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We propose a quantum simulation of a supersymmetric lattice model using atoms trapped in a 1D
configuration and interacting through a Rydberg dressed potential. The elementary excitations in the model
are kinks or (in a sector with one extra particle) their superpartners—the skinks. The two are connected by
supersymmetry and display identical quantum dynamics. We provide an analytical description of the kink
(skink) quench dynamics and propose a protocol to prepare and detect these excitations in the quantum
simulator. We make a detailed analysis, based on numerical simulation, of the Rydberg atom simulator and
show that it accurately tracks the dynamics of the supersymmetric model.
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Introduction.—Models of strongly interacting fermions
are key to our understanding of condensed matter systems.
At the same time, they are notoriously hard to track,
even with sophisticated tools ranging from numerical
approaches such as quantum Monte Carlo [1-3] and tensor
networks [4,5] to application of gauge-gravity duality [6].
One strategy to make progress is to consider models with
special symmetries. A nonstandard but intriguing choice is
to consider supersymmetry as an explicit symmetry on the
lattice [7-12] or as an emergent symmetry [13—15].

N = 2 supersymmetry in a lattice model or a quantum
field theory comes with a number of tools, such as the
Witten index [16], which facilitate the analysis. Exploiting
these tools unveils remarkable features such as extensive
ground state degeneracies, a phenomenon dubbed super-
frustration [17,18], which can lead to multicriticality [19].

Despite the supersymmetry, many hard questions
remain, such as the nature of the quantum phases in higher
spatial dimensions. Here a quantum simulator might
provide ingenious insights to these questions. We make
a step in this direction and propose such a simulator using
arrays of neutral atoms trapped in optical potentials and
dressed to their Rydberg state. This is motivated by the high
versatility of these platforms [20-30] and by the fact that an
off-resonant dressing [31-35] naturally implements the
constrained dynamics inherent to the supersymmetric
lattice model. Specifically, we consider a so-called M;
model for spinless fermions on a 1D chain [8]. As a
function of a parameter 4, this model interpolates between a
trivial (A = 0) and a quantum critical (A = 1) phase, the
latter connecting to superconformal field theory [8,36]. The
value of the Witten index W = 2 indicates the existence of
two supersymmetric vacua and points at kinks connecting
these two vacua as elementary excitations. Furthermore, in
a sector with one particle added, the excitations correspond
to the superpartners of the kinks, which we call the skinks.
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We propose a protocol for the (s)kink preparation and solve
for their dynamics following a quench (we note a recent
study of kink-antikink pair dynamics in a spin chain [37]).
We show that it is identical in both cases and accurately
reproduced by the quantum simulator. This is a direct
consequence and a clear-cut sign of the underlying super-
symmetry and we show how it can be revealed by a simple
experimental probe based on monitoring single-site particle
densities.

The M, model—An N =2 supersymmetric lattice
Hamiltonian for spinless fermions can be defined as

HQ :{Q’ QT}7 (1)

where Q is the nilpotent supercharge, Q> = 0, and the
brackets denote the anticommutator. The M; model [8] (on
a bipartite graph) arises when Q =), Q; with Q; =
(—l)iﬂich<i>, where ¢; are fermionic annihilation oper-
ators, {c;,c;} = {c;cj} =0, {c, cj‘} =4;;, and 4; € C.
The M; model constraint, stipulating that fermions are not
allowed to occupy nearest-neighbor sites (ij), is imple-
mented via the projector Py = I1 jeip Py with Pj =
l—nj, n;= c;c ;- The Hamiltonian H, describes near-
est-neighbor hoppings and local interactions; it preserves
the number of particles, [H. > ; n;] = 0. .
We now specialize to 1D and specify real A=
{41, 42, ..., A, }, where L is the length of the chain, 4;
repeats every three sites in a pattern 114 and 4 > 0. For this
choice of staggering, the M; model is known to be
integrable [38]. We refer to 1 = 0 as “extreme staggering.”
Supersymmetric ground states.—Let us first consider
periodic boundary conditions, L =3I, /€N, and
i= (1,1,4,...,1,1,2). In this case, there are two super-
symmetric ground states with E = 0, each at 1/3 filling. At
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FIG. 1. (a) An infinite chain with staggering 114 can accom-

modate two ground states |I), |II). The lowest energy states for an
open chain of length L = 3/ + 1 and [ particles are kinks |K;). A
supercharge Q acting on akink creates a particle atthe kink location.
The blue oval represents the triplet. (b) Particle densities in the
ground state of an open chain, L = 3/, 1 = 1 with an apparent Z4
pattern highlighted by the light green, dark green, and black data
points. (c¢) Particle (filled symbols) and energy (empty symbols)
densities of |K;) for A =0, 0.5, 1 (blue circles, orange squares,
green diamonds). (d) Scheme of the proposed realization. Atoms in
their electronic ground state |g) tunnel in an optical lattice with
spacing r( atrate J subject to dressing to a Rydberg state | ). Lower
graph shows the dressed potential W (r) for the |84S) state of °Li
with Q = 27 x 10 MHz, Q/A = 1/10, C4 = 645 GHz yum®.

extreme staggering, they are |I) = |£,,05,....1, 57 10;),
|II> = |010213, . OL—ZOL—I 1L>’ where tj,j+1 = 1/\/§(CI+
c; +1)|vac) is the triplet state and |vac) is the fermionic
vacuum, see Fig. 1(a). For an open chain of length L = 3/,
the degeneracy is lifted and we have a single E = 0 ground
state. Reference [38] analyzed the particle densities (n;) in
this ground state, perturbatively in 1/4. The same particle
densities have been studied at the critical point A = 1 by
invoking conformal field theory, which provides closed
form expressions for the associated scaling functions
[36,39]. The corresponding particle densities constitute a
direct experimental probe of the M| model as they follow a
characteristic Z3 pattern indicated by the gray lines in
Fig. 1(b) together with the data points (diamonds) for [ = 6
(see Supplemental Material [39]).

Kinks at extreme staggering.—For an open chain of
L =31+ 1, there are no supersymmetric ground states.
Instead, at extreme staggering the lowest energy states with
[ particles interpolate between the ground state configura-
tions |I) and |II), with an empty site at position i = 3j — 2,
with j =1,..., ]+ 1. We write these “bare kink” states as
|K;) = [11,i=110ill[i11 1)), where Ij, 4, 11}, ) denote the part
of the ground state configuration located between sites a

and b. They all have energy E = 1. The labels j = 1(j =
I+ 1) correspond to the leftmost (rightmost) kink, see
Fig. 1(a). Acting with the supercharge on the kink incre-
ases the number of particles by one creating the kink’s
superpartner, the skink, |K;) = Q|K;) = Iy i— 1104 1)-
Consequently, QF|K;) = |K) such that |K ;) and |K ;) form
doublets under supersymmetry, see Fig. 1(a) [77]. To
characterize the kinks, we introduce a local energy den-
sity h; =3({Q.01}+{Q".0:}) such that Ho =37k | hy.

Figure 1(c) shows the particle density n = (n;) and
energy density € = (h;) for the leftmost kink |K ;) forA =0
(blue data). The kink is clearly located at the left end of the
chain with a corresponding peak in the energy density.

Kinks at general ..—We claim that the notion of one-
kink (and multikink) states is well defined also away from
extreme staggering, when 0 < 4 < 1. To illustrate this, we
present in the inset of Fig. 2(a) the spectrum of the system
for [ = 4. The energies become degenerate for 1 =0,
taking odd positive values corresponding to the one-kink,
three-kink, etc. states. The unavoided level crossings,
characteristic for integrability, allow us to unambiguously
characterize states as multikink states for all 4.

Figure 2(a) shows the low-lying part of the spectrum,
which includes a band of / + 1 one-kink eigenstates |v;) of
energy E;. We define a localized kink as [78]

00 02 04- 06 08 1.0
k/m

FIG. 2. (a) Spectrum (inset) and nine lowest eigenenergies for
I =4 in [ (gray) and /+ 1 (dashed magenta) particle-number
sector of H . (b) The dispersion Eq. (4) for 2 = 0.1, 0.5, 1 (blue,
orange, green). The filled circles correspond to the fastest mode k
with v,,,. The green diamonds denote the exact eigenenergies for
[ =4 and A = 1. The green dashed line is an eye guide depicting
the linear dispersion at the origin. The inset shows the gap, i.e.,
the lowest energy (black) and v, (red) vs A.
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I+1
”l—l— Zsm kj)|oe), (2)

where k = zk/(I + 2).

In Fig. 1(c), the orange and green data points show the
particle and energy densities in the state |K;) obtained
numerically using Eq. (2) for 4 = 0.5, 1. We see that, even
for 4 = 1, the kink is well defined, with most of its energy
localized at the kink position.

Kink dynamics.—We now proceed with the evaluation
of the kink dynamics. We start from the leftmost kink
|K,) and consider overlap at time ¢ with the rightmost
kink, o(t) = (K, |K,(t)), where |K (1)) = e~e!|K ). It
follows from Eq. (2) that

[+1

l+2ZSIH Sll’l

For simplicity, from now on we focus on the critical case
A = 1. In Fig. 3(a), we show |o()|* for [ = 4 (solid blue
line). At criticality, the fastest mode propagates with the
Fermi velocity vy, see the discussion after Eq. (4). This
results in the onset of the overlap at rvy/l~ 1, with the
maximum achieved for a later time, tv./l ~ 1.75.

Kink detection.—To make a connection with experimen-
tally observable quantities, we construct an observable on
that detects the presence of a kink at the right end of the
system, by requiring that (K;|6n|K ;) ~ &;,,16; .. Taking
on=a(A0[1—=pA1)(np_y +npyq)], wefind a(0,1) =1
and $(0,7) = 1 for any /, and a(1,[) ~ 1.08 and (1,1) =~
1.09 for [ = 3, 4 [39]. The numerically obtained result for
on(t) is shown as a blue dashed line in Fig. 3(a) and
corresponds with good accuracy to |ol?.

Kink preparation.—An important question is how the
spatially localized kink | K ) can be prepared in practice. To
this end, we note that the kink site and its nearest neighbors
remain approximately empty for all , cf. Fig. 1(c). We thus
consider an adiabatic preparation of a ground state |K") of
the final Hamiltonian H; = Hy + pu(n| 4 n,), where
u — oo ensures the kink condition on the first two sites.
The initial Hamiltonian is chosen such that its ground state
is a kink at extreme staggering 4 = 0 (and similarly for
skinks below), cf. Supplemental Material [39]. For [ = 4,
we find the fidelities F € [0.95, 1], where F = (K| |K})|,
with the highest (lowest) value at extreme staggering
(criticality). In Fig. 3(a), we show the numerically evalu-
ated overlap |0|> = (K, |K/ (¢))|* and the corresponding
observable 6n’ as solid (dashed) red lines. We find that,
despite the limited fidelity of the initial state, |o’|*> and on’
agree well with |o|? and én.

Skinks.—Supersymmetry guarantees that the one-skink
energies [the lower dashed magenta lines in Fig. 2(a)] in the
sector with [+ 1 particles are identical to the one-kink
energies E;. As a consequence, the quench dynamics

FUleEL(3)

for the skinks is again given by Eq. (3). For the
detection of |K,.,), we propose &ii = —a(4,l)[1—-
BN (g5 +np_y+n..)), with  @(0,/)=2 and
p0,1)=1, and a(1,l)~1.46 and p(1,1)~0.98 for
[ = 3, 4. For the preparation, we find that the ground state
|K}) of H;=Hg+3(—n; +ny—0.5n;) corresponds
well to |K;) [39]. The [ =4 fidelities are F € [0.93,1]
with F = [(K}|K})|.

Kink (skink) dynamics at large [.—Surprisingly, the kink
arrival amplitude Eq. (3) is analytically tractable, for
general A, in the large-/ limit. A key element for this is
the continuum limit E(k) of the kink dispersion relation.
Exploiting a relation between the M| model and the XYZ
spin-1/2 chain [79], we have found [78]

—32+s)” (A+s
(32+ )2\ /1= (1 - 2L cos2 )

2V2VA + s '

E(R) =

(4)

where s = /8 + A%, In Fig. 2(b), we show the dispersion
for A = 0.1, 0.5, and 1. We denote by v,,,(4) the maximum

tJ/l

FIG.3. (a) Time evolution of |o(t)|?, Eq. (3) (solid lines) and én
(dashed lines) for a quench from the exact (blue) and reduced
fidelity (red) kink state |K ;) for [ = 4. The gray line corresponds
to |o(#)]? evaluated with Eq. (4) for the eigenenergies. (b) Numeri-
cal evaluation [gray, Eq. (3)] and saddle point approximation
[green dashed, red, Eq. (5)] of the overlap |o(t)|? for / = 101. The
green (red) lines correspond to considering the first two (only the
second) saddle points. The inset shows the onset of oscillations
around fvp/l =3. (c) Quench dynamics for ten-site chain
(I = 3), with initial states |K’) (blue) and |K) (magenta). Solid
lines show dynamics under the full Hamiltonian A Ry> whereas the
gray curve is for a truncation of Hpgy, neglecting interactions
beyond next-nearest neighbors. Dashed lines show dynamics
under H. The red line shows the average population in the
Rydberg state n” = 1/1Y ", n?, whereas the green line tracks the
nearest-neighbor occupation of ground state atoms, 7;7;,;| =
1/1> s nyny . Parameters as in Fig. 1(d).
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value of the group velocity v(k) = 9;E(k). At criticality,
Umax (4 = 1) = vp = 31/3/4, with v as the Fermi velocity.
This gives real space velocity (since kinks hop three sites at
a time) 3vy = 93 /4, in agreement with [36].

In Fig. 3(a), the gray line shows the overlap Eq. (3)
evaluated with the energies E(k) instead of Ej (blue line).
The difference is a consequence of finite /, cf. the green
diamonds vs green solid line in Fig. 2(b).

Using the dispersion E (7{), we can evaluate the large-/
limit of Eq. (3) in a saddle point approximation [39], giving

— (25— 1)> sin (k,)?

w pil(2s=D)mk+E (k)] +i(57/4) 5
¢ E//( )t ( )

where 6 is the Heaviside step function, k; =
E-'(2s — V)r/1], E' = OE(k), E" = 92E(k), and s labels
the saddle point corresponding to the arrival times
t=2s=1)(14+2)/vmax & (25 = 1)/ pax, s €N, of the
kink front (maximum velocity mode). At criticality, where
E(k) = 2vpsin(k/2), the saddle point expression takes a
simple closed form [39].

In Fig. 3(b), we show an example of the dynamics for
[ =101 evaluated using Eq. (3) (gray line) together with
the prediction of Eq. (5) (green dashed line). We see a close
to perfect agreement, with the inset showing the details
around fvp/l = 3, where the second saddle point s =2
starts to generate the characteristic modulation of the
overlap due to the interference of the kink front propagating
at vy incident on the right edge (after it has undergone one
round-trip) and the kink tail. We note the frequency chirp of
the modulation due to the nontrivial time dependence of k.
Here we do not show the observable n(t), as for large [ the
Hamiltonian cannot be diagonalized exactly.

Experimental implementation.—We now discuss how
H, can be engineered using Rydberg dressed atoms
[40,41]; see Ref. [80] for an experimental realization of
fermions hopping in an optical lattice and interacting
through a Rydberg dressed potential.

We consider effectively two-level atoms with the ground
and Rydberg states |g) and |r), where the ground state
atoms experience an optical lattice potential and the atoms
in a Rydberg state experience a repulsive van der Waals
interaction described by

L-1
JZ z+lc +C Ct+1 +Zﬂz n;

i=1 i=1
L
+

i

L-1
Qot + Anj + Y Vynin). (6)

1 i>j=1

Here, J > 0 is the hopping amplitude, * = |r){(g| + |g)(r|,
n” = |r)(r|, and V;; = Cs/(ro|i — j|)® with Cg as the van
der Waals coefficient and r, as the lattice spacing. We
consider a regime of large detuning /A < 1, where the
ground state atoms interact, up to order Q*, through an
effective flattop potential W (r = roli — j|) = 2Q*V;;/
[A3(V;; +2A)], cf. Fig. 1(d). To obtain the supersymmetric
H, the interaction and chemical potentials W and x4 and
the hopping J need to be tuned as follows.

For simplicity, we refer the discussion of general 4 to the
Supplemental Material [39] and focus on 4 = 1. In this
case, the chemical potential terms in Hy become site-
independent up to the boundary terms originating from
PPy and P;_,P;, which can be accounted for by
setting uy = p; = J.

Next, the M; model Hamiltonian forbids nearest-neigh-
bor occupation while the potential terms are of the form
P;_|P;,,, with no interactions beyond lattice distance 2.
For this to be captured by the flattop potential, we need
W(ry)/W(2rg) > 1 and W(2ry)/W(3ry) > 1 with the
maximum achieved in the limit ry — co. However, to
counteract experimental imperfections [39], one should
reduce the duration of the simulation by maximizing the
relevant energy scale, here W(2ry), which happens for
ro — 0, and one has to set J/ = W(2r). This corresponds to
the optimal approximation of H, using single dressing.
Written explicitly,

L2
JHy = —szi—l(cjcﬂrl + H.c.)P,»+2
i=1
L2
+J(n, +nL)+JZnini+2 (7)

i=1

(up to global energy offset), see Supplemental Material [39]
for details. Importantly, we also show in [39] that H can
be reached, in principle, with an arbitrary number of
dressings with already a tenfold increase in W(ry)/
W(2ry) and W(3ry)/W(2ry) for a double dressing with
realistic parameters.

As a specific example, we consider the fermionic °Li
dressed with the |84S) state with Cg = 645 GHzum®
[42,43] and lattice spacing ry = 2.5 ym. The resulting
dressed potential is shown in Fig. 1(d). We get
W(2ry) = J ~ 4 kHz, which for the optical lattice laser
wavelength 4 = 2ry; = 5 um corresponds to lattice depth
~5.5E,, with E, being the recoil energy [44,81].

Figure 3(c) shows the quantum simulation of H ,, where
we compare the dynamics generated by the Rydberg
Hamiltonian (6) with that of H, quenching from [K)
and |K)), see caption for details. We draw two main
conclusions. First, the quantum simulator accurately tracks
the dynamics set by the model Hamiltonian H, and,
second, the dynamics in the /-particle sector (blue lines)
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is highly similar to that in the / + 1 particle sector (magenta
lines). The latter observation is direct evidence of the
supersymmetry of H.

Outlook.—We have proposed a realization of a super-
symmetric lattice Hamiltonian H, based on atoms inter-
acting through a Rydberg dressed potential [82,83]. Our
results constitute a stepping stone to quantum simulations
of supersymmetric lattice models in higher dimensions
[18,84—87], which can require n-body, rather than two-
body, interactions. In this context, it would be interesting to
consider a scheme relying on coupling the Rydberg atoms
with phonons [88] or to use cold molecules with permanent
or electric-field-induced dipole moments, avoiding the
need for off-resonant dressing [45—48]. Another interesting
avenue is to exploit the mapping of the supersymmetric
lattice Hamiltonians to spins [9,19,78,79], which would
allow for simulations with platforms such as superconduct-
ing devices with n-body interactions [89,90].
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