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We propose a quantum simulation of a supersymmetric lattice model using atoms trapped in a 1D
configuration and interacting through a Rydberg dressed potential. The elementary excitations in the model
are kinks or (in a sector with one extra particle) their superpartners—the skinks. The two are connected by
supersymmetry and display identical quantum dynamics. We provide an analytical description of the kink
(skink) quench dynamics and propose a protocol to prepare and detect these excitations in the quantum
simulator. We make a detailed analysis, based on numerical simulation, of the Rydberg atom simulator and
show that it accurately tracks the dynamics of the supersymmetric model.
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Introduction.—Models of strongly interacting fermions
are key to our understanding of condensed matter systems.
At the same time, they are notoriously hard to track,
even with sophisticated tools ranging from numerical
approaches such as quantum Monte Carlo [1–3] and tensor
networks [4,5] to application of gauge-gravity duality [6].
One strategy to make progress is to consider models with
special symmetries. A nonstandard but intriguing choice is
to consider supersymmetry as an explicit symmetry on the
lattice [7–12] or as an emergent symmetry [13–15].
N ¼ 2 supersymmetry in a lattice model or a quantum

field theory comes with a number of tools, such as the
Witten index [16], which facilitate the analysis. Exploiting
these tools unveils remarkable features such as extensive
ground state degeneracies, a phenomenon dubbed super-
frustration [17,18], which can lead to multicriticality [19].
Despite the supersymmetry, many hard questions

remain, such as the nature of the quantum phases in higher
spatial dimensions. Here a quantum simulator might
provide ingenious insights to these questions. We make
a step in this direction and propose such a simulator using
arrays of neutral atoms trapped in optical potentials and
dressed to their Rydberg state. This is motivated by the high
versatility of these platforms [20–30] and by the fact that an
off-resonant dressing [31–35] naturally implements the
constrained dynamics inherent to the supersymmetric
lattice model. Specifically, we consider a so-called M1

model for spinless fermions on a 1D chain [8]. As a
function of a parameter λ, this model interpolates between a
trivial (λ ¼ 0) and a quantum critical (λ ¼ 1) phase, the
latter connecting to superconformal field theory [8,36]. The
value of the Witten index W ¼ 2 indicates the existence of
two supersymmetric vacua and points at kinks connecting
these two vacua as elementary excitations. Furthermore, in
a sector with one particle added, the excitations correspond
to the superpartners of the kinks, which we call the skinks.

We propose a protocol for the (s)kink preparation and solve
for their dynamics following a quench (we note a recent
study of kink-antikink pair dynamics in a spin chain [37]).
We show that it is identical in both cases and accurately
reproduced by the quantum simulator. This is a direct
consequence and a clear-cut sign of the underlying super-
symmetry and we show how it can be revealed by a simple
experimental probe based on monitoring single-site particle
densities.
The M1 model.—An N ¼ 2 supersymmetric lattice

Hamiltonian for spinless fermions can be defined as

HQ ¼ fQ;Q†g; ð1Þ

where Q is the nilpotent supercharge, Q2 ¼ 0, and the
brackets denote the anticommutator. TheM1 model [8] (on
a bipartite graph) arises when Q ¼ P

i Qi with Qi ¼
ð−1Þiλic†i Phii, where ci are fermionic annihilation oper-

ators, fci; cjg ¼ fc†i ; c†jg ¼ 0, fci; c†jg ¼ δij, and λi ∈ C.
The M1 model constraint, stipulating that fermions are not
allowed to occupy nearest-neighbor sites hiji, is imple-
mented via the projector Phii ¼

Q
j∈hiji Pj, with Pj ¼

1 − nj, nj ¼ c†jcj. The Hamiltonian HQ describes near-
est-neighbor hoppings and local interactions; it preserves
the number of particles, ½HQ;

P
i ni� ¼ 0.

We now specialize to 1D and specify real λ⃗ ¼
fλ1; λ2;…; λLg, where L is the length of the chain, λi
repeats every three sites in a pattern 11λ and λ ≥ 0. For this
choice of staggering, the M1 model is known to be
integrable [38]. We refer to λ ¼ 0 as “extreme staggering.”
Supersymmetric ground states.—Let us first consider

periodic boundary conditions, L ¼ 3l, l ∈ N, and
λ⃗ ¼ ð1; 1; λ;…; 1; 1; λÞ. In this case, there are two super-
symmetric ground states with E ¼ 0, each at 1=3 filling. At
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extreme staggering, they are jIi≡ jt1;203;…; tL−2;L−10Li,
jIIi≡ j010213;…; 0L−20L−11Li, where tj;jþ1 ¼ 1=

ffiffiffi
2

p ðc†jþ
c†jþ1Þjvaci is the triplet state and jvaci is the fermionic
vacuum, see Fig. 1(a). For an open chain of length L ¼ 3l,
the degeneracy is lifted and we have a single E ¼ 0 ground
state. Reference [38] analyzed the particle densities hnii in
this ground state, perturbatively in 1=λ. The same particle
densities have been studied at the critical point λ ¼ 1 by
invoking conformal field theory, which provides closed
form expressions for the associated scaling functions
[36,39]. The corresponding particle densities constitute a
direct experimental probe of theM1 model as they follow a
characteristic Z3 pattern indicated by the gray lines in
Fig. 1(b) together with the data points (diamonds) for l ¼ 6
(see Supplemental Material [39]).
Kinks at extreme staggering.—For an open chain of

L ¼ 3lþ 1, there are no supersymmetric ground states.
Instead, at extreme staggering the lowest energy states with
l particles interpolate between the ground state configura-
tions jIi and jIIi, with an empty site at position i ¼ 3j − 2,
with j ¼ 1;…; lþ 1. We write these “bare kink” states as
jKji ¼ jI½1;i−1�0iII½iþ1;L�i, where I½a;b�, II½a;b� denote the part
of the ground state configuration located between sites a

and b. They all have energy E ¼ 1. The labels j ¼ 1ðj ¼
lþ 1Þ correspond to the leftmost (rightmost) kink, see
Fig. 1(a). Acting with the supercharge on the kink incre-
ases the number of particles by one creating the kink’s
superpartner, the skink, jK̄ji≡QjKji ¼ jI½1;i−1�1iII½iþ1;L�i.
Consequently,Q†jK̄ji ¼ jKji such that jKji and jK̄ji form
doublets under supersymmetry, see Fig. 1(a) [77]. To
characterize the kinks, we introduce a local energy den-
sity hi¼ 1

2
ðfQ;Q†

i gþfQ†;QigÞ such that HQ¼P
L
i¼1hi.

Figure 1(c) shows the particle density n ¼ hnii and
energy density ε ¼ hhii for the leftmost kink jK1i for λ ¼ 0
(blue data). The kink is clearly located at the left end of the
chain with a corresponding peak in the energy density.
Kinks at general λ.—We claim that the notion of one-

kink (and multikink) states is well defined also away from
extreme staggering, when 0 < λ ≤ 1. To illustrate this, we
present in the inset of Fig. 2(a) the spectrum of the system
for l ¼ 4. The energies become degenerate for λ ¼ 0,
taking odd positive values corresponding to the one-kink,
three-kink, etc. states. The unavoided level crossings,
characteristic for integrability, allow us to unambiguously
characterize states as multikink states for all λ.
Figure 2(a) shows the low-lying part of the spectrum,

which includes a band of lþ 1 one-kink eigenstates jvki of
energy Ek. We define a localized kink as [78]

FIG. 1. (a) An infinite chain with staggering 11λ can accom-
modate two ground states jIi; jIIi. The lowest energy states for an
open chain of length L ¼ 3lþ 1 and l particles are kinks jKji. A
superchargeQactingonakinkcreatesaparticleat thekinklocation.
The blue oval represents the triplet. (b) Particle densities in the
ground state of an open chain, L ¼ 3l, λ ¼ 1 with an apparent Z3

pattern highlighted by the light green, dark green, and black data
points. (c) Particle (filled symbols) and energy (empty symbols)
densities of jK1i for λ ¼ 0, 0.5, 1 (blue circles, orange squares,
green diamonds). (d) Schemeof the proposed realization.Atoms in
their electronic ground state jgi tunnel in an optical lattice with
spacing r0 at rate J subject to dressing to aRydberg state jri. Lower
graph shows the dressed potential WðrÞ for the j84Si state of 6Li
with Ω ¼ 2π × 10 MHz, Ω=Δ ¼ 1=10, C6 ¼ 645 GHz μm6.

FIG. 2. (a) Spectrum (inset) and nine lowest eigenenergies for
l ¼ 4 in l (gray) and lþ 1 (dashed magenta) particle-number
sector of HQ. (b) The dispersion Eq. (4) for λ ¼ 0.1, 0.5, 1 (blue,
orange, green). The filled circles correspond to the fastest mode k̃
with vmax. The green diamonds denote the exact eigenenergies for
l ¼ 4 and λ ¼ 1. The green dashed line is an eye guide depicting
the linear dispersion at the origin. The inset shows the gap, i.e.,
the lowest energy (black) and vmax (red) vs λ.
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jKji ¼
ffiffiffiffiffiffiffiffiffiffi
2

lþ 2

r Xlþ1

k¼1

sinðk̃jÞjvki; ð2Þ

where k̃ ¼ πk=ðlþ 2Þ.
In Fig. 1(c), the orange and green data points show the

particle and energy densities in the state jK1i obtained
numerically using Eq. (2) for λ ¼ 0.5, 1. We see that, even
for λ ¼ 1, the kink is well defined, with most of its energy
localized at the kink position.
Kink dynamics.—We now proceed with the evaluation

of the kink dynamics. We start from the leftmost kink
jK1i and consider overlap at time t with the rightmost
kink, oðtÞ≡ hKlþ1jK1ðtÞi, where jK1ðtÞi ¼ e−iHQtjK1i. It
follows from Eq. (2) that

oðtÞ ¼ 2

lþ 2

Xlþ1

k¼1

sinðk̃Þ sin½k̃ðlþ 1Þ�e−iEkt: ð3Þ

For simplicity, from now on we focus on the critical case
λ ¼ 1. In Fig. 3(a), we show joðtÞj2 for l ¼ 4 (solid blue
line). At criticality, the fastest mode propagates with the
Fermi velocity vF, see the discussion after Eq. (4). This
results in the onset of the overlap at tvF=l ≈ 1, with the
maximum achieved for a later time, tvF=l ≈ 1.75.
Kink detection.—To make a connection with experimen-

tally observable quantities, we construct an observable δn
that detects the presence of a kink at the right end of the
system, by requiring that hKijδnjKji ≈ δi;lþ1δj;lþ1. Taking
δn ¼ αðλ; lÞ½1 − βðλ; lÞðnL−1 þ nLþ1Þ�, we find αð0; lÞ ¼ 1
and βð0; lÞ ¼ 1 for any l, and αð1; lÞ ≈ 1.08 and βð1; lÞ ≈
1.09 for l ¼ 3, 4 [39]. The numerically obtained result for
δnðtÞ is shown as a blue dashed line in Fig. 3(a) and
corresponds with good accuracy to joj2.
Kink preparation.—An important question is how the

spatially localized kink jK1i can be prepared in practice. To
this end, we note that the kink site and its nearest neighbors
remain approximately empty for all λ, cf. Fig. 1(c). We thus
consider an adiabatic preparation of a ground state jK0

1i of
the final Hamiltonian Hf ¼ HQ þ μðn1 þ n2Þ, where
μ → ∞ ensures the kink condition on the first two sites.
The initial Hamiltonian is chosen such that its ground state
is a kink at extreme staggering λ ¼ 0 (and similarly for
skinks below), cf. Supplemental Material [39]. For l ¼ 4,
we find the fidelities F ∈ ½0.95; 1�, where F ¼ jhK0

1jK1ij,
with the highest (lowest) value at extreme staggering
(criticality). In Fig. 3(a), we show the numerically evalu-
ated overlap jo0j2 ¼ jhKlþ1jK0

1ðtÞij2 and the corresponding
observable δn0 as solid (dashed) red lines. We find that,
despite the limited fidelity of the initial state, jo0j2 and δn0

agree well with joj2 and δn.
Skinks.—Supersymmetry guarantees that the one-skink

energies [the lower dashed magenta lines in Fig. 2(a)] in the
sector with lþ 1 particles are identical to the one-kink
energies Ek. As a consequence, the quench dynamics

for the skinks is again given by Eq. (3). For the
detection of jK̄lþ1i, we propose δn̄ ¼ −ᾱðλ; lÞ½1−
β̄ðλ; lÞðnL−2 þ nL−1 þ nLþ1Þ�, with ᾱð0; lÞ ¼ 2 and
β̄ð0; lÞ ¼ 1, and ᾱð1; lÞ ≈ 1.46 and β̄ð1; lÞ ≈ 0.98 for
l ¼ 3, 4. For the preparation, we find that the ground state
jK̄0

1i of Hf ¼ HQ þ 3ð−n1 þ n2 − 0.5n3Þ corresponds
well to jK̄1i [39]. The l ¼ 4 fidelities are F̄ ∈ ½0.93; 1�
with F̄ ¼ jhK̄0

1jK̄1ij.
Kink (skink) dynamics at large l.—Surprisingly, the kink

arrival amplitude Eq. (3) is analytically tractable, for
general λ, in the large-l limit. A key element for this is
the continuum limit Eðk̃Þ of the kink dispersion relation.
Exploiting a relation between the M1 model and the XYZ
spin-1=2 chain [79], we have found [78]

Eðk̃Þ ¼
ð3λþ sÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − ð−3λþsÞ3ðλþsÞ

ð−λþsÞð3λþsÞ3Þ cos2ðk̃2Þ
q

2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
λþ s

p ; ð4Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ λ2

p
. In Fig. 2(b), we show the dispersion

for λ ¼ 0.1, 0.5, and 1. We denote by vmaxðλÞ the maximum

FIG. 3. (a) Time evolution of joðtÞj2, Eq. (3) (solid lines) and δn
(dashed lines) for a quench from the exact (blue) and reduced
fidelity (red) kink state jK1i for l ¼ 4. The gray line corresponds
to joðtÞj2 evaluated with Eq. (4) for the eigenenergies. (b) Numeri-
cal evaluation [gray, Eq. (3)] and saddle point approximation
[green dashed, red, Eq. (5)] of the overlap joðtÞj2 for l ¼ 101. The
green (red) lines correspond to considering the first two (only the
second) saddle points. The inset shows the onset of oscillations
around tvF=l ¼ 3. (c) Quench dynamics for ten-site chain
(l ¼ 3), with initial states jK0

1i (blue) and jK̄0
1i (magenta). Solid

lines show dynamics under the full HamiltonianHRy, whereas the
gray curve is for a truncation of HRy, neglecting interactions
beyond next-nearest neighbors. Dashed lines show dynamics
under HQ. The red line shows the average population in the
Rydberg state nr ¼ 1=l

P
i n

r
i , whereas the green line tracks the

nearest-neighbor occupation of ground state atoms, niniþ1 ¼
1=l

P
i0 ni0ni0þ1. Parameters as in Fig. 1(d).
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value of the group velocity vðk̃Þ ¼ ∂ k̃Eðk̃Þ. At criticality,
vmaxðλ ¼ 1Þ ¼ vF ¼ 3

ffiffiffi
3

p
=4, with vF as the Fermi velocity.

This gives real space velocity (since kinks hop three sites at
a time) 3vF ¼ 9

ffiffiffi
3

p
=4, in agreement with [36].

In Fig. 3(a), the gray line shows the overlap Eq. (3)
evaluated with the energies Eðk̃Þ instead of Ek (blue line).
The difference is a consequence of finite l, cf. the green
diamonds vs green solid line in Fig. 2(b).
Using the dispersion Eðk̃Þ, we can evaluate the large-l

limit of Eq. (3) in a saddle point approximation [39], giving

oðtÞ ≈ 2

lþ 2

X∞
s¼1

θ

�
vmaxt
lþ 2

− ð2s − 1Þ
�
sin ðk̃sÞ2

× ei½ð2s−1ÞπksþEðk̃sÞt�þið5π=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

−E00ðk̃sÞt

s
; ð5Þ

where θ is the Heaviside step function, ks ¼
E0−1½ð2s − 1Þπ=t�, E0 ¼ ∂kEðk̃Þ, E00 ¼ ∂2

kEðk̃Þ, and s labels
the saddle point corresponding to the arrival times
t ¼ ð2s − 1Þðlþ 2Þ=vmax ≈ ð2s − 1Þl=vmax, s ∈ N, of the
kink front (maximum velocity mode). At criticality, where
Eðk̃Þ ¼ 2vF sinðk̃=2Þ, the saddle point expression takes a
simple closed form [39].
In Fig. 3(b), we show an example of the dynamics for

l ¼ 101 evaluated using Eq. (3) (gray line) together with
the prediction of Eq. (5) (green dashed line). We see a close
to perfect agreement, with the inset showing the details
around tvF=l ¼ 3, where the second saddle point s ¼ 2
starts to generate the characteristic modulation of the
overlap due to the interference of the kink front propagating
at vF incident on the right edge (after it has undergone one
round-trip) and the kink tail. We note the frequency chirp of
the modulation due to the nontrivial time dependence of k̃s.
Here we do not show the observable δnðtÞ, as for large l the
Hamiltonian cannot be diagonalized exactly.
Experimental implementation.—We now discuss how

HQ can be engineered using Rydberg dressed atoms
[40,41]; see Ref. [80] for an experimental realization of
fermions hopping in an optical lattice and interacting
through a Rydberg dressed potential.
We consider effectively two-level atoms with the ground

and Rydberg states jgi and jri, where the ground state
atoms experience an optical lattice potential and the atoms
in a Rydberg state experience a repulsive van der Waals
interaction described by

HRy ¼ −J
XL−1
i¼1

ðc†iþ1ci þ c†i ciþ1Þ þ
XL
i¼1

μini

þ
XL
i¼1

Ωσxi þ Δnri þ
XL−1
i>j¼1

Vijnrin
r
j: ð6Þ

Here, J > 0 is the hopping amplitude, σx ¼ jrihgj þ jgihrj,
nr ¼ jrihrj, and Vij ¼ C6=ðr0ji − jjÞ6 with C6 as the van
der Waals coefficient and r0 as the lattice spacing. We
consider a regime of large detuning Ω=Δ ≪ 1, where the
ground state atoms interact, up to order Ω4, through an
effective flattop potential Wðr ¼ r0ji − jjÞ ¼ 2Ω4Vij=
½Δ3ðVij þ 2ΔÞ�, cf. Fig. 1(d). To obtain the supersymmetric
HQ, the interaction and chemical potentials W and μ and
the hopping J need to be tuned as follows.
For simplicity, we refer the discussion of general λ to the

Supplemental Material [39] and focus on λ ¼ 1. In this
case, the chemical potential terms in HQ become site-
independent up to the boundary terms originating from
P1P3 and PL−2PL, which can be accounted for by
setting μ1 ¼ μL ¼ J.
Next, the M1 model Hamiltonian forbids nearest-neigh-

bor occupation while the potential terms are of the form
Pi−1Piþ1, with no interactions beyond lattice distance 2.
For this to be captured by the flattop potential, we need
Wðr0Þ=Wð2r0Þ ≫ 1 and Wð2r0Þ=Wð3r0Þ ≫ 1 with the
maximum achieved in the limit r0 → ∞. However, to
counteract experimental imperfections [39], one should
reduce the duration of the simulation by maximizing the
relevant energy scale, here Wð2r0Þ, which happens for
r0 → 0, and one has to set J ¼ Wð2r0Þ. This corresponds to
the optimal approximation of HQ using single dressing.
Written explicitly,

JHQ ¼ −J
XL−2
i¼1

Pi−1ðc†i ciþ1 þ H:c:ÞPiþ2

þ Jðn1 þ nLÞ þ J
XL−2
i¼1

niniþ2 ð7Þ

(up to global energy offset), see Supplemental Material [39]
for details. Importantly, we also show in [39] that HQ can
be reached, in principle, with an arbitrary number of
dressings with already a tenfold increase in Wðr0Þ=
Wð2r0Þ and Wð3r0Þ=Wð2r0Þ for a double dressing with
realistic parameters.
As a specific example, we consider the fermionic 6Li

dressed with the j84Si state with C6 ¼ 645 GHz μm6

[42,43] and lattice spacing r0 ¼ 2.5 μm. The resulting
dressed potential is shown in Fig. 1(d). We get
Wð2r0Þ ¼ J ≈ 4 kHz, which for the optical lattice laser
wavelength λ ¼ 2r0 ¼ 5 μm corresponds to lattice depth
≈5.5Er, with Er being the recoil energy [44,81].
Figure 3(c) shows the quantum simulation of HQ, where

we compare the dynamics generated by the Rydberg
Hamiltonian (6) with that of HQ quenching from jK0

1i
and jK̄0

1i, see caption for details. We draw two main
conclusions. First, the quantum simulator accurately tracks
the dynamics set by the model Hamiltonian HQ and,
second, the dynamics in the l-particle sector (blue lines)
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is highly similar to that in the lþ 1 particle sector (magenta
lines). The latter observation is direct evidence of the
supersymmetry of HQ.
Outlook.—We have proposed a realization of a super-

symmetric lattice Hamiltonian HQ based on atoms inter-
acting through a Rydberg dressed potential [82,83]. Our
results constitute a stepping stone to quantum simulations
of supersymmetric lattice models in higher dimensions
[18,84–87], which can require n-body, rather than two-
body, interactions. In this context, it would be interesting to
consider a scheme relying on coupling the Rydberg atoms
with phonons [88] or to use cold molecules with permanent
or electric-field-induced dipole moments, avoiding the
need for off-resonant dressing [45–48]. Another interesting
avenue is to exploit the mapping of the supersymmetric
lattice Hamiltonians to spins [9,19,78,79], which would
allow for simulations with platforms such as superconduct-
ing devices with n-body interactions [89,90].
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