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In this Letter, we study the mean-field dynamics of a general class of many-body systems with
stochastically fluctuating interactions. Our findings reveal a universal algebraic decay of the order
parameter mðtÞ ∼ t−χ with an exponent χ ¼ 1

3
that is independent of most system details including the

strength of the stochastic driving, the energy spectrum of the undriven systems, the initial states, and even
the driving protocols. It is shown that such a dynamical universality class can be understood as a
consequence of a diffusive process with a time-dependent diffusion coefficient which is determined self-
consistently during the evolution. The finite-size effect, as well as the relevance of our results with current
experiments in high-finesse cavity QED systems are also discussed.
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Introduction.—A universality class is a collection of
diverse systems which share common properties. For
example, systems with dramatically different microstruc-
tures may share identical critical exponents near the phase
transition point, where not only the static properties [1] but
also the relaxation dynamics [2] might exhibit similar
asymptotic behavior that is independent of most system
details. Compared to equilibrium systems, the universality
class in systems operating far from equilibrium is signifi-
cantly richer but less known in general. As a prototypical
example, the Kardar-Parisi-Zhang (KPZ) universality class
[3] with a dynamic critical exponent z ¼ 3

2
governs diverse

nonequilibrium phenomena from surface growth in
classical stochastic models [4] to superdiffusion in inte-
grable quantum models [5–7].
Random fluctuations, almost by definition, are usually

considered a source of disorder that leads to irregular
spatiotemporal behavior. A profound question is under the
random fluctuation, do systems always adjust their macro-
scopic behavior to the average properties of the fluctuation,
or can one find certain systems responding to randomness
in a more active way, thus exhibiting, for instance, non-
trivial behavior which is forbidden in the corresponding
deterministic systems without randomness. The answer is
indeed positive. It has been shown that random fluctu-
ation in certain nonlinear models can conspire with non-
linearity to render counterintuitive behavior such as
noise-induced spatiotemporal order and phase transition
[8]. The key point here involves the randomness that is
introduced externally through a stochastic process of a
control parameter that gets multiplied into system variables,
and thus is multiplicative instead of additive as in the
common Langevin treatment of the internal fluctuation.
Such noise-enhanced regularity phenomena have been
extensively studied in nonlinear systems ranging from

electronic to biochemical systems [9]. A more profound
question, then, is whether such a multiplicative noise can
give rise to nontrivial dynamical universality due to the
conspiracy of stochasticity and nonlinearity.
In this Letter, we attempt to answer this question by

focusing for simplicity on the mean-field dynamics of a
general class of interacting systems with stochastic driving.
Generally, a system can be driven out of equilibrium via a
time-dependent manipulation of the Hamiltonian parame-
ters. The majority of studies in this field have focused on
the cases where the Hamiltonian parameters are tuned in a
regular way, for instance, they can be suddenly [10,11],
linearly [12,13], or periodically [14–17] changed in time,
corresponding to the quench, ramping, or periodically
driven dynamics, respectively. However, only a few studies
have been focusing on stochastically driven systems [18–
22]. Perhaps this lack of research studies on this field can be
justified by the fact that such randomness in the time
domain will heat the system, and thus it is bound to be
detrimental to any spatiotemporal order [23–25]. However,
motivated by the multiplicative noise in the classical
systems, this Letter reveals that a stochastic driving acting
on the interaction strength instead of external field, may
facilitate an intriguing dynamical behavior, where the order
parameter of the system exhibits a universal algebraic
decay in time t−χ with an exponent χ ¼ 1

3
that is indepen-

dent of the noise strength, the energy spectrum of the
undriven systems, the initial states, and even the driving
protocols. It is shown that such universal dynamics can be
understood as a consequence of a nonlinear diffusion
process with a time-dependent diffusion coefficient that
is determined self-consistently during the time evolution.
Model I.—We first consider a fully connected transverse

Ising model [26] subjected to a nonuniform magnetic field
[Fig. 1(a)], whose Hamiltonian reads
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HsðtÞ ¼ −
ξðtÞ
L

X
kk0

ŝxkŝ
x
k0 −

X
k

hzkŝ
z
k; ð1Þ

where ŝαk is the spin-
1
2
operator operating on kth site (mode)

defined as ŝαk ¼ 1
2
σ̂αk (σ̂αk are the three Pauli matrices with

α ¼ x, y, and z). hzk is the magnetic field along the z
direction on site (mode) k which will be specified later on.
L is the total number of spins and the ð1=LÞ prefactor in
Eq. (1) guarantees that the total interacting energy scale
linearly with L. ξðtÞ is the strength of the all-to-all
interaction that is spatially unform but is randomly fluc-
tuating in time, satisfying: hξðtÞiξ ¼ 0, hξðtÞξðt0Þiξ ¼
D2δðt − t0Þ with D being the strength of the stochastic
driving. The ensemble average h·iξ is over all random
trajectories of the stochastic driving.
Because of this all-to-all feature, the interaction terms in

Eq. (1) can be decoupled by introducing a time-dependent
ferromagnetic order parameter

mðtÞ ¼ 1

L

X
k

hψðtÞjŝxkjψðtÞi ð2Þ

with jψðtÞi representing the wave function of the system at
time t. The mean-field (MF) Hamiltonian turns to a set of
spin-1

2
systems as H̃sðtÞ ¼

P
k H̃kðtÞ with

H̃kðtÞ ¼ −ξðtÞmðtÞŝxk − hzkŝ
z
k; ð3Þ

and the corresponding equation of motion (EOM) reads

_sk ¼ hkðtÞ × sk; ð4Þ

where sk ¼ ½hŝxki; hŝyki; hŝzki�T is a vector in the Bloch sphere
(jskj ¼ 1

2
). hk ¼ ½−ξðtÞmðtÞ; 0; hzk� and mðtÞ is self-consis-

tently determined by Eq. (2) during evolution. Here, the all-
to-all couplings in Eq. (1) guarantee that spatial fluctuation

in the thermodynamical limit (L → ∞) is completely
suppressed, and thus the MF Hamiltonian (3) and EOM
(4) are no longer approximations but the exact methods
dealing with both the equilibrium and nonequilibrium
systems [27–29]. Notice that in the MF treatment, the
EOM (4) does not only apply to the quantum cases, but also
to the classical cases, where the sk in Eq. (1) is a classical
vector instead of operator. In general, the MF Hamiltonian
(3) and the EOM (4) can not only be applied to quantum or
classical magnetism [Eq. (1), for instance], but also to
diverse phenomena with spontaneous symmetry breaking
ranging from superconductors [30–34] to charge-density
waves (CDW) [35].
Model II.—In most realistic systems with local inter-

actions, the spatial fluctuations render the mean-field EOM
(4) as no longer exact. Despite this fact, recent experimental
progress in high-finesse cavity QED systems has opened
up new possibilities to study infinite-range interactions
[36,37]. For instance, it is possible to realize a one-
dimensional (1D) hard-core bosonic system with an infin-
ite-range interaction [Fig. 1(b)] with Hamiltonian

Hb ¼ −J
X
i

ðb̂†i b̂iþ1 þ H:cÞ − ξðtÞ
L

X
ij

ð−1Þi−jn̂in̂j; ð5Þ

where J is the nearest-neighbor hopping amplitude, b†i (bi)
is the creation (annihilation) operators of the hard-core
boson at site i, and n̂i ¼ b̂†i b̂i. The interaction ξðtÞ is
defined the same as in Eq. (1). If ξðtÞ > 0, the interaction in
Eq. (5) is attractive (repulsive) between two bosons in the
same (different) sublattice, and thus favors a CDW state at
half-filling. As a consequence, one can introduce a CDW
order parameter mðtÞ ¼ ð1=LÞPið−1Þihn̂ii to decouple
the interaction, which yields to a MF Hamiltonian:
H̃b ¼ −J

P
iðb̂†i b̂iþ1 þ H:c:Þ þmðtÞξðtÞPið−1Þin̂i. One

can further use the Jordan-Wigner transformation to trans-
form the 1D hard-core bosons to spinless fermions:

b̂†i ¼ ei
P

j<i
πn̂j ĉ†i , then perform the Fourier transformation

c†i ¼ ð1= ffiffiffiffi
L

p ÞPk e
ikic†k to transfer the MF Hamiltonian

into the momentum space as H̃bðtÞ ¼
P

k Ψ
†
kĤkðtÞΨk

where Ψk ¼ ½ck; ckþπ�T and ĤkðtÞ has exactly the same
form of Eq. (3) provided that we assume hzk ¼ −2J cos k
with k ∈ ½−π; π�. Therefore, the mean-field EOM (4) also
provides an exact description of the dynamics of this
interacting bosonic system that is closely related with
the current cavity QED experiments. In the following,
we choose hzk ¼ −2J cos k unless it is specified otherwise.
Numerically, we adopt Stratonovich’s formula [38] of

the stochastic differential Eq. (4), and solve it using the
standard Heun method [39] with the time step of
Δt ¼ 10−5J−1, the convergence of which has been numeri-
cally assessed [29]. The ensemble average over the random
trajectories is performed by directly sampling over the N
sets of noise realizations (N ¼ 500 in our simulations).

(a)

(c)

(b)

FIG. 1. Schematic diagram of (a) a fully connected transverse
Ising model and (b) a 1D hard-core bosonic model with infinite-
range interactions; (c) the dynamics of the order parameter for a
single random trajectory with L ¼ 5000, D ¼ 5J.
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Universal algebraic decay of the amplitude to order
parameter.—In this simulation, we focus on the dynamics
of the order parameter mðtÞ. In general, the stochastic
driving will heat the system toward a featureless state with
mðt → ∞Þ ¼ 0, thus for a single random trajectory fξðtÞg,
mðtÞ will exhibit a chaotic oscillation whose amplitude
decays in time, as shown in Fig. 1(c). Despite the triviality
of the steady state, the asymptotic behavior approaching it
can be highly nontrivial and exhibit intriguing universal
behavior even at a mean-field level. To characterize such a
universal dynamics, we calculate the average amplitude of

the order parameter at time t defined asMðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hm2ðtÞiξ

q
,

and we end up with a universal algebraic decay MðtÞ ∼
t−1=3 that is independent of most system details as we will
show in the following.
We first check the dependence of the long-time behavior

of MðtÞ on the strength of the stochastic driving D. As
shown in Fig. 2(a), during the time evolution MðtÞ in the
cases with strong stochastic driving are typically larger than
those in weakly driven cases, which seems to indicate that
this randomness facilitates the order phase. Contrary to
many other studies, such a counterintuitive phenomenon is
because the stochastic driving does not act on the external

fields in our model, but on the strength of the interaction,
which favors the ordered phase with spontaneous symmetry
breaking. All cases with different D, MðtÞ always ends up
with an algebraic decays ∼t−χ , whose exponent χ barely
depends on D except for the case with small D where the
large statistical error makes it difficult to determine the
accurate value of χ [see inset of Fig. 2(a)].
Because of the absence of dissipation in our model, one

may wonder whether the long-time behavior depends on
the initial state despite the energy nonconservation. To
evaluate this, we fix D but choose different initial states as
the ground states of the Hamiltonian (1) with ξðt ¼ 0Þ ¼
D0 ≠ D. As shown in Fig. 2(b), after some relaxation time,
the MðtÞ starting from different initial states will converge
into the same trajectory, which indicates that the initial state
information has been washed out by the stochastic driving.
It is remarkable to notice that this conclusion holds even for
a symmetry unbroken initial state with mðt ¼ 0Þ ¼ 0. As
shown in Fig. 2(b),MðtÞ withD0 ¼ 0 will also converge to
the universal algebraic decay after an extraordinarily
long time, which suggests that even though mðtÞ ¼ 0 is
a solution of the EOM (4), it is unstable and non-
trivial dynamics can be triggered by small temporal
fluctuation.

(a)

(d) (e) (f)

(b) (c)

FIG. 2. (a) Dynamics of the order parameter amplitude MðtÞ for systems with various stochastic driving strengths D (the inset
represents the dependence of the power-law exponent χ on D); (b) MðtÞ starting from different initial states as the ground state of
Hamiltonian (1) with ξðt ¼ 0Þ ¼ D0; (c) MðtÞ for system with gapless (hzk ¼ −2J cos k), gapped (hzk ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J cos kÞ2 þ Δ2

p
with

Δ ¼ J) and completely random (hzk ∈ ½−2J; 2J�) spectrum functions; (d) MðtÞ for finite systems [the inset is the saturated value
MðLÞ ¼ Mðt → ∞Þ as a function of the system size L]; (e)MðtÞ in the presence of a quasiperiodic driving
ξðtÞ ¼ V0½cosð2πtþ φÞ þ cosð ffiffiffi

3
p

tÞ�; (f) MðtÞ in the presence of a telegraph stochastic driving with ξðtÞ randomly jumping between
two discrete values D and −D with a transition rate κ (the inset is a sketch of a single trajectory of the telegraph driving). We choose
Δt ¼ 10−5J−1; the systems size L ¼ 5000 except (d); the initial states are selected as the ground states of the Hamiltonian (1) with
ξðt ¼ 0Þ ¼ D except (b); D ¼ 3J for (c) and D ¼ 5J for (b) and (d).
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The spectrum function hzk is crucial for the determination
of the undriven system properties. Until now, our focus was
the dispersion spectrum of a 1D tight binding model with
hzk ¼ −2J cos k. Here, we investigate additional spec-
trum functions, such as a gapped spectrum as hzk ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J cos kÞ2 þ Δ2

p
, which can be realized by the impo-

sition of a staggered chemical potentialΔ
P

ið−1Þin̂i on the
original Hamiltonian (5). Even though the equilibrium
properties of gapless and gapped systems are significantly
different from each other, their long dynamics under
stochastic driving seem qualitatively the same, as shown
in Fig. 2(c). More generally, one can select a spectrum
function where each hzi is randomly sampled from a
uniform random distribution with hzi ∈ ½−2J; 2J�. As
shown in Fig. 2(c), the algebraic decay also holds for such
a random spectrum function.
Finite-size effect.—The systems we considered so far are

sufficiently large (L ¼ 5000), a fact that allows us to
neglect the finite-size effect within the timescale of our
simulation. The dynamics of MðtÞ in smaller systems have
been shown in Fig. 2(d), from which it is shown that the
universal algebraic decay of MðtÞ will not persist forever,
instead, it will eventually approach a saturation value
accompanied by small fluctuations. The saturation time
linearly scales with the system size, suggesting that this is a
finite-size effect. One can further investigate the depend-
ence of the finite saturation value M̄ðLÞ on the system size.
As shown in the inset of Fig. 1(e), M̄ðLÞ ∼ L−β, where
β ¼ 0.48ð1Þ (close to the value 1

2
) is another “critical”

exponent in our model.
Stochastic driving protocols other than white noise.—

Till now, we have only considered the situations where ξðtÞ
fluctuates as a white noise. Therefore, it is essential to
assess whether such a universal algebraic decay holds for
other stochastic protocols. Consequently, we first consider
a quasiperiodic driving protocol as a superposition of two
periodic drivings with incommensurate periods, that shares
some common features with the stochastic driving for
t → ∞. For instance, we select ξðtÞ as

ξðtÞ ¼ V0½cosð2πtþ φÞ þ cosð
ffiffiffi
3

p
tÞ�; ð6Þ

where V0 is the strength of the quasiperiodic driving, and
φ ∈ ½0; 2π� is a time-independent random phase. We define

MðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hm2ðtÞiφ

q
, where the ensemble average h·iφ is

performed over different φ. As shown in Fig. 2(e), we can
then find two distinguished dynamical behaviors: for small
V0 (e.g., V0 ¼ 3J), MðtÞ exhibits a persistent oscillation
with a constant amplitude, and for large V0 (e.g., V0 ¼ 7J),
the universal algebraic decay with χ ¼ 0.34ð4Þ seems to
reappear in the presence of such a quasiperiodic driving.
This phenomenon reminds us of the Aubry-André model,
which is known to have a localization transition when
increasing the strength of the incommensurate potential

[40]. It would be interesting to investigate whether similar
transitions can occur in the time domain of our model with
quasiperiodic driving.
Nonetheless, we now consider another stochastic driving

protocol known as telegraph noise, where ξðtÞ randomly
jump between two discrete values −D and D with a
transition rate κ (the transition probability per unit time),
which measures the (inverse) correlation time of this
colorful noise (hξðtÞξðt0Þiξ ∼ e−κjt0−tj) [41]. As shown in
Fig. 2(f), MðtÞ also exhibit an algebraic decay in the
presence of the telegraph noise, with an exponent χ ¼ 1

3

independent of the driving strengthΔ and the transition rate
κ, which indicates that these universal dynamics will still
survive in the presence of colorful noise.
Discussion.—Here, we propose a heuristic explanation

of the universal exponent χ ¼ 1
3
based on a hydrodynamics

description for the coarse CDW order parameter ϕðx; tÞ ¼P
i∈Xð−1Þihn̂ii where the summation is over sites within

the fluid cell centered at x. The EOM of the hydrodynamics
for ϕðx; tÞ takes the general form of ∂tϕ ¼ −D∇2ϕþ � � �,
where D is the diffusion coefficient depending on the
strength of the noise. If the higher order terms � � � are
irrelevant, it describes a standard diffusion where each
Fourier component ϕkðtÞ ¼

R
dxeikxϕðx; tÞ decays as

ϕkðtÞ ∼ e−Dk2t, and the global CDW order parameter can
be considered as a collective behavior of different k modes:
mðtÞ ¼ R

dkϕkðtÞ. If the noise is additive, thus D is a time-
independent constant, we have mðtÞ ∼ R

dke−Dk2t ∼ t−1=2,
which agrees with the dynamics observed in systems driven
by a stochastic external field [25]. However, Eq. (3)
indicates that the strength of the effective noise
½mðtÞξðtÞ� not only depends on the bare stochastic driving,
but also on the state of the system, and thus the diffusion
coefficient is time-dependent DðtÞ ∼mðtÞD, and one can
obtain

mðtÞ ∼
Z

dke−DmðtÞk2t ∼ ½mðtÞt�−1=2; ð7Þ

which leads to mðtÞ ∼ t−1=3 that agrees with our numerical
observation. Despite the simplicity of this argument, it does
not explain why such dynamics is so universal. A system-
atic answer to this question calls for an effective field theory
description of our system in the Keldysh formalism [42,43]
that is augmented by a renormalization group analysis,
which will be performed in future studies.
It is interesting to compare our results to other dynamical

universality classes observed before. In the KPZ model of
growing interface in a strip geometry with width L, the
roughness of the interface w initially increases algebraically
with time as wðtÞ ∼ tχ (χ ¼ 1

3
) [44,45], but eventually, due

to the finite size effect, plateaus at some saturation value
that scales with L as wðt → ∞Þ ∼ Lβ (β ¼ 1

2
) [3]. Despite

the striking similarity of the exponents χ and β, a major
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obstacle for further comparisons between the KPZ and our
model is a lack of characteristic length in our model due to
its all-to-all coupling feature, and thus it is unclear how to
characterize the dynamical critical exponent z which
measures the relationship between the characteristic length
and time here. Also, even though the KPZ universality class
is also due to the conspiracy of stochasticity and non-
linearity, the noise in the KPZ equation is additive instead
of multiplicative as in our case. Because of these important
discrepancies, it is unclear whether these striking similar-
ities are just coincidence or whether there are deep reasons
behind them. Other power-law decays with different
powers have been discovered before in interacting quantum
systems subjected to white noises [46–48], where the
interplay between the interaction, symmetry, and noise
plays an important role. For instance, the algebraic decay
observed in noisy quantum spin chain [47] crucially
depends on the presence of continuous symmetry (or
equivalently the conservation law). Here, however, it is
unclear whether the 1=3 power-law universality class
discussed above is related with some conservation quan-
tities or continuous symmetries, since in our Hamiltonian
(1), the symmetry is discrete (Z2 type) instead of
continuous.
Finally, we will add some remarks regarding the effect of

spatial fluctuations, that, although suppressed in our model,
they widely exist in local Hamiltonian with symmetry
breaking phases. Even though an exact simulation of a
nonequilibrium interacting quantum system is a formi-
dable, if not impossible, task, one can estimate that in
general, both the quantum and thermal fluctuations tend to
thermalize the system within a typical timescale tΔ. If tΔ is
much longer than the typical timescale of our Hamiltonian
dynamics ts ∼OðJ−1Þ, then it is natural to expect that the
universal dynamics discussed above can still be observed in
the prethermal regime. In addition, motivated by the
equilibrium phase transition theory where the mean-field
method works for systems with dimension above four, we
speculate that the 1=3 power-law universality class
observed in our infinite dimensional model, holds for
systems with sufficiently high dimension. However, an
estimation of the upper critical dimension Dc below which
the dynamics is qualitatively different from the 1=3 power-
law is a highly nontrivial problem, which calls for a
renormalization group analysis in the framework of non-
equilibrium field theory. The upper critical dimension in
our model, if it exists, does not have to be four, since our
model is far from equilibrium.
Conclusion and outlook.—In conclusion, our findings

show that despite the simplicity of the mean-field EOM (4),
it can manifest a remarkable dynamical universal class
which is absent in equilibrium cases. Future developments
will include an analytic explanation of the universality
based on a nonequilibrium field theory and renormalization
group analysis. Another important question pertains to the

generality of our conclusions: whether dynamical behav-
iors other than the universal algebraic decays (for instance,
exponential or stretched exponential decays [46]) exist in
different parameter regimes of our model. If so, what is the
critical behavior between these different dynamical phases?
Finally, yet importantly, it is essential to understand the
effect of spatial fluctuation on universal dynamics beyond
the mean-field treatment. Even though this question is
extremely difficult to be answered in the context of
quantum many-body systems, numerical simulations on
the classical systems may shed light on this problem [49].
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