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As random operations for quantum systems are intensively used in various quantum information tasks, a
trustworthy measure of the randomness in quantum operations is highly demanded. The Haar measure of
randomness is a useful tool with wide applications, such as boson sampling. Recently, a theoretical protocol
was proposed to combine quantum control theory and driven stochastic quantum walks to generate Haar-
uniform random operations. This opens up a promising route to converting classical randomness to
quantum randomness. Here, we implement a two-dimensional stochastic quantum walk on the integrated
photonic chip and demonstrate that the average of all distribution profiles converges to the even distribution
when the evolution length increases, suggesting the 1-pad Haar-uniform randomness. We further show that
our two-dimensional array outperforms the one-dimensional array of the same number of waveguide for the
speed of convergence. Our Letter demonstrates a scalable and robust way to generate Haar-uniform
randomness that can provide useful building blocks to boost future quantum information techniques.

DOI: 10.1103/PhysRevLett.128.050503

Random operations for quantum systems [1] play an
important role for a large variety of tasks in quantum
information processing. Especially, as various studies on
boson sampling [2–7] have emerged in recent years to
demonstrate quantum computational supremacy [8,9], the
Haar random unitary matrices [10] required for these
studies have drawn ever increasing attention. The Haar
measure of randomness is now investigated as more than a
theoretical tool, but also as a useful building block for
quantum protocols or algorithms. It has wide applications
covering boson sampling [2–4,6,7], quantum cryptography
[11,12], quantum process tomography [13], entanglement
generation [14], fidelity estimation [15], etc., which, there-
fore, motivated a series of experimental schemes on
implementing random or pseudorandom quantum opera-
tions [16–18]. So far, these experimental schemes decom-
pose a random unitary matrix either by using a large
number of quantum gates [16–18] or using photonic beam
splitters and interferometers [19,20] via Reck-Clements
decomposition method [21,22], both of considerably high
complexity in implementation.
An alternative approach to generate Haar-uniform ran-

dom operations has recently been proposed [23], using

what we call a “stochastic quantum walk.” The rationale is
based on quantum control theory, which allows for a
coherent driving of permanently coupled quantum systems
via classical control pulses and stochastic pulses. Instead of
using quantum circuits or programmable photonic net-
works with beam splitters and phase shifters, in this
alternative approach, random operations can be imple-
mented via permanently coupled photonic waveguides
by applying stochastic modulations. This scheme, which
effectively implements a stochastic version of a continuous-
time quantum walk [24], could be scalable and beneficial
for practical quantum experiments including larger-scale
boson sampling. However, up to now, this scheme has
never been demonstrated in experiments.
Photonic lattice is an ideal physical platform to imple-

ment continuous-time quantum walk. A large evolution
space in the photonic lattice allowing for real spatial wo-
dimensional (2D) quantum walks has been recently dem-
onstrated [25,26]. While this physical system is suitable for
coherent and pure quantum walks, the environmental
decoherence term can also be intentionally introduced by
lattice manipulation. The key process is to introduce
classical randomness to the propagation constant along
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different segments of each waveguide, which causes the
randomness in the diagonal part of the Hamiltonian matrix.
Therefore, a different kind of evolution, namely, the
stochastic quantum walk, has been successfully demon-
strated in the photonic lattice to simulate various open
quantum systems [27,28].
In this Letter, we experimentally demonstrate an instance

of Haar-uniform randomness using stochastic quantum
walks on the integrated photonic chips. We prepare differ-
ent samples with different random settings of the propa-
gation constant and detunings, and then measure the light
intensity distribution after the evolution inside each chip.
The different samples created according to the above
procedure yield different unitary evolutions that, in the
ideal case, should represent independent samples from the
Haar distribution. We show that the average of all distri-
bution profiles converges to the even distribution when the
evolution length increases, suggesting the one-pad Haar-
uniform randomness. We further show that our 2D array
outperforms the one-dimensional (1D) array of the same
number of waveguide for the speed of convergence.
Additionally, we analytically and numerically show con-
vergence toward uniform distribution when injecting two or
multiple indistinguishable photons into such photonic
lattice. Our Letter demonstrates a highly scalable and
robust physical implementation for generating Haar-
uniform randomness, which can provide useful building
blocks to boost future quantum information techniques.
The experimental scheme.—We start this section by

briefly recalling the most stringent criterion to check when
the averages over an ensemble of N × N unitary operators
fUig approximate the formal averages with respect to the
Haar distribution. This is normally studied within the
framework of approximate q designs [16,23,29] (see
Supplemental Material Note 1 for more details [30]), which
require a small distance between two particular averages,

kEi½U⊗q
i ρU⊗q†

i � −
Z
U
U⊗qρU⊗q†dUk⋄ < ε; ð1Þ

where kTk⋄ is the diamond norm of a superoperator T, ρ is
the density matrix, and ε is the required small value. Ei
denotes the expectation value, i.e., the average over the
ensemble of unitary operators. The second part refers to
averages with respect to the Haar measure dU. We may also
consider a weaker criterion by forcing ρ to be symmetric
over permutations, to implement U⊗q

i ρU⊗q†
i via experi-

ments involving q indistinguishable photons, where the
chip performs the same unitary to each indistinguishable
particle.
Here we first focus on q ¼ 1, which has important

applications for quantum encryption [12], and we will
briefly analyze q > 1 scenarios in later sections. The
estimation of the diamond norm in Eq. (1) requires
entangled photonic inputs and complete tomography,

which is challenging for experiments, as the measurement
of each off-diagonal element requires different optical
components [31]. For this reason, in Supplemental
Material Note 1 [30], we introduce a weaker condition
based on the L2 norm for which one can prove that
entangled inputs are not required. Equation (S11) links
the theoretical norm of Ei½UiρU

†
i � − I=N to our experi-

mentally measured norm for M, namely, the distance
between the diagonal elements and the uniform distribution
(denoted as N d). There is another term in Eq. (S11) due to
the off-diagonal part N od. The experiment for measuring
the off-diagonal elements of Ei½UiρU

†
i � would be too

complex, and we manage to show in Supplemental
Material Note 2 and Fig. S1 [30] numerically that the
off-diagonal elements for the photonic lattice model used in
this Letter asymptotically converge to zero. Hence we focus
on the experimental exploration on diagonal elements,
which directly corresponds to the probability distribution
at each waveguide and would experimentally verify
whether these diagonal terms converge to zero.
For q ¼ 1, the Haar average reduces to I=N, where N is

the number of waveguides and I is the N × N identity
matrix. Therefore, Eq. (1) demands

kEi½UiρU
†
i � − I=Nkd < ε ð2Þ

for all input states ρ, where k · kd is the L2 norm of the
diagonal elements. This is inspiring from the experimental
perspective, as illustrated in Fig. 1(a). However, not all
unitary ensembles can satisfy Eq. (2). For instance,
quantum walks with a pure state input and an ensemble
made by a single unitary have a fixed ballistic distri-
bution rather than a uniform one. On the other hand, the
theoretical proposal [23] shows that averages over different
continuous-time stochastic quantum walks with sufficiently

FIG. 1. Generating Haar-uniform randomness using stochastic
quantum walks. (a) Illustration of averaging many stochastic
quantum walks of a certain evolution time to reach the Haar
measure. The red columns represent the distribution of I=N that
appear in Eq. (2). (b) Schematic diagram of introducing random
delta beta detunings to implement stochastic quantum walks on
the photonic chip. The color bar shows the detuning strength of
the propagation constant, where “max” corresponds to the given
Δβ amplitude. Photons are injected into one waveguide, and the
evolution in the lattice corresponds to a unitary operation.
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long waveguides could successfully approximate the Haar
averages.
Consider a photonic lattice where each waveguide is

equally divided into the same number of segments, and
each segment has a constant detuning of the propagation
constant, with random detunings in all segments following
a uniform distribution [see Fig. 1(b)]. The photon evolution
through such a lattice with N waveguides corresponds to
the operation with U of a size N. The evolution can be
described by an effective piecewise Hamiltonian Heff . For
each segment k, there is

HeffðkÞ ¼
XN
i

½βi − ΔβiðkÞ�a†i ai þ
XN
j≠i

Cijða†i aj þ a†jaiÞ;

ð3Þ
where βi and Cij are, respectively, the propagation constant
and coupling coefficient for the lattice without any detun-
ings. In practice, βi is set the same for all waveguides.
ΔβiðkÞ is the constant detuning of the propagation constant
for waveguide i at segment k, which can be experimentally
achieved by tuning the writing speed (see details for Δβ
tuning in Supplemental Material Note 3 and Fig. S2 [30]).
The introduction ofΔβ inHeff has an effect of adding some
classical dephasing terms during the evolution.
Thanks to Eq. (3), the unitary implemented by a chip of

length z ¼ KΔz is UðzÞ ¼ ðQk e
−iHeffðkÞΔzÞ, where Δz is

the length of each segment, and K is the number of
segments. Calling jΨðzÞi ¼ UðzÞjΨð0Þi for a given initial
wave function jΨð0Þi, what is experimentally measured is
the probability distribution jhljΨðzÞij2 that the photon will
come out from the lth waveguide after an evolution length
z. The probability distribution is equivalent to the diagonal
elements of UρU†.
In the experiment, we prepare photonic lattices of

5 × 5 waveguides, a total evolution length of 8 cm, and
a segment length Δz of 2 mm. The random Δβ detunings in
all segments follow a uniform distribution under a Δβ
amplitude of 0.4 mm−1 using a femtosecond laser direct
writing technique [5,25,32] (see details for waveguide
preparation in Supplemental Material Note 4 [30]). In
total, we have 17 random settings for the detuning profiles.
We inject photons from one waveguide of the lattice and
measure the evolution patterns for an evolution length of
1–8 cm, which will allow us to see how the performance
changes with the evolution length. The experimental
evolution patterns are given in Supplemental Material
Figs. S3–S10 [30].
Result analysis.—As shown in Fig. 2, we measure the

photonic evolution pattern for different evolution lengths
after injecting a photon in the lattice of one random setting.
We then read the intensity probability at each waveguide
for each figure (see details in Supplemental Material

Note 5 [30]). We have processed all 17 random settings
and each has 8 different evolution lengths.
For each evolution length, we average the probability

distribution of the 17 settings. What we obtain is the
diagonal part of Ei½UiρU

†
i � in Eq. (2). The diagonal part of

the other term in Eq. (2) I=N can be viewed as the equal
distribution at all 5 × 5 waveguides, which means each
waveguide has an equal probability of 0.04. We subtract
0.04 from each element of the measured average proba-
bility distribution matrix, and we can get the diagonal part
of Ei½UiρU

†
i � − I=N, which is a 25 × 1 vector and can be

written in a 5 × 5 matrix M.
We use the heat map to list the value of each element in

the matrix M [see Fig. 3(a)]. Clearly, for a small evolution
length, the fluctuation around zero for these element values
is much more fierce than that for a larger evolution length.
We calculate the L2 norm ofM, i.e., kMk. If all elements in
M are zero, kMk will certainly be zero, while large
deviations from zero in these elements make kMk big.
The calculated kMk shown in Fig. 3(b) well supports the
results in heat maps. kMk gradually converges to a
considerably small value when the evolution length
increases. A slight gap between the experimental and
numerical results may due to imperfect fitting for Δβ as
explained in Supplemental Material Note 3 [30], but overall
there is a good match to show that stochastic quantum walk
results dynamically decay to zero. As a comparison, the
pure quantum walk always keeps a high norm value and
does not show a sign of convergence.
Our experiment demonstrates that the diagonal elements

of Ei½UiρU
†
i � indeed tend toward a uniform distribution. We

further show in Supplemental Material Note 7 and
Figs. S11 and S12 [30] that, within a certain evolution
length scale, increasing the evolution length lowers down
the norm, before approaching a constant trend. Increasing

1cm

2cm

3cm

4cm

5cm

6cm

7cm

8cm
0 max

FIG. 2. Experimental results for stochastic quantum walks. The
photonic evolution patterns of different evolution lengths for one
random setting of photonic lattice. The corresponding evolution
length of each graph is marked beside the graph. The mask
illustrates how we read the figure data to get the probability
distribution, with details explained in Supplemental Material
Note 5 [30].
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the Δβ amplitude can speed up the convergence without
altering the norm lower bound, while increasing the
number of samples can further lower down the norm. In
Fig. S13, we show the segment length Δz also influences
the convergence length without changing the norm lower
bound. The convergence length does not monotonically
change with Δz, but reaches a minimal value when
choosing a proper Δz value. Our experiment demonstration
of the diagonal elements, together with the numerical
convergence of the off-diagonal part in Supplemental
Material Note 2 [30], show that stochastic quantum walks
can reach a one-design Haar measure at a long enough
evolution length.
We further investigate the 1D photonic lattice of 1 × 25

waveguides [see Fig. 4(a)], a segment length Δz of 2 mm,
and an evolution length of 8 cm. We set eight different Δβ
amplitudes, namely, 0.1–0.8 mm−1, and each has six
random samples. The experimental patterns for all 1D
samples are provided in Supplemental Material Fig. S14
[30]. We average the six probability distributions for each
Δβ amplitude and plot their kMk in Fig. 4(b). For the 1D
array, as Δβ amplitude increases, there is a slightly
reducing trend of the norm. We show in Fig. S15 a similar
trend for the 2D lattices, that they converge better at a
higher Δβ amplitude. This is because a stronger dephasing
effect caused by larger Δβ detunings can facilitate a faster
convergence to the Haar measure. However, the norm for
1D samples of large Δβ amplitudes still exceeds the norm
for the 2D samples with a Δβ amplitude of 0.4 mm−1. The
2D quantum walk has demonstrated the same ballistic
transport with the 1D quantum walk, and yet a faster decay
from the injection site than the latter. This is due to richer
evolution paths [25] that also allow for more flexible
Hamiltonian engineering [26]. In this Letter, we show that

the 2D stochastic quantum walk has a clear advantage in
fast convergence to the Haar measure utilizing the rich
evolution paths.
In addition, we explore the convergence to Haar measure

for the scenario of q > 1 via some analytical and numerical
analysis, as shown in Supplemental Material Note 8 and
Fig. S15 [30]. The probability distribution when injecting

1cm(a) (b)2cm 3cm 4cm

5cm 6cm 7cm 8cm

FIG. 3. Convergence to the Haar measure. (a) The heat maps show all the elements of the matrix M, the diagonal elements of
Ei½UiρUi� − I=N, for different evolution lengths z as shown above each heat map. The average for each z is estimated from 17 random
settings with the same evolution length. Note that a few elements have a value above 0.033 or below −0.033. They are represented in the
heat map using the color for 0.033 or −0.033, respectively. (b) The L2 norm kMk for samples of different evolution lengths. QSW and
QW stand for stochastic quantum walk and quantum walk, respectively. The theoretical results are obtained by setting Δz of 2 mm and
averaging 17 random settings, which are consistent with the experiment. The shading area shows a possible range of theoretical results
considering a 15% fluctuation of the Δβ amplitude; that is, the upper bound and lower bound of the shading area correspond to a Δβ
amplitude of 0.34 and 0.46 mm−1, respectively. The error bar for the experimental results is the standard error of the mean, with details
explained in Supplemental Material Note 6 [30].

0 max

(a)

(b)

FIG. 4. Compare the performance in one- and 2D array.
(a) Schematic diagram of the 1D photonic lattice of 25 wave-
guides with random tunings of the propagation constant. (b) The
calculated L2 norm kMk for 1D and 2D arrays. For 2D array, we
get two sets of norm values, each by averaging six random
settings separately.
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two indistinguishable photons from mode i and i0 would
converge to ½2=NðN þ 1Þ�. Alternatively, the compound
light intensity at each mode j, Ij, would converge to ð2=NÞ.
The convergence follows the same dependence on the Δβ
amplitude and on the number of groups as in q ¼ 1.
Meanwhile, both q ¼ 2 and q ¼ 1 converge at a similar
evolution length, showing the same convergence speed, as
theoretically expected [23]. The difference lies in that the
lower bound for q ¼ 2 is slightly higher. We further derive
a general expression for the average probability; that is,Qq

k¼1½k=ðN þ q − kÞ�, and ðq=NÞ for the compound light
intensity. They can be reduced to the aforementioned
expression for q ¼ 1 or 2.
Discussion.—By taking full advantage of large-scale

integrated photonic chips and precise lattice manipulation
techniques, we manage to use the classical randomness
(i.e., the random settings of Δβ detunings) to generate an
important source for quantum randomness and make the
unitary one-design distribution. That is, we have been able
to demonstrate large-scale continuous-time stochastic
quantum walks on the photonic chips and suggest the
convergence to Haar-uniform randomness at a large evo-
lution length.
Our approach offers a highly feasible alternative to the

quantum gate approach or the Reck or Clements decom-
position approach for generating Haar randomness. The
Reck-Clements scheme offers a way of decomposing any
certain unitaries to avoid the difficulties of constructing
different configurations [33], and yet it requires fine-tuning
of a quadratic number of parameters of beam splitters and
phase shifters as the unitary scales up.
On the other hand, our approach does not need fine-

tuning or complicated quantum circuit designs. Indeed, as
long as the quantum walk Hamiltonian is “fully control-
lable,” namely, any unitary is reachable with proper local
phases, random Δβ’s with suitably long chips eventually
yield Haar random unitary evolutions, without the need of
precise phase calibration. Slightly different Δβ settings are
mapped in fluctuations in the resulting unitary, which
would also follow a Haar measure. Experimentally, we
programmed the random Δβ with femtosecond laser writ-
ing speed. Even if the scale of detunings (theΔβ amplitude)
is not kept as desired, after a long enough evolution (shown
in Fig. S12), the average will still converge to the Haar
measure. Meanwhile, the convergence can be improved
with larger Δβ detunings, a properly selected segment
length Δz, and more samples of different Δβ detunings.
From Figs. S12 and S13, we see that a Δβ amplitude of
0.6 mm−1 with a Δz of 2 mm, or a Δβ amplitude of
0.4 mm−1 with a Δz of 5 mm, can both converge at a
feasible evolution length below 10 cm. Therefore, we need
to choose proper and feasible parameters considering
today’s fabrication technologies. Being free of fine-tuning
and having feasible parameters are advantageous features
for our approach.

In this Letter, we used many samples to compare
ensemble averages with theoretical averages and proved
convergence toward the Haar distribution. Nonetheless, a
single Haar random chip is enough for most applications,
e.g., boson sampling: once it is understood that noisy
quantum walks converge toward the Haar distribution, in
applications it is enough to fabricate a single chip, designed
according to the theoretical recipe. Our experiment focuses
on proving that noisy quantum walks do indeed converge
toward the Haar distribution, and additionally, our analyti-
cal results show the convergence does apply to scenarios of
multiple photons. Our utilization of 2D continuous-time
stochastic quantum walk on photonic chips sheds light for
more applications that need Haar randomness.
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