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We implement a 2-qubit entangling Mølmer-Sørensen interaction by transporting two cotrapped 40Caþ

ions through a stationary, bichromatic optical beam within a surface-electrode Paul trap. We describe a
procedure for achieving a constant Doppler shift during the transport, which uses fine temporal adjustment
of the moving confinement potential. The fixed interaction duration of the ions transported through the
laser beam as well as the dynamically changing ac Stark shift require alterations to the calibration
procedures used for a stationary gate. We use the interaction to produce Bell states with fidelities
commensurate to those of stationary gates performed in the same system. This result establishes the
feasibility of actively incorporating ion transport into quantum information entangling operations.
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Recent progress in the ability to control trapped-ion
positions and velocities offers opportunities to explore
novel roles for active transport in quantum logic operations.
Transport operations are essential to most modern ion trap
experiments to enable loading, individual detection, and
individual addressing [1,2]. Maturing trap design and
electrical potential control hardware have led to impressive
feats of fast shuttling [3,4], fast ion separation [5,6], optical
phase control [7], junction transport [4,8], and ion chain
rotation [9,10].
An architecture that incorporates ion transport directly

into quantum gates was proposed as an approach to reduce
overall optical power and timing precision requirements
within large trap arrays [11]. This architecture was partially
realized by de Clercq et al., who performed 1-qubit
operations in parallel on two 9Beþ ions by transporting
them through reflected, copropagating beams in separate
trap regions [12]. This work did not demonstrate the
2-qubit entangling operations that would be necessary
for a universal gate set [13].
Here we demonstrate 2-qubit entangling gates performed

on trapped ions during transport. In contrast to the hyper-
fine qubits envisioned in Ref. [11], we address an optical
qubit transition between an electronic ground state and a
metastable excited state of 40Caþ ions confined within a
surface Paul trap, where we can perform both 1- and 2-qubit
gates with a single, global beam. We modify the time
dependence of the transport potential to control the velocity
of the ions across an 80 μm trap region, and we apply a
bichromatic field during this transit to produce a Mølmer-
Sørensen (MS) entangling interaction [14]. To compensate
for the time-varying ac Stark shift that the ions experience
as they traverse the optical beam, we leverage small
changes in the Doppler shift and thereby obtain fidelities
tantamount to those of stationary gates in the system.

In these experiments, two 40Caþ ions are confined 58 μm
above a surface-electrode linear Paul trap [15]. A radio-
frequency potential with 176 V amplitude at 56.4 MHz
applied to long electrodes on both sides of the trap axis
provides radial confinement. Arbitrary waveform genera-
tors (AWGs) deliver potentials with a maximum amplitude
of �12 V and a 5 ns sampling rate to 42 electrodes to
control the strength and location of the axial potential
minimum [7]. The center-of-mass (c.m.) and breathing-
motion (BM) axial mode frequencies are ωc:m:=ð2πÞ ¼
1.41 and ωBM=ð2πÞ ¼ 2.45 MHz [16]. We use the ground
jS1=2; mj ¼ −1=2i (jSi) and metastable jD5=2; mj ¼ −1=2i
(jDi) electronic states of the ions as our qubit, with mj

denoting the angular momentum projection of each state;
we coherently manipulate the populations in these states
with a narrow-linewidth 729 nm laser beam oriented at 45°
to the trap axis and with a waist of 15 μm. We distinguish
populations in the two-ion bright state P2 (jSSi), the one-
ion bright subspace P1 (superpositions of jSDi and jDSi),
and the dark state P0 (jDDi) using fluorescence detected by
a single photomultiplier tube while illuminating the ions
with 397 and 866 nm light [17]. The trap is housed in a
room temperature ultrahigh vacuum chamber with win-
dows for optical access, and the chamber and beam-
delivery optics are surrounded by a mu-metal enclosure.
Figure 1 illustrates the trap geometry and experimental

sequences. The ions first undergo Doppler cooling, side-
band cooling (axial c.m. and BM modes), and state
preparation at position C and are transported 40 μm to
the left (position L) in 25 μs. The entangling interaction is
then applied during an 80 μm transport (L to R) at 0.5 m=s
(160 μs duration). For our beam geometry, this motion
Doppler shifts the 729 nm beam tones by 0.5 MHz. The
ions then are returned to C in 10 μs for additional 729 nm
pulses and final state detection. For interactions that take
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place during the entire L → R transport duration, the
729 nm beam is switched on 2 μs before the transport
starts and off 2 μs after the transport has finished [Fig. 1(b)]
[18]. For detailed in-flight spectroscopy experiments,
we divide the transport into eight portions and probe these
segments using 729 nm pulses with 20 μs duration each
[Fig. 1(c)].
Our MS entangling interaction requires two optical tones

applied simultaneously with frequencies detuned near the
red and blue BM sidebands [19]; we choose the BM mode
because it has a low heating rate and is not excited strongly
during linear transport. We create this bichromatic field by
passing the 729 nm beam through an acousto-optic modu-
lator with two rf tones applied; both diffracted output
beams are coupled into a single optical fiber to deliver
copropagating laser fields to the trapped ions [20,21].
For an interaction duration τ, the optical tone frequencies
and powers are chosen such that the gate transforms ions
initialized in the ground state jSSi into a maximally
entangled Bell state ðjSSi − ijDDiÞ= ffiffiffi

2
p

. We quantify
the fidelity F of the state produced in this way using a
combination of two experimental results: (1) the popula-
tions P0 and P2 after the gate and (2) the amplitude A of a

parity signal constructed by applying a global π=2 pulse
with varying phase after the gate [22].
We determine several initial sets of dc electrode voltages

to confine the ions statically at 2 μm intervals along the trap
axis by creating a three-dimensional discretized model
of the ideal trap and solving for potentials that produce
harmonic confinement [23]. For simple shuttling opera-
tions, linear interpolation between these harmonic poten-
tials is sufficient to transport ions from one position to
another. We use this preliminary sequence of voltages,
called a waveform, as a starting point for transport across
the 80 μm experimental region. Unfortunately, the confin-
ing fields produced in practice can differ from the ideal
solutions due to trap fabrication imperfections, stray fields,
and dc electrode filter distortions, so we calibrate mod-
ifications to the waveform to correct for variations in axial
confinement strength and transport velocity.
Because the entangling operation relies on interactions

with an axial motional mode, producing constant axial
confinement during transport simplifies the gate imple-
mentation. For this we take measurements of the c.m. mode
frequency of an ion in a stationary potential every 5 μm
along the transport region: we apply a rf excitation to a
nearby electrode and measure the detected fluorescence as
the excitation frequency is varied. These measurements
reveal deviations in the harmonic potential strength at
different locations in the transport region (as high as
4.6% variation in ωc:m:), which we correct with a multi-
plicative scaling on all of the electrode voltages responsible
for harmonic confinement, but not on those compensating
for stray electric fields.
Measurements of the Doppler-shifted qubit transition

frequency after this procedure reveal undesired deviations
in the transport velocity. We expect the frequency of the
729 nm beam to be shifted by 500 kHz for ions moving at
0.5 m=s, but initial spectroscopy of the qubit resonance
realized by shuttling an ion over the entire region from L to
R reveals a multipeaked feature [black points in Fig. 2(a)].
This indicates that the Doppler shift is changing during
transport. We instead probe the in-flight Doppler shift in
smaller 20 μs segments [see Fig. 1(c)], which produces
single-peaked spectra representing the local Doppler shifts
plotted in Fig. 2(b). The local Doppler shifts indicate
velocity variations of up to 4.9% from the expected value.
To achieve a constant Doppler shift during transport, we
modify the ion velocity in each segment of the waveform
with an appropriate change in sampling density. When this
correction is applied to each segment, the full-transit
spectrum exhibits a single peak with full width 7.0 kHz
at half maximum [red points in Fig. 2(a)]; this width is
slightly larger than the 5.6 kHz width expected for a
Gaussian intensity ramp with 42 μs 1=e2 time, indicating a
variation of 1 kHz on a 500 kHz background Doppler shift.
We refer to this corrected waveform as the “constant-
velocity waveform” below. While the MS interaction is

(a)

(b)

(c)

FIG. 1. (a) Diagram of the trap and 729 nm beam intensity
profile along the trap axis with rf electrodes in dark gold parallel
to the trap axis and segmented electrodes above and below them.
Ions begin in the center of a 60 μm wide electrode at position C.
L and R denote the left- and rightmost portions of the transport
region. (b) Experimental sequence for full transport measure-
ments. Green blocks indicate optical operations (cooling, state
preparation) before and after transport, red blocks indicate
729 nm pulses, and blue blocks indicate transport operations
between indicated positions. (c) Segmented measurement se-
quence in which the 729 nm beam is pulsed only during a 20 μs
segment of the full transport duration. Red pulses in parentheses
indicate 729 nm pulses used in parity analysis and red-sideband
spectroscopy measurements.
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insensitive to motional occupation to first order, motional
heating of the mode during the MS gate can cause errors.
We measure the motional heating after a round-trip trans-
port using the constant-velocity waveform and observe no
transport-induced heating for BM or c.m. modes (within
0.04 and 0.1 quanta uncertainty, respectively). Assuming a
BM mode heating rate _̄n given by this uncertainty distrib-
uted over our transport duration provides an estimated
upper bound error contribution from gate transport of
ð _̄nτ=4Þ ≈ 0.005 [24].
In the absence of Stark shifts, the blue and red BM

motional sideband frequencies are given byωb ¼ ωc þ ωBM
and ωr ¼ ωc − ωBM, respectively, where ωc is the qubit
carrier frequency.When the ions are illuminated with the two
MS interaction tones, the sideband frequencies experience an
intensity-dependent light shift ofΔS, assumed to be equal for
both sidebands [25,26]. To implement the entangling inter-
action, we apply the two MS tones at detunings (from the
bare carrier) of δb ¼ ωBM þ δm þ δg for the blue tone and
δr ¼ −ωBM − δm þ δg for the red tone. Here, δm is the usual
“mode detuning,” and δg is a “global detuning” that can be
used to compensate for the light shift. Both ΔS and δg can be
time dependent.
We consider the interaction of copropagating laser fields

of equal intensity and polarization at frequency detunings

δb and δr with the electric quadrupole transition of the
ions [27]. After taking both Lamb-Dicke and rotating wave
approximations and neglecting off-resonant terms, we write
the MS Hamiltonian in the (Stark-shifted) spin and motion
interaction frame as

HMS ¼
ℏΩηBM

2
ða†e−iðδmþδg−ΔSÞt þ aeiðδm−δgþΔSÞtÞ

× ðσþ1 − σþ2 Þ þ H:c:;

where Ω is the carrier Rabi frequency, ηBM ∼ 0.042 is the
BM Lamb-Dicke parameter, a† and a are creation and
annihilation operators for BM vibrations, and σþ and σ− are
raising and lowering operators for the internal electronic
states of the indicated ion. We model the dynamics of the
interaction by solving the time-dependent Schrödinger
equation for τ ¼ 160 μs, and we allow the parameters of
HMS to vary during the interaction to analyze the effects of
a changing Rabi frequency and Stark shift in cases where
the ions are transported across the 729 nm beam.
We briefly describe typical calibration procedures and

results for a MS entangling gate on ions in a stationary
potential in order to highlight the differences between this
simpler situation and the interaction we later implement on
transported ions. For a constant-intensity interaction,
we perform Rabi experiments to calibrate both the red
and blue BM sideband frequencies. During the calibration
of each sideband, we apply the other tone at a detuning of
δm=ð2πÞ ¼ 25 kHz from its sideband frequency to generate
the Stark shift present during the gate while only minimally
driving the gate interaction. This procedure effectively
applies the global detuning necessary to compensate the
Stark shift (δg ¼ ΔS). We use a similar experiment to
balance Rabi frequencies. Then, for a fixed bichromatic
interaction duration, we analyze the ion state populations
P0, P1, and P2 as a function of δm to determine the value
that minimizes P1, and we adjust the beam powers at this
optimum detuning to balance P0 and P2. For τ ¼ 160 μs,
we choose δm=ð2πÞ ¼ 12.5 kHz (implementing two loops
in motional phase space) and achieve a gate fidelity
F ¼ 97.0ð4Þ%. This fidelity is limited largely by magnetic
field noise and laser phase noise: we measure a 1.4(3)%
contrast loss in a single-ion Ramsey experiment with a
160 μs delay, suggesting an approximate decoherence-
induced two-ion process error of 3%.
When the Stark shifts are compensated (δg ¼ ΔS), the

state population curves become symmetric about δm ¼ 0,
as seen in Fig. 3(a). The constant-intensity square pulse of
729 nm light produces minima in P1 at mode detunings
δm ¼ n=τ for integers n, so that only these values are
optimal. Revivals in P1 between these optimal values can
be diminished through a smooth intensity envelope [11],
thereby reducing this constraint on detunings. When we
transport ions through the stationary 729 nm Gaussian
beam, they experience a natural Gaussian intensity

(a)

(b)

FIG. 2. Black circles (red diamonds) indicate data taken before
(after) waveform correction. (a) Frequency spectrum of the qubit
transition; points represent the mean of two-ion fluorescence
counts over 500 experiments, and error bars represent the
standard error of the mean. (b) Doppler shift measured in each
10 μm segment of the transport region as determined from fits to
spectral peaks; error bars (fit errors) are smaller than the size of
the points.
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envelope, but this smoothly varying optical intensity also
creates a time-dependent Stark shift ΔSðtÞ, rather than a
constant ΔS, that cannot be completely compensated
through a constant offset in drive frequencies (δg). The
uncompensated Stark shift breaks the mode-detuning
symmetry of the interaction, complicating the dynamics.
While the light shift can be eliminated to first order by
adjusting the relative tone powers [25] or by illuminating
the ions with an additional tone that produces an opposite
light shift [26], we instead independently implement two
different Stark shift compensation methods for these
“transport gates” performed on transported ions; the first
“static” method involves the application of a constant δg
that only loosely counteracts the time-varying Stark shift.
The second “dynamic” method leverages in-flight adjust-
ments to the velocity of the moving potential to smoothly
counteract ΔSðtÞ with a varying Doppler shift δDðtÞ, which
acts as a time-dependent δgðtÞ. We model these effects in
both cases using a Gaussian envelope on ΩðtÞ and ΔSðtÞ
that takes into account the beam waist, moving potential,
and ion spacing.

All calibrations for the transport gate are performed
with the beams turned on during the full transport duration
[Fig. 1(b)]. We begin by calibrating the Doppler-shifted, bare
sideband frequencies (ωb and ωr) using a reduced optical
power with the constant-velocity waveform; the lowered
intensity avoids overdriving the transitions and minimizes
the Stark shift. We then perform the MS sequence at full
power and analyze the resulting populations to determine a
value for the detuning δm that minimizes P1. We first attempt
the static compensation method, for which we scan the
global detuning δg to further minimize P1 and then optimize
the beam powers to balance P0 and P2. We perform the MS
gate at δm=ð2πÞ ¼ 14.2 and δg=ð2πÞ ¼ 4.4 kHz, and we
measure a gate fidelity F ¼ 96.6ð4Þ%.
The static compensation method is straightforward to

implement, and it allows us to determine both the required
optical power necessary to perform the transport gate and the
corresponding Stark shift experienced by the ions during
transport. The gate performed on transported ions requires a
threefold increase in optical intensity compared to the
standard gate because the transported ions spend less time
in the most intense portion of the beam. While the intensity
necessary for a single gate is higher, the power could be
recycled to perform gates on other ion pairs in a larger trap
array [11]. To quantify the light shift variation during the
transport gate, we measure the Stark-shifted sideband
frequencies during 20 μs segments of the transport at the
MS gate intensity. As described above for the stationary
potential well, each sideband is calibrated with the other tone
applied simultaneously at δm=ð2πÞ ¼ 25 kHz. We measure
a 5 kHz difference between sideband frequencies at the edge
of the beam and those in the most intense, center portion—a
quantity consistent with the value of δg used to optimize gate
performance.
Rather than applying a constant frequency correction for

the light shift, the ion transport allows us to implement a
unique dynamic Stark shift correction using our control
over ion velocity. We create a “modified-velocity wave-
form” by making further small adjustments to the sampling
density in each segment of the waveform. The adjustments
produce an additional time-varying Doppler shift δDðtÞ
on the laser tones that counteracts the intensity-dependent
Stark shift [δgðtÞ ¼ δDðtÞ ¼ ΔSðtÞ]. Using the bare,
Doppler-shifted sideband frequencies calibrated with the
constant-velocity waveform, we implement the MS inter-
action on ions transported with the modified-velocity
waveform. We choose a value of δm that minimizes P1

[Fig. 3(b)], and we optimize the global beam power to
balance P0 and P2. For δm=ð2πÞ ¼ −15 kHz, we measure a
gate fidelity of F ¼ 97.1ð4Þ%. The interaction model fit to
the dynamic correction transport gate data determines an
uncompensated Stark shift of 140 Hz and predicts an error
of 0.0058 for our gate. With perfect Stark shift compensa-
tion, the expected error reduces to 0.0026; this could be
reduced even further by operating at larger gate detuning

(a)

(b)

FIG. 3. State populations P0 (red), P1 (blue), and P2 (green) as
a function of mode detuning δm for τ ¼ 160 μs. Points represent
experimental data (error bars give the 68% confidence interval
assuming binomial statistics). Solid lines represent fits to sim-
ulations with our model Hamiltonian HMS and with Ω and ΔS as
free parameters; in the transport gate case, these are given a
Gaussian time envelope. Vertical dashed lines indicate the
detunings corresponding to the reported gate fidelities. (a) Con-
stant-intensity interaction with ions in a stationary potential;
F ¼ 97.0ð4Þ%. (b) Interaction on ions transported with modu-
lated velocity through the beam; F ¼ 97.1ð4Þ%.
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with greater optical power. The use of fine adjustments to
the moving potential’s velocity allows us largely to remove
the symmetry-breaking light shift effects while maintaining
a smooth optical intensity ramp and therefore allows a
wider range of detunings and optical intensities for the gate.
While the transport used in this study is adiabatic, we

note that nonadiabatic transport could also be incorporated
in the gate. In that case, a well-defined phase must be
established between the transport and the optical force to
ensure that the same motional phase-space trajectory is
achieved during every experimental repetition [28,29].
The subdivision of the transport waveform into eight
20 μs segments does not approach the limits of the
AWG sampling rate (5 ns) nor the response time of the
electrode filters (2 μs). Shorter waveform segments would
provide finer velocity control for correcting Doppler shift
variations and for dynamically compensating Stark shifts.
Through observations of mode-detuning asymmetry, we
can leverage the gate itself to calibrate small corrections to
the waveform interpolation which optimally compensate
the variable Stark shifts. Despite the coarse discretization of
the transport waveform used here, we obtain gate fidelities
equaling those of stationary gates in our system and
demonstrate the feasibility of a transport-based universal
quantum gate set.
Ongoing advances in trapped-ion experimental control

provide opportunities to explore new quantum logic archi-
tectures and techniques. Fine spatial and temporal manipu-
lation of trap electric fields yields freedom in the confining
potential position, velocity, and strength that can be
exercised to modify qubit interactions in ways that can
reduce constraints on experimental requirements and can
improve gate performance. The transport gate technique
demonstrated here could be extended to longer ion strings
with different motional modes and ion species with
appropriate changes in beam geometry. In particular, the
scheme is amenable to σzσz interactions such as the optical-
transition dipole force gate [30,31], where the Stark shift
effects could be eliminated entirely with an echo pulse.
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