new tower of
higher spin states starting at least at the TeV scale, or a
violation of the Froissart bound, an IR/UV mixing, or a
constraint on the slope of the residue of the Regge pole.

Gravitational positivity bounds.—In what follows, we
shall consider scattering amplitudes that can be consistently
computed while including tree and loop level contributions
from all massive states, but only trees from massless ones
(i.e., no massless loops). At low energies, these amplitudes
admit an expansion which is determined by the tree
amplitudes of the low-energy EFT obtained from integrat-
ing out all massive states. In the specific context of graviton
scattering with other light states X4 — Xh, the dangerous
graviton loops may be removed by taking a scaling limit of
the exact scattering amplitude A(s, ) as

Axnoxn(s 1) = hm MplAXheXh(S 1. (1)

Pl

The central point is that graviton loops enter the amplitude
A only at order 1/Mj,, and so by taking this scaling,
graviton loops are automatically projected out in an RG
independent manner [68]. This reduced amplitude satisfies
unitarity in the sense [69]

L= 1
DiscAx_xn = 3 Z[(2”)454(kh + kx — ky)

Y
X AXh—»YA;(haY]a (2)

where Y is a complete set of states in the UV completion
not including gravitons and

Ay = Mlpi]r_l)looMPlAXhaY’ (3)

which is enough to ensure positivity for elastic scattering
processes. With the graviton loops removed, the only
remaining dangerous singularities are the graviton 7-channel
pole and the loops of any other massless states such as the
photon. For the process we shall be considering, the latter are
largely harmless and will not contribute at the order we shall
be interested in.

We now make the standard assumption that the ampli-
tude Ay;,_xn(s,t) admits a dispersion relation with two

subtractions in the physical region t < 0. Although the
Froissart bound [70-72] does not strictly apply to massless
states, reasonable causality considerations applied to the
scattering amplitude in impact parameter space in the
physical region imply the bound

|1‘1m 52 Axpoxn(s.1) =0 for 1 <0, (4)

S|=
throughout the complex s plane. In particular in D > 5 this
bound is expected for low-energy EFTs that descend from
string theory, and so a violation of the < |s|> growth would
hence violate predictions from perturbative string theory. In
D = 4 the situation is more subtle because of IR diver-
gences; however, by working in the scaling limit (1) we
have removed any dangerous IR contributions from grav-
iton loops. Hence assuming (4), and assuming that light
loops do not spoil the standard analyticity conditions, the
amplitude enjoys a twice-subtracted dispersion relation for
t <0

A,(s.t)=a(1)+b,(t)s + (s-and u-channel poles)
_/ Dlsc.A (1, t)+u_2/°° Disc A, (u.1)
=s) 7 Jo

(=)

(5)
where A, denotes the s-channel process Xh — Xh and
A,—the crossed process X — Xh. The key observation is
that while the amplitude on the left-hand side of Eq. (5)
contains a spin-2¢-channel pole, the pole does not explicitly
appear in the dispersion relation valid for ¢ < 0, on the
right-hand side of Eq. (5). Hence the pole is found within
the dispersive integral. More concretely, as we approach

t = 0 from below,

i ([ )1
=0"\Jo po(u = s) t

Since the pole does not arise in the discontinuity, it must
arise from the failure of the integral to converge as t — 0.
At the same time we know that a dispersion relation with
three subtractions is well behaved even for r > 0 (again
assuming massless loops do not contribute). This implies
that [ dy[Disc/IS,u(u, 1)/ (u —s)] is a convergent inte-
gral for small # > 0. We thus conclude that as u — oo the
discontinuity behaves as

{Discfts,u(y, 1) < u?, for t < 0,

u? < DiscA, ,(u, 1) < u?, for small 7> 0.
Assuming the mildest analytic behavior for the ¢ depend-
ence of the discontinuity in either of the s and u channels,
we are necessarily led to the Regge assumption for fixed ¢
near t = 0 [52,64-67],
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~ aS<’l<t>
lim Disc Ay, (1, 1) = ry, (£)A} (i) . (8)

H—>+00 A%

where a(t) is the Regge trajectory, and r(z) is related to the
residue of the associated Regge pole. The scale A, is freely
chosen as it can be absorbed into r() and is introduced for
later convenience. The Regge slopes satisfy a(f) < 2 for
t <0 and a(r) > 2 for t > 0 [73]. Given the absence of
massless loops we expect a() to be analytic at t = 0. We
stress that we are led to this Regge assumption without any
input from string theory, although the latter is certainly
consistent with it (see, e.g., Refs. [74,75]). Defining for
each channel the difference

. = af H a(r)
R(u,t) = DiscA(u, t) — r()A; 2 9)
(where we omit the s, u subscripts unless needed), the
dispersion relation may be reorganized into

A(s, 1) = a,(t) + by(t)s + (s-channel poles)

n s%ry(1) +i/A3dﬂDisc/I§(,u,t)
oa] 7o P

s2 [ R(u.t) 3 [~ DiscA.(u,t
7 Jaz H 7 Jo W —s)

+ 5 < u. (10)

The crucial difference is that the dispersion relation (10) is
now also valid for # > 0, unlike Eq. (5), since all of the
dispersive integrals are convergent. The #-channel pole is
now explicit in the Regge slope contribution

2 2
lim s2r(t) s
r)

, 11

P (11)
given that «(¢) is analytic in ¢ at r=0, so that
a(t) =2 + o't + O(?). Thus defining the amplitude with
poles removed in all three channels in a crossing symmetric
way

A ~

A(s,t) = A(s,t) — (s-, u-, and r-channel poles),  (12)

we infer the forward limit positivity bound

A r vy oa
2A0,0) > —— (22 -2
»A0.0)> M%<m %)
2 [ R (u,0
+—/ du ‘(ﬂg )+s<—>u. (13)
T JA2 H

Now crucially the above formula is valid for any value of
A,, and in particular we are free to choose A, to be some
scale much larger than the actual scale at which the Regge
behavior kicks in. Since R(s, ¢) is the subleading term in the

Regge behavior, we would expect it to be suppressed by
more than In s relative to the leading part [76]. Hence we
may scale A, — oo to ensure that the bound is effectively

9R2A0,0) > —p,2(Inr,) — ()] +s < u, (14)

where we have defined f, , = r,,/(na},). The f’s com-
bined as f = f; + B, which can be matched against the
actual low energy 7-channel pole

A(s.1) = —ﬂs—; + A(s.7) 4 (s and u poles). (15)

In practice for the scattering of only massless states, f is
either of order one or zero depending on whether the given
process allows 7-channel graviton exchange. Moreover, the
slope of the Regge residue is always positive by virtue of
unitarity and the partial wave expansion

d,[Disc A, (A2,0)] > 0=+, > 0. (16)

In the rest of this Letter, we will focus on the photon-
graviton scattering process Ah — Ah accounting for stan-
dard model (SM) effects and inferring the implications of
the bound (14). Remarkably, we shall see that this provides
us a bound on UV rather than on IR physics.

AhAh positivity.—Because of the universal nature of the
graviton coupling, all electroweak and QCD sector particles
contribute to the Ak — Ah scattering process. We may start
by considering all the SM particles to be minimally coupled
to gravity in a covariant way, although the implications of
this Letter are insensitive to that assumption,

M2
L::—THR+£SM(Q/JD’A”’W’ Wi9Z’QCD"")' (17)

The graviton enters the metric as g,, = 1, + 2h,,/Mp,
and A, designates the photon. Every charged lepton y, the
W bosons and the QCD sector enter the photon-graviton
scattering and the relevant diagrams are schematically
shown in Fig. 1 of the Supplemental Material [77]. In
practice, however, up to order s in the amplitude, the
effects of all contributions from the SM to the Ah — Ah
amplitude can be captured by the following operators:

M3 1
L= —TPIR ~ 1 FuwF" 4 b3FFpoR + Odimzs, (18)

where we have ignored operators that are either topological
or removable by field redefinitions (and hence do not
contribute independently to the amplitude) as well as dim-8
or higher operators that are irrelevant to this discussion. In
practice the value of b5 is dominated by the effects of the
electron loops [53],
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a
by=—-— |1
3 360ﬂmg[ +

2 2
0(’”_ me )} (19)
m M e
w meson
where m, is the electron mass, a = ¢2/(4x) is the fine-
structure constant, and g, is the electric charge. Following
the conventions laid out in the Supplemental Material [77],
the nonzero definite helicity Ah — Ah amplitudes are
given by

2
s
MuAy oy =MpyA_ = —5 T O(s%),

My A o = My A =2bssu, (20)

wherein the amplitude A, j,_4, 5, 11, hs are the photon
polarizations, and h,, h, the graviton ones. These ampli-
tudes are consistent with those derived in Ref. [78] when
b; = 0. The remaining amplitudes can be expressed in
terms of the amplitudes given above by using the fact that
the amplitudes are symmetric under parity and the s, u
crossing symmetry, i.e.,

An iy (S5t u) = Ay Gy (s t5). (21)

In particular, this implies that A.__ . _(s,t,u)=
A, (uts). As one can see from the above results,
there is no contribution to the positivity bounds on elastic
definite-helicity amplitudes coming from the b5 term.

We can further consider initial and final photon and
graviton states with indefinite polarizations,

A)=a,|+) +a_|-) and |k) = h|+)+ h_|-).
where a,, hy are complex numbers normalized so that
la,|*> 4+ |a_|> = 1, etc. Subtracting the poles in all three
channels, the result is sensitive to the indefinite state of the
photon (see Supplemental Material [77] for details),

2A(0,0) = —8b3Re(a, a*), (22)

which is sign indefinite, regardless of the sign of b3. In
particular, we may make the reasonable choice a, = 1/ V2
and a_ = Sign(b3)//2 for which

92A(0,0) = —4|bs). (23)

This is where the application of the positivity bounds (14) is
particularly insightful as it leads to

2p,(Inry) +2,(Inr,)" > 4bs| + f,(In )’ + f,(Ina,)".

The gravitational positivity bounds are thus violated unless
either (In r)’ or the Regge slope (In ')’ are bounded by the
ratio of the mass of the electron to its charge. In this sense,

the positivity bound can only be viewed as an IR constraint
on UV physics.

Reverse bootstrapping.—The main observation is that
the expected positivity bounds informed by a UV Regge
behavior (14) appear to be violated by the amount (23)
which is sensitive to the mass to charge ratio of the lightest
charged particle in the SM, namely, the electron. We will go
through a list of potential implications and emphasize that
irrespectively to how nature resolves this tension, the SM
does provide a remarkable constraint on UV physics:
1. Regge residue: The first possible resolution is that the
residue of the Regge pole associated with the scattering of
gravitons and photons varies at a scale related to the
electron mass to charge ratio, (Inr) > (m,/q,)™> ~
(1073 GeV)~2 [79]. This is a remarkable outcome as the
Regge behavior as indicated in Eq. (8) is typically only
related to the behavior of UV physics and one would not
expect it to be set by the electron mass scale. 2. Regge
slope: Another way out could be to set the scale of the
Regge slope to be of order of the electron mass to charge
ratio, |Ino’| ~ |bs|~! ~ m2/q2. This would then imply the
presence of a higher spin Regge pole already at the scale
/m,M,/q, where M, = 1/+/d, leading to an infinite
tower of higher spins starting at or below about 10* TeV
[80]. 3. Causality or locality: In order to derive the
positivity bounds, a certain level of causality or locality
has been postulated when assuming the Froissart-like
bound (4). While this bound is preserved for amplitudes
derived from perturbative string theory in D > 5, it is
possible that it is not technically applicable in the context of
gravitational EFTs. In D =4 the bound is known to be
more subtle due to IR divergences, however by working

with A defined in Eq. (1) we have removed the dangerous
graviton loops. If failure of this bound were the reason why
the amplitude (23) carries such a high level of negativity,
the consequences for UV physics and string theory in
particular would be significant. 4. Light loops and gap-
lessness: We have argued that to the order we are interested
in, the amplitude is insensitive to graviton and photon
loops. Graviton loops are Planck scale suppressed and do

not enter A by construction. At low energies photon loops
contribute at best as s*tlogt, so 92A is finite at s =t = 0

even if G?fl and higher derivatives of the amplitude are not.
More dangerous is the fact that photon loops may under-
mine the Froissart-like bound (4). While technically pos-
sible as a resolution, it would be indicative of a nontrivial
UV/IR mixing and fall under the previous category as a
weakening of locality.

The possibility of introducing other new physics is
discussed in the Supplemental Material [77] and we argue
that other than the inclusion of an infinite tower of higher
spin at the TeV scale or lower, there is no new beyond
standard model (BSM) physics nor nonminimal couplings
that could ameliorate the situation.
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For pragmatic reasons, we have focused our discussion
on graviton-photon exchange as it shows a clear level of
negativity within known SM physics. All the arguments
presented here are however generic and apply to any U(1).
In particular for any other dark sector U(1) or BSM physics,
the pole-subtracted graviton-gauge field indefinite scatter-
ing amplitude will always acquire a negative contribution
that scales as the mass of the lightest particle charged under
this U(1). For instance, imagining a dark photon and
charged dark matter particles under this dark U(1) as in
Ref. [81], one would expect the residue of the Regge
behavior to carry a scale as small as the lightest charged
dark matter particle, a scale which could, in principle, be
extremely low. In some of these models, the dark photon
could also be massive hence avoiding any IR divergences
issues. Whether we are dealing with the actual photon or
with another gauge field, there are no other operators one
could include into the EFT that would change our results
and the positivity bounds cannot be read as a constraint on
the cutoff of the EFT. Rather the constraint has to be
imposed directly at the level of either the Regge behavior,
the Froissart bound, the mixing with IR loops, or the
presence of an infinite tower of higher spin states at the
scale \/mM /q, where m and ¢ are the mass and charge of
the lightest charged particle. Interestingly, the scale asso-
ciated with this behavior is closely related to that entering
the weak gravity conjecture [63,64,82—-84].

Irrespective of which avenue is the most likely explan-
ation, our findings show how SM physics has to be woven
into UV physics.
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